
Publications du Laboratoire de
Combinatoire et d’
Informatique
Mathématique

34

Marni Mishna

A Holonomic Systems Approach to
Algebraic Combinatorics

Universit é du Qu ébec à Montr éal

Publications du Laboratoire de Combinatoire
et d’Informatique Mathématique

Responsable des Publications du LaCIM

Srecko Brlek courriel: brlek@lacim.uqam.ca

Éditeur technique

André Lauzon

LaCIM, Université du Québec à Montréal

C.P. 8888, Succ. Centre­Ville

Montréal (Québec) Canada

H3C 3P8

Comité éditorial

A. ARNOLD Bordeaux I
F. BERGERON UQAM
J. BERSTEL Marne­la­Vallée
S. BRLEK UQAM
R. CORI Bordeaux I

P. FLAJOLET INRIA
D. FOATA Strasbourg
A. GARSIA UCSD
I. GESSEL Brandeis
I. GOULDEN Waterloo
G. LABELLE UQAM

J. LABELLE UQAM
C. LAM Concordia
A. LASCOUX Marne­la­Vallée
P. LEROUX UQAM
C. REUTENAUER UQAM

R. STANLEY MIT
V. STREHL Erlangen
D. THÉRIEN McGill
G.X. VIENNOT Bordeaux I
T. WALSH UQAM
Y. YEH Academia Sinica

Volumes parus

1 Parallélisme: modèles et complexité, S. Brlek (éd.), ACFAS’89, Actes, 1990

2 Séries indicatrices d’espèces pondérées et q­analogues, H. Décoste, 1990

3 Étude des arbres hyperquaternaires, L. Laforest, 1990

4 Contribution à l’étude des empilements, P. Lalonde, 1991

5 Calcul combinatoire de séries indicatrices de cycles, I. Constantineau, 1991

6 Notes On Schubert Polynomials, I. G. Macdonald, 1991

7 Combinatoire des tableaux oscillants et des polynômes de Bessel, L. Favreau, 1991

8 Réécritures dans l’algèbre de Lie libre, le groupe libre et l’algèbre associative libre, G. Melançon, 1991

9 q­énumération de polyominos convexes, M. Bousquet­Mélou, 1991

10 Atelier de Combinatoire franco­québécois, J. Labelle, J.­G. Penaud (éd.), Mai 1991, Actes, 1992

11 Séries formelles et combinatoire algébrique, P. Leroux, C. Reutenauer (éd.), Juin 1992, Actes, 1992

12 Structures combinatoires et calcul symbolique, Y. Chiricota, 1993

13 Aspects combinatoires des nombres de Stirling, des polynômes orthogonaux de Sheffer et de leurs q­analogues, A.

de Médicis, 1993

14 A theory of noncommutative determinants and characteristic functions of graphs I, I. M. Gelfand and V. S.

Rethak; Matroids on chamber systems, I. M. Gelfand and A. V. Borovik, 1993

15 Modèles mathématiques pour la synthèse des systèmes informatiques, S. Brlek (éd.), ACFAS’94, Actes, 1994

16 Produits et coproduits des fonctions quasi­symétriques et de l’algèbre des descentes, C. Malvenuto, 1994

17 Une interprétation combinatoire des approximants de Padé, Emmanuel Roblet, 1994

. suite en fin de volume

Publications du Laboratoire de
Combinatoire et d’
Informatique
Mathématique

34

Marni Mishna

A Holonomic Systems Approach to
Algebraic Combinatorics

Universit é du Qu ébec à Montr éal

Dépôt légal, premier trimestre 2005, Bibliothèque nationale du Québec

ISBN 2­89276­349­5 LaCIM Montréal

LaCIM, Montréal, Janvier 2005.

Laboratoire de combinatoire et d’informatique mathématique

Université du Québec à Montréal

C.P. 8888, Succ. Centre­Ville

Montréal (Québec) Canada

H3C 3P8

L

A C
I

M

A
QU

Université du Québec à Montréal

UNE APPROCHE HOLONOME À LA COMBINATOIRE ALGÉBRIQUE

THÈSE

PRÉSENTÉE

COMME EXIGENCE PARTIELLE

DU DOCTORAT EN MATHÉMATIQUES

PAR

MARNI JULIE MISHNA

NOVEMBRE 2003

ii

Université du Québec à Montréal

A HOLONOMIC SYSTEMS APPROACH TO ALGEBRAIC COMBINATORICS

PH.D. THESIS

PRESENTED

AS A PARTIAL REQUIREMENT

FOR THE DOCTORATE IN MATHEMATICS

BY

MARNI JULIE MISHNA

NOVEMBER 2003

ii

This thesis is dedicated to the memory of a wonderful woman, my mother,

Vicki Munn.

iv

Acknowledgments

I offer the following people and organizations heartfelt appreciation for

their contributions to this work and their support during the period of my thesis.

The two research teams which I had the pleasure of being part: LaCIM

(Université du Québec à Montréal) and Projet Algorithmes (Inria, Rocquen-

court, France). Both are thriving incubators of combinatorics with warm, hu-

man aspects, and regular coffee. I thank also the students and postdocs of both

groups, such as Marianne Durand, Cédric Lamathe, and Ludovic Meunier, for

their humour and camaraderie;

A special separate mention must be made for les assistantes extraordi-

naires Lise Tourigny (LaCIM), Virginie Collette (Inria) and Manon Gauthier

(UQAM). You keep these mathematical machines well oiled and running flaw-

lessly; Also to André Lauzon (LaCIM) for technical assistance.

The National Science and Engineering Research Council, and the Institut

des Sciences Mathématiques for generous financial support;

Peter Borwein (Simon Fraser University) and Gilbert Labelle (LaCIM)

for accepting positions on the jury and providing important commentary on the

text and presentation;

Math princesses on all continents, especially Karen Meagher (University

of Ottawa) and Sylvie Corteel (Versailles); You are my agences immobilières, my

sisters in craft and most of all, inspiring. Additionally, Ms. Meagher carefully

read many sections and provided indications on how to make the text accessible

to readers other than myself;

Chef extraordinaire Philippe Flajolet (Inria), for teaching me many essen-

tial lessons I could not have learned elsewhere, like: analysis is enjoyable when

there is a combinatorial pretext, and that chameaux blatèrent;

François Bergeron (LaCIM), my director, for consistently offering of ex-

cellent advice, direction and ideas. His careful reading of the text, and the

numerous suggestions that followed, are also greatly appreciated;

Drill sergeants Frédéric Chyzak and Bruno Salvy (Inria), for intensive trai-

ning regimens, countless fascinating discussions and opportunities, and bound-

less patience towards a non-polytechnicien trying to survive in their midsts.

Additional thanks to M. Salvy for his active role on the jury;

Cedric Chauve for unfaltering support regarding all aspects of my work,

and indeed life: technical, linguistic, emotional, and clean kitchen floor-ical;

Finally, thanks to all of the other quirky combinatorial characters that

populate this community. Thank you for your good ideas, curious questions,

engaging talks and providing the foundation for an intricate and rewarding do-

main of study. Also, I have a deep gratitude for my cherished friends and family

who were there in the toughest moments. And there were plenty.

❤Marni Mishna

Montreal, Canada, November 2003.

Table of Contents

Acknowledgments . v

List of Figures . xi

List of Tables . xiii

Index of Notation . xv

Résumé . xvi

Abstract . xviii

Une Approche Holonome à la Combinatoire Algébrique 1

Introduction . 7

1 Theoretical Foundations 15

Chapter 1
D-finite functions . 19

1.1 D-finite functions . 19

1.2 P-recursive functions . 23

1.3 D-finite functions in multiple variables 23

Chapter 2
Symmetric functions . 25

2.1 Schur functions . 27

2.2 Operations on symmetric functions 28

2.3 Differential operators for symmetric functions 30

2.4 D-finite symmetric series . 32

2.5 Closure properties of D-finite symmetric series 33

2.6 Symmetric function specializations 35

2.7 A collection of D-finite symmetric series 41

2.8 Generalizing symmetric functions . 42

Chapter 3
An introduction to holonomy . 47

viii

3.1 Algebraic properties of differential operators 47

3.2 The Weyl algebra of differential operators 49

3.3 Holonomic modules . 53

3.4 Effective properties using Gröbner bases 57

3.5 Holonomy and elimination . 63

Chapter 4
Non-commutative algebras of linear operators 65

4.1 Ore algebras . 66

4.2 A generalization of D-finite: ∂-finite 67

4.3 Closure properties of ∂-finite functions 68

4.4 Some ∂-finite preserving q-specializations 70

4.5 Application: Enumeration of plane partitions 72

2 Algorithms 75

Chapter 5
An effective scalar product . 79

5.1 Existing techniques for computing the scalar product 79

5.2 Calculating 〈f, g〉 by holonomic systems 80

5.3 Enumerating k-regular graphs . 85

5.4 Hammond series . 88

5.5 The general situation of the scalar product of symmetric functions . 91

5.6 Termination and Correctness . 94

Chapter 6
Related algorithms . 107

6.1 Computing other scalar products . 107

6.2 MacMahon symmetric functions . 111

6.3 Computing the Kronecker product 111

3 Combinatorial Applications 117

Chapter 7
Coefficient extraction and generating functions 121

ix

7.1 Theory of species . 122

7.2 Generalized involutions and regular tableaux 132

7.3 Orthogonal polynomials . 134

7.4 Applications of MacMahon symmetric functions 136

Conclusion . 139

Appendix A
Differential equations . 143

Appendix B
Counting sequences . 145

Appendix C
Some counting series of small species . 147

Appendix D
The ScalarProduct Maple Package . 149

D.1 Introduction and help pages . 149

D.2 Sample Session . 153

References . 155

Index . 163

x

List of Figures

2.1 Young diagrams of a partition and its conjugate 25

7.1 A correspondence between a coloured set partition and a graph . 129

7.2 A 3-uniform Young tableau . 133

xii

List of Tables

2.1 Generating series for
∑

λ∈S sλ for different families of partitions. 33

4.1 Ore operators and their Leibnitz rules 67

4.2 Symmetric series under exq . 71

A.1 Differential equations: k-regular (simple) graphs 143

A.2 Differential equations: k-regular multi-graphs 143

A.3 Differential equations: Tableaux of weight kn, k = 1..4 144

A.4 Polynomials related to the differential equation satisfied by Y4(t) 144

B.1 Counting sequence: k-regular graphs 145

B.2 Counting sequence: k-regular multi-graphs 145

B.3 Counting sequence: k-covers by sets of cardinality one and two . 146

B.4 Counting sequence: Tableaux of weight kn 146

C.1 Cycle index series of small species 147

xiv

Index of Notation

Notation Description See page

An, Ax the Weyl algebra 49, 57

[a, b] bracket operator ab− ba 49

a · x left module action of a on x

x.a right module action of a on x 56

a ·σ x (σ-)twisted module action of a on x 56

Bk the Bernstein filtration 51

Dq q-Derivative 70

δx,y Kronecker notation δx,y = 1 if x = y; 0 otherwise

eλ elementary symmetric function 26

E(t)
∑

λ ent
n 27

ex exponential specialization 35

exq exponential specialization, q-analog 37

F the Fourier transform of a module 56

〈f, g〉, 〈f, g〉x the scalar product of symmetric functions 29

ΓF the asymmetry cycle index of F 129

grFR graded algebra of R associated with the filtration F 51

hλ complete homogeneous symmetric function 26

H(t)
∑

λ hnt
n 27

HM(n) the Hilbert polynomial 53

Hq q-shift operator 70

K a field of characteristic 0 19

Notation Description See page

K[[p]] ring of symmetric power series 27

l(λ) length of a partition 25

λ ⊢ n a partition of n 25

λ′ conjugate partition 25

λ ∪ ν union of partitions 31

Λ ring of symmetric functions 27

Λn ring of homogeneous symmetric functions 27

mi(λ) number of parts equal to i in the partition λ 25

Mσ the twisting of module M by σ 55
(n
k

)
q

q-binomial 37

[n] the set {1, 2, . . . , n} 130

n!q modified q-factorial 37

K[∂;σ, δ] Ore algebra generated by ∂ 66

P the set of all partitions 25

pλ power symmetric function 26

ps (stable) principal specialization 38

psn principal specialization 38

ps1n specialized principal specialization 38

p(x)
q(x)−−→ r(x) reduction modulo a polynomial 58

(q)n q-factorial 37

(q|a)n q-Pochhammer 37

rn, Rn reduction specialization 36

Sn the symmetric group of order n 25

Sx shift operator 66

ω symmetric function involution 34

zλ norm of pλ 28

ZF cycle index series 123

Résumé

La théorie des systèmes holonomes s’avère être un outil important pour prouver
automatiquement des identités combinatoires. Le produit scalaire de fonctions
symétriques fournit un cadre utile à la formulation de nombreux problèmes en
combinatoire. Ce travail utilise conjointement ces deux approches pour décrire
des algorithmes de calcul, sous certaines conditions, du produit scalaire de fonc-
tions symétriques, basés sur les systèmes holonomes.

Ces algorithmes sont valables dans des conditions plus générales que certains
travaux précédents. Nous prouvons la correction et la terminaison de ces al-
gorithmes. Des modifications mineures de ces algorithmes permettent de cal-
culer certaines généralisations du produit scalaire, par exemple pour les fonc-
tions symétriques de MacMahon et un q-analogue apparaissant dans l’étude
des polynômes de Macdonald. De plus un algorithme général, paramétré par
l’adjonction associée au produit scalaire, est décrit.

Ces algorithmes utilisent les bases de Gröbner dans les algèbres de Weyl et ex-
ploitent des conditions similaires à celles impliquées dans les algorithmes effectifs
d’intégration pour les fonctions D-finies.

Ce travail est divisé en trois parties : la première fournit les bases nécessaires sur
les fonctions symétriques et l’holonomie; la seconde définit et prouve plusieurs
algorithmes de calcul du produit scalaire symétrique et une généralisation; la
partie finale fournit des exemples combinatoires.

Mots Clés :

Fonctions symétriques; systèmes holonomes; énumeration combinatoire; combi-

natoire automatique

xviii

Abstract

The theory of holonomic systems has proven a valuable tool for automatic proofs
of combinatorial identities. The scalar product of symmetric functions provides
a useful way to phrase many problems in algebraic combinatorics. This work
brings together these two ideas to describe algorithms for computing the scalar
product of two symmetric series under certain conditions, using some techniques
from holonomic systems.

The algorithms here operate under more general conditions than previous work.
The correctness and termination of the algorithms is proven. Small modifica-
tions of the algorithms yield techniques for calculating generalizations of scalar
product, for example from MacMahon symmetric functions and a q-analog aris-
ing in the study of Macdonald polynomials, additionally, a general algorithm,
parameterized by the adjoint of the scalar product, is given.

The algorithms use Gröbner bases in Weyl algebras, and exploit conditions sim-
ilar to those involved in effective integration algorithms for D-finite functions.

The work is divided into three parts: the first provides the required background
on symmetric functions and holonomy; The second defines and proves several al-
gorithms for computing the symmetric scalar product as well as a generalization;
the final part provides some typical combinatorial examples.

Keywords:

Symmetric functions; holonomic systems; enumeration; automatic combinatorics

xx

Une approche holonome à la combinatoire algébrique

Percy A. MacMahon, il y a plus d’un siècle de cela, fut un des premiers à utiliser

un opérateur différentiel agissant sur les fonctions symétriques dans le cadre de

problèmes d’énumération, mais sans pouvoir exploiter toute la puissance de cet

outil. Nos travaux prennent leur source dans cette première tentative incomplète

et s’appuient sur les immenses progrès qu’ont connus depuis l’utilisation combi-

natoire des séries formelles et fonctions symétriques, ainsi que le calcul formel.

Plus précisément, les travaux présentés dans cette thèse se situent à la conflu-

ence du calcul formel et de la combinatoire algébrique, via l’étude d’algorithmes

permettant de calculer, dans un cadre adapté à une large classe de problèmes

combinatoire, le produit scalaire de séries symétriques. Cette approche avait été

en partie esquissée dans des travaux de Goulden, Jackson et Reilly [37] et de

Gessel [34], mais dans des cas particuliers et limités. Nos résultats s’appliquent

dans un cadre plus général que les travaux sus-cités et permettent de traiter

une large classe de problèmes. Par exemple, la notion de q-paramètre s’intègre

naturellement dans le cadre que nous avons développé. Nous fournissons dans

cette thèse un ensemble d’algorithmes originaux, analysés rigoureusement (en

termes de correction et de terminaison), ainsi que plusieurs exemples non triv-

iaux illustrant leur utilité dans la résolution de problèmes d’énumération. Le

code des principaux algorithmes, ainsi que plusieurs exemples d’utilisations, re-

groupés dans des feuilles de calcul Maple, sont disponibles sur la page Web de

l’auteur, http://www.labri.fr/~mishna.

Le socle sur lequel repose ce travail est le codage et l’étude de familles d’objets

combinatoires à l’aide de séries formelles, comme par exemple la série génératrice

exponentielle ou la série indicatrice de cycles de Pólya. Ce paradigme, l’un des

plus importants en combinatoire actuellement, permet d’utiliser de nombreux

outils issus de l’algèbre, de l’analyse ou du calcul formel pour améliorer notre

connaissance des objets combinatoires ainsi encodés.

2 A Holonomic Systems Approach to Algebraic Combinatorics

Un autre intérêt majeur de la représentation de classes d’objets combinatoires

par des séries formelles réside dans la possibilité de disposer d’une représentation

finie pour une classe infinie d’objets, que ce soit par l’intermédiaire d’une forme

close explicite pour la série ou d’un système d’équations définissant celle-ci.

Cette propriété ouvre la porte à l’utilisation de programmes de calcul formel pour

la manipulation effective de ces représentations finies. Ce sont des considérations

de cet ordre qui ont permis que l’ordinateur devienne un outil efficace pour la

recherche mathématique, et donc pour la combinatoire.

De nombreuses familles d’objets combinatoires peuvent être décrites implicite-

ment par des équations fonctionnelles algébriques. Plusieurs systèmes théo-

riques, exploitant justement cette propriété, ont été mis au point au cours des

dernières décennies. Ces systèmes sont en général accompagnés de bibliothèques

de calcul formel de manipulation d’équations fonctionnelles. On peut penser aux

structures décomposables [27, 28], aux systèmes ECO de l’école florentine [3],

aux grammaires d’objets [23, 26] ou à la théorie des espèces [7, 44].

Il est cependant clair que l’on ne peut se limiter à la manipulation d’équations

fonctionnelles : de nombreux problèmes combinatoires font en effet intervenir

des séries formelles non algébriques. Dans cette thèse nous nous intéressons à

une classe de fonctions plus générale avec d’intéressantes propriétés de fermeture

qui sont compatibles avec une manipulation algorithmique effective.

Séries formelles D-finies.

Une série formelle en une variable est dite différentiellement finie, ou simple-

ment D-finie, si elle est solution d’une équation différentielle linéaire à coeffi-

cients polynomiaux. Cette équation différentielle s’avère être une structure de

données efficace pour exprimer nombre d’informations sur la série solution et

il existe de nombreux algorithmes permettant de manipuler de telles équations

différentielles. En particulier, la famille des séries formelles D-finie à une variable

est fermée pour la somme, le produit, le produit de Hadamard et la transformée

de Borel. De plus, ces opérations peuvent se réaliser avec des algorithmes effec-

tifs [75, §6.4]. On dira que ce sont des propriétés de fermeture effectives.

Introduction 3

D’autre part, la suite des coefficients d’une série D-finie satisfait une récurrence

linéaire. Ceci permet donc de calculer efficacement de nombreux termes de cette

suite. On peut aussi noter que la connaissance du fait qu’une série formelle soit

D-finite permet de déduire certaines propriétés sur la nature du comportement

asymptotique de ses coefficients. Ce comportement peut être automatiquement

calculé à partir de l’équation différentielle vérifiée par la série. La connaissance

d’une équation différentielle satisfaite par une série D-finie est donc de première

importance, autant théoriquement qu’en pratique.

Naturellement, on peut étendre la plupart des remarques et propriétés précé-

dentes au cas des séries formelles à plusieurs variables. Là encore il existe un

corpus algorithmique et logiciel permettant de manipuler ces séries. C’est le cas,

par exemple, de la bibliothèque Maple Mgfun de Chyzak.

Le contexte naturel pour ces généralisations est celui des anneaux d’opérateurs

linéaires. En particulier, les algèbres de Ore s’imposent comme cadre pour une

telle approche. On peut, dans ce contexte, étendre la notion de D-finitude à

des classes de fonction caractérisées en termes d’opérateurs de Ore. Ces fonc-

tions sont appelées ∂-finies, et encore une fois il existe des bibliothèques Maple

permettant de les manipuler. Voir Ore Algebra et Holonomy, de Chyzak [17].

Produit scalaire de fonctions symétriques.

Dans un autre ordre d’idée, Gessel [34] a posé les fondations d’une théorie de la

D-finitude pour les fonctions symétriques. Encore une fois, on a ici un ensemble

intéressant de propriétés de fermeture. Son travail a été en partie motivé par

l’observation que le produit scalaire établit un lien direct entre séries formelles

symétriques et fonctions génératrices d’objets combinatoires.

Ainsi Gessel présente un ensemble de conditions qui permettent de déterminer

que certaines séries formelles sont D-finies via un calcul de produit scalaire

faisant intervenir des séries de fonctions symétriques. Cependant, ses calculs

ne se font pas de façon effectives. Le désir de rendre effectifs, et donc automa-

tisables, les calculs en question est l’une des motivations de cette thèse.

Nous décrivons dans ce travail une collection d’algorithmes effectifs permettant

4 A Holonomic Systems Approach to Algebraic Combinatorics

de calculer un système d’équations différentielles vérifié par le produit scalaire

de fonctions symétriques. Un de nos algorithmes est apparenté à une technique

utilisée dans un cas particulier par Goulden, Jackson et Reilly pour calculer un

produit scalaire. Nous formalisons cette méthode à l’aide de bases de Gröbner et

de systèmes holonomes, ce qui nous permet d’en déduire un algorithme, Ham-

mond, qui termine et dont nous prouvons la correction.

De plus, nous résolvons le problème du calcul du produit scalaire sous certaines

conditions de finitude. Nous décrivons deux algorithmes pour ce problème, qui

sont tous deux facilement généralisables à d’autres produits scalaires.

À titre d’examples nous montrons comment généraliser les problèmes d’énu-

mération de graphes k-réguliers, dans le contexte plus large de la théorie des

espèces. Ces généralisations mettent évidence des conditions d’uniformité sur

certaines familles de structures, et mènent à la preuve de la D-finitude des séries

génératrices correspondantes. Il apparâıt ainsi que la théorie des espèces fournit

un outil de caractérisation des structures combinatoires admettant une fonction

génératrice D-finie.

Nous montrons aussi comment nos algorithmes peuvent être facilement modifiés

pour manipuler d’autres fonctions symétriques comme celles de MacMahon, ou

des q-variantes liées aux polynômes de MacDonald.

Notre approche repose sur l’utilisation de systèmes holonomes du fait des rela-

tions profondes entre D-finitude et holonomie. Les systèmes holonomes s’avèrent

d’un grand intérêt pour fournir un cadre unifié au sein duquel nous pouvons

décrire et analyser rigoureusement nos algorithmes. Ils sont aussi à la base de

notre généralisation aux q-séries.

Plan du mémoire.

Dans une première partie, nous établissons le cadre théorique sur lequel nous

nous appuyons pour mettre au point et analyser nos algorithmes. Nous com-

mençons en rappelant plusieurs résultats classiques sur les séries différentielle-

ment finies et les fonctions symétriques. Nous poursuivons par une brève pré-

sentation du calcul des bases de Gröbner et des systèmes holonomes, qui sont au

Introduction 5

cœur de nos algorithmes. Nous introduisons en particulier les bases de Gröbner

pour certaines algèbres de Weyl comme un outil de calcul effectif dans ces

algèbres. Nous concluons cette première partie par un chapitre sur les algèbres

de Ore et les q-séries.

La description et l’analyse de nos algorithmes de calcul du produit scalaire de

fonctions symétriques se situe dans la seconde partie de ce mémoire, plus par-

ticulièrement dans le chapitre 5. Le chapitre 6 complète cette description en

détaillant comment modifier les algorithmes du chapitre 5 pour calculer des pro-

duits plus généreaux. Cette possibilité d’adapter notre méthode à de nombreuses

généralisations des fonctions symétriques en est un des points forts.

La troisième partie est dédiée à l’illustration de notre méthode. Elle ne présente

essentiellement que des résultats de nature combinatoire obtenus à l’aide de

nos algorithmes. En fait, cette partie peut être lue indépendamment des deux

premières par un lecteur désirant seulement utiliser nos algorithmes. Le principe

est ici qu’on établit une correspondance:

systèmes d’équation différentielles

caractérisant les données du

problème

➠
système d’équation différentielles

caractérisant la solution du

problème

Le chapitre 7 contient quelques exemples classiques, comme les graphes réguliers

et le recouvrement d’ensembles, en les plaçant dans le contexte de la théorie

des espèces pour illustrer leur forte similitude ainsi que le vaste potentiel de

généralisation. Le dernier chapitre contient des applications de l’utilisation

d’algèbres de Ore, décrites au chapitre 4, pour plusieurs problèmes d’énumé-

ration combinatoire.

6 A Holonomic Systems Approach to Algebraic Combinatorics

Introduction

Captain Percy A. MacMahon, in his early treatise on combinatory analysis [53],

(but see also [54, 55]) introduced an operator, called the Hammond operator,

which proved useful in the set up of many enumerative problems, such as count-

ing Latin squares and other integer matrices with restrictions. This operator

is essentially a differential operator acting on symmetric functions. He lacked,

however, suitable machinery to manipulate the differential equations or even to

fully illustrate the symmetry of his operator. His methodology did not catch on.

In the decades that followed, there has been impressive progress made on formal

power series, algebraic combinatorics, symmetric functions, and Gröbner bases.

Sufficiently many tools now exist to give his method its due.

This thesis describes a method to effectively calculate a quantity called the scalar

product of symmetric series, under certain conditions, including those relevant

to many of the problems considered by MacMahon. Earlier work, notably by

Jackson, Goulden and Reilly [36, 37] and Gessel [34] initiated this approach, but

limited the scope to calculating particular scalar products, precisely, the scalar

product 〈f, g〉 of a symmetric series f and a particular g, fixed by each respective

author. Here we provide a more general solution, and offer several examples

to illustrate the variety of problems that fall into this category. Included are

questions in graph enumeration, set coverings, orthogonal polynomials, and some

variants.

To introduce the topic, we review some of the relevant progress in combinatorics

and computer algebra made since MacMahon’s time.

Analytic representations of combinatorial structures

One of the most important paradigms in discrete math closely identifies a com-

binatorial class with an analytic representations or, rather, an encoding. This is

8 A Holonomic Systems Approach to Algebraic Combinatorics

a good mathematical strategy; it offers results from analysis, algebra, and sym-

bolic computation as tools towards the determination of combinatorial results.

In particular, much emphasis has been placed on formal series representations

of classes: there are straightforward enumerative series such as the exponential

generating function and more complicated series such as the cycle index series

of Pólya, which encapsulates detailed structural and inventory information.

The relative complexity of combinatorial families

Confronted with such a formal representation of a class, the mathematician’s

inner analyst is immediately compelled to ask about the nature of the series. Is it

rational? algebraic? Where are the poles? Does it satisfy a differential equation?

These questions are made even more interesting when one can rephrase them in a

combinatorial context. For example, how can one characterize the combinatorial

structures whose exponential generating function are algebraic? The answers

can, in a way, quantify the complexity of the structure.

Consider a simple analogy from computer science language theory. There is a

strict chain of containment for formal languages over a finite alphabet: finite

languages are contained in the set of regular languages which are in turn con-

tained in context free languages. The formal sum of the words in a language

is a formal series in the non commuting variables of the alphabet. In this case,

the sum associated to a finite language is a polynomial; the series associated to

a regular language is rational and finally, the series associated to a context-free

language is algebraic. Not surprisingly, as the combinatorial object becomes

more complex, so does the corresponding analytic class.

Equations and automatic combinatorics

There is another major function served by encoding combinatorial families by

equations and series: the possibility of finite representation. It can be cumber-

some to manipulate abstract infinite families of combinatorial objects, whereas

formal power series can often be described in compact terms, for example, the

geometric series
∑

nX
n = 1

1−X . Computers have become an increasingly impor-

Introduction 9

tant tool in mathematics and in particular, in combinatorics. In this case one

exploits finite representations of series and sets. This can take the form of a

closed form of a power series, using elementary or special functions, or of other

natural possibilities such as finite equations, either algebraic or differential, that

the function might satisfy.

Many interesting combinatorial classes can be described with functional equa-

tions. Several competing combinatorial description systems have arisen in the

past few decades which are based on the ability to translate smoothly between a

combinatorial description and a set of defining equations. These are generally ac-

companied by a corresponding computer algebra package to manipulate the func-

tional equations. For example, systems such as decomposable structures [27, 28],

ECO systems [3], object grammars [23, 26], or species theory [7, 44], each pro-

vide natural ways to construct families of combinatorial objects with systems

of equations. By construction, the objects’ generating functions satisfy certain

conditions, and are essentially automatically computed.

It is clear that for many problems of current interest, the class of algebraic

functions is insufficient. This thesis considers a class of functions larger than al-

gebraic, which also has numerous closure properties which can be calculated and

generalized. Differential equations play an important role in this investigation.

D-finite power series

A power series in one variable is called differentiably finite, or simply D-finite,

when it is the solution of a linear differential equation with polynomial coeffi-

cients. This differential equation is a convenient data structure for expressing

information related to the series and many algorithms can operate directly using

the defining differential equation. In particular, univariate D-finite power series

are closed under sum, product, Hadamard product, and Borel transform, and

algorithms computing the corresponding differential equations are known (see

for instance [75, §6.4]). These properties are thus considered effective closure

properties, since they are computable.

Moreover, the coefficient sequence of a univariate D-finite power series satis-

10 A Holonomic Systems Approach to Algebraic Combinatorics

fies a linear recurrence, which makes it possible to compute many terms of the

sequence efficiently and to transition between the differential equation of the

series and the linear recurrence of its coefficients. These closure properties can

thus be implemented in computer algebra systems [56, 70]. Also, the mere

knowledge that a series is D-finite gives information concerning its asymptotic

behavior, and much of the asymptotic behaviour can be computed starting from

the defining differential equation. Thus, whether it be for algorithmic or theo-

retical reasons, it is often important to know if a given series is D-finite, and it

is useful to compute the corresponding differential equation when possible.

Some typical examples of combinatorial objects whose generating function are

not D-finite include: certain families of walks in the plane [12], classes of planar

animals [63], and linear chord diagrams with many crossings [45].

The property of satisfying a differential equation can be generalized to suit many

situations. It can be extended to classes of power series in several variables in

such a way that the class still enjoys many closure properties. Here again, we find

that many key algorithms have been implemented in computer algebra systems,

for example in Chyzak’s Mgfun package [17].

This is even further generalized in the context of linear operators. For example,

Ore operators are a family of linear operators which possess certain properties

which make them suitable for this approach. In particular, we can generalize the

notion of D-finite to include functions which satisfy particular equations of Ore

operators. These functions are called ∂-finite and they enjoy many of the same

closure properties as D-finite functions [16] and a corresponding implementation

in Maple exists, namely Chyzak’s Ore Algebra and Holonomy packages [17].

The scalar product of symmetric functions

In another direction, Gessel, in [34], has laid a foundation of a theory of D-

finiteness for symmetric functions, and again we find a significant collection of

closure properties. His motivation for studying symmetric D-finite series is that

some operations, notably a scalar product, yield a direct connection between

symmetric power series and generating functions of combinatorial objects.

Introduction 11

Gessel’s work presented conditions under which one could determine whether

certain power series were D-finite, but did not describe any algorithms to make

these closure properties effective. It is here that the original work of this thesis

begins.

This work provides a collection of effective algorithms to compute a system of

differential equations satisfied by the scalar product of symmetric functions. One

of the algorithms presented here bears some connection to a technique used by

Goulden, Jackson and Reilly in [37] to compute a restrictive case of the scalar

product. Their method is formalized here with the aid of Gröbner bases and

holonomic system. Our formalization yields an algorithm, hammond which

terminates and is provably correct.

In addition, we solve the general problem of computing scalar products of D-

finite functions under a finiteness condition. Two algorithms are given to com-

pute this and both can easily be modified to handle other kinds of scalar prod-

ucts, provided the adjoint to multiplication is effective.

The combinatorial examples which Gessel [33, 34], and Goulden, Jackson and

Reilly [36, 37] present as fruits of their work can be extended and comple-

mented with the aid of the algorithms given here. Using k-regular graphs as a

running example, we show, in the context of species theory, how uniformity con-

ditions on certain families of structures lead to D-finite generating functions. We

discover that species theory provides a useful starting point for characterizing

combinatorial structures with D-finite generating functions.

Several applications are generalized with the aid of slight modifications of the

main algorithms. These modifications allow us to handle a variation on the

notion of symmetric functions called MacMahon symmetric functions, and a

q-analogue using a modified scalar product of Macdonald.

We have a “holonomic systems approach” because of the deep connections be-

tween D-finite functions and holonomy. Holonomic systems are invaluable to

provide a unified setting in which we can rigorously describe and prove the

termination of the algorithms presented here. Furthermore, it offers a natural

setting in which to generalize the work into a q-analogue.

12 A Holonomic Systems Approach to Algebraic Combinatorics

Detailed plan of the work at hand

This work divides itself naturally into three major parts.

The first part is the development of the theory required. In the first chapter we

recall many classical facts about D-finiteness and the second chapter treats sym-

metric functions. This is followed by a brief presentation of holonomic systems

and Gröbner bases, which will be the engine of the algorithms of Part 2. This

discussion includes a definition of Weyl algebras, the context of the calculations,

and Gröbner bases for these Weyl algebras, as a tool for computation in these

algebras. The first part concludes with a chapter on Ore algebras and a q-series

analogue extension of the discussion.

The second part introduces new algorithms for the effective computation of the

scalar product of symmetric series. The fifth chapter concludes with proofs of

correctness and termination. The guarantee of termination is a bi-product of the

fact that we work with holonomic modules. This part concludes with the sixth

chapter, which describes how the algorithm can be modified to compute similar

scalar products (that is, bilinear symmetric forms). This gives algorithms for one

of the usual scalar product of functions 〈f |g〉 =
∫
fg, for various q-analogues,

and for scalar products of MacMahon symmetric functions. This adaptability

of our methodology to many generalizations of symmetric functions does much

to validate our approach.

It is in the third part that we reap the rewards of the first two parts. The results

are all combinatorial in nature. In fact, the third part can be read in isolation

if the reader is willing to treat the algorithms of Part 2 as a black box:

Systems of differential equations

characterizing the parameters of

the problem

➠
A system of differential equations

characterizing the solution of the

problem

Chapter 7 considers some classic examples, such as regular graphs and set covers,

and places them in the context of species theory to illustrate how this is but one

special instance of an infinity of such. We also consider a generalization of invo-

lutions related to Young tableaux. The final chapter considers some applications

Introduction 13

of Ore algebras, described in Chapter 4, to combinatorial enumeration.

Here is a sampling of some specific combinatorial problems that are well suited

to an examination from a holonomic point of view, and are considered in this

Part 3.

Problem 1. Automatically determine the number of 4-regular simple graphs

of size n in time linear in n.

Problem 2. Automatically determine a formula for the number of bounded

standard Young tableaux of height 4.

Problem 3. Automatically determine the Dq-equation satisfied by the gener-

ating function of all plane partitions.

Problem 4. Automatically determine a generating function for symmetric func-

tion characters indexed by hook partitions.

Problem 5. Describe a unified approach for effective calculation of scalar prod-

ucts of functions.

We conclude with some questions that arose in the course of this study but

remain unanswered.

Summary of contributions of this thesis

The subject of this thesis sits at the intersection of computer algebra and al-

gebraic combinatorics passing through the vehicle of algorithms on symmetric

functions. The new results include a collection of new algorithms, complete with

proofs of correctness and termination. These algorithms have been implemented,

and tested in Maple. The code of the major algorithms, along with several key

examples collected in Maple worksheets, are available on the author’s web page,

http://www.labri.fr/~mishna.

More generally, we give a uniform approach to a wide variety of combinatorial

problems. Although some of our examples fall under the umbrella of the methods

of [36] and [34], the results we give are more general and can be applied to a

more general set of situations. In particular, q-parameters enter our setup in

14 A Holonomic Systems Approach to Algebraic Combinatorics

a more natural way. Accommodating q-parameters is accomplished in part by

using recent work of Chyzak and Salvy [16] on ∂-finite ideals for more general

operator algebras.

The initial ideas for the central algorithms of Part 2 were first presented at the

14th Formal Power Series and Algebraic Combinatorics conference in Melbourne,

Australia [14], and the main proofs together with additional applications, ap-

peared in the full article [15].

The author has also considered other aspects of computer algebra and combi-

natorics in [57], specifically, an extension of a decomposable structures applied

to algorithm analysis. This work includes routines for the combstruct package,

which is part of [17], and which are incorporated into the Maple library (versions

8 and greater). This work is not presented in this text.

Part 1

Theoretical Foundations

15

Summary of this part

In this part we describe the evolution of the notion of D-finite functions and
their connections to combinatorics via symmetric functions. In particular, we
determine closure operations for D-finite functions and describe consequences
in the ring of symmetric functions. The second chapter describes the setting of
holonomic functions; here we encounter the context in which we can describe
and prove the algorithms which make the closure properties effective. The final
chapter of this section generalizes some of the concepts to the wider context of
Ore algebras with the aim of determining suitable q-analogues to the work of the
earlier chapters. The background is mostly classical, although the discussion of
q-analogues of symmetric functions in the context of ∂-finite functions is new.

18

Chapter 1

D-finite functions

1.1 D-finite functions

One motivation for encoding combinatorial objects by formal series is to identify

combinatorial operations with algebraic manipulations. Ideally, this process is

automatic, and delegated to a computer algebra program. However, this is

only feasible if the series has some sort of finite representation; for example, a

functional equation that it satisfies. Here, we consider functions that satisfy

a linear differential equation with polynomial coefficients. Throughout, K is a

field of characteristic 0, typically C or C(t).

Definition 1.1 D-finite function. A function f(x) ∈ K[[x]] is D-finite if it

satisfies an equation of the form

Pd(x)f
(d)(x) + . . .+ P1(x)f

′(x) + P0(x)f(x) = 0 (1.1)

where f (n)(x) = dn

dxn f(x) is the nth derivative of f , d is finite and Pj(x) ∈ K[x]

for all j.

This is equivalent to the following condition.

Proposition 1.1 (Alternate characterization of D-finiteness). The func-

tion f(x) is D-finite if f(x) and all of its derivatives f (n)(x) span a finite dimen-

sional vector subspace over the rational functions in x.

Example. The derivatives of sin(x) are either of the form ± sin(x) or

± cos(x). Thus, the vector space
⊕

n K ⊗ sin(n)(x) is two dimensional

20 A Holonomic Systems Approach to Algebraic Combinatorics

and sin(x) is D-finite. D-finiteness is shown more simply by the equation

sin
′′

(x) + sin(x) = 0, which is of form Eq. (1.1).

1.1.1 Closure properties

Differential equations, and the functions which satisfy them, are well studied

objects. As we shall see, the class of D-finite functions is strictly larger than

the set of algebraic functions (it contains ex, for example), yet possesses closure

properties which are useful from both a combinatorial point of view and from

an effective calculation point of view, making them well worthy of study. Stan-

ley [74, 75, §6.4] popularized the study of D-finite functions and their closure

properties under this view. The notion was further developed and then general-

ized to the multivariable case separately by Lipshitz [49] and Zeilberger [87, 88],

where new uses emerged, notably the creative telescoping algorithm for pro-

ducing automatic proofs of identities [89]. In general to say that an operation

preserves D-finiteness, implies that given D-finite functions as arguments, the

operation results in another D-finite function. It is even more interesting when

this operation is effective. The following theorem introduces some basic proper-

ties.

Theorem 1.2 (Classic D-finite closure properties I).

1. The set D of D-finite functions forms a sub-algebra of K[[x]].

2. If f(x) ∈ K[[x]] is D-finite and g(x) ∈ K[[x]] is algebraic, then the composi-

tion f(g(x)) is also D-finite.

3. If f(x) is algebraic, then f(x) is D-finite.

Here we only present the proof of Part 1 of Theorem 1.2 to illustrate a typical

argument.

Proof. (Stanley). For any f ∈ K[[x]], denote by Vf the vector space over K(x)

spanned by the derivatives of f : Vf =
⊕

n K(x) ⊗ f (n)(x). For any f, g ∈ D,

and α, β ∈ K set u = αf + βg. Since u′ = αf ′ + βg′, and in general u(n) =

αf (n) + βg(n), then the set of derivatives of u are contained in Vf + Vg. Then,

Chapter 1. D-finite functions 21

taking dimensions over K[[x]],

dimVu ≤ dim (Vf + Vg) ≤ dimVf + dimVg.

Both dimVf and dimVg are finite since f and g are D-finite, giving that dimVu

is finite. Thus, u is D-finite.

Next, we show that the product of two D-finite functions is D-finite. First,

consider V = K[[x]] as a vector space over K(x). Suppose that u = fg. Recall

that u′ = f ′g+fg′. There is a unique linear transformation φ : Vf ⊗K(x)Vg → V

satisfying φ(f (n) ⊗ g(k)) = f (n)g(k). The derivatives of u are clearly contained in

the image of φ, and thus if we compare their respective dimensions

dimVu ≤ dimVf ⊗ Vg ≤ (dimVf) (dimVg) ≤ ∞.

Once again we conclude that dimVu is finite, giving the D-finiteness of u. ✪

The following consequence of Part 2 of Theorem 1.2 warrants explicit mention,

as it represents a common situation in the forthcoming applications.

Corollary 1.3. If p(x) is a polynomial then exp(p(x)) is D-finite with respect

to the x variables.

Frequently one can determine that a function is not D-finite by applying the

following result.

Proposition 1.4. Any D-finite function f ∈ C[[x]] which is analytic on an open

ball in K has a finite number of singularities in K.

This can be proved by establishing that any singularity of f must be a zero of

one of the coefficient polynomials Pd of Eq. (1.1). These zeros are clearly finite

in number.

For example, 1/ sin(x) is not D-finite. Thus, the composition of D-finite func-

tions is not always D-finite, as both 1/x and sinx are D-finite. Another notewor-

thy example of a function which is not D-finite is exp(exp(x)). It is worthwhile to

ask if the algebraicity requirement in Part (2) of Theorem 1.2 is the most general

condition that applies in all cases. The answer, from the following discussion, is

yes.

22 A Holonomic Systems Approach to Algebraic Combinatorics

1.1.2 Composition of functions

There are a number of known results which help describe which compositions of

functions are D-finite.

Harris and Sibuya in [42] (and in a result later generalized by Sperber and by

Singer [71, 73]) proved that if both g and 1/g are D-finite, then g is of the form

A exp(B), where A and B are both algebraic.

We can deduce the D-finiteness of the composition f(g) of any rational f , and

any g of the form g = A exp(B) as above algebraic. One way to phrase this

result is to say that functions of this form A exp(B), are contained in the D-

finite composition closure of the rational functions.

This problem can be posed for classes other than the rationals. For example,

the algebraic functions are contained in their own D-finite composition closure

since the composition of two algebraic functions is algebraic, and thus D-finite.

It should be possible to answer questions of the following type using analytic

arguments, or the characterization by holonomy developed in the next chapter.

Problem 6. Given a family of functions F , determine sets of functions g such

that f(g) is D-finite for all members f of the family F .

The following variants of the problem may also be interesting.

Problem 7. Given a D-finite function f determine the set of functions g such

that f(g) is D-finite.

Problem 8. Given a D-finite function g, determine the set of functions g such

that f(g) is D-finite when f is.

There are several other useful closure properties which generalize to the multi-

variable case, hence we consider them in further depth in Section 1.3.

1.1.3 Effective closure properties

Note, the proof of Theorem 1.2 offers no direct indication of how to translate

the differential equations satisfied by f(x) and g(x) into one satisfied by (f +

Chapter 1. D-finite functions 23

g)(x) or fg(x). An effective closure property refers to a closure property in

combination with an explicit procedure for the computation of the differential

equation satisfied by the resulting function. This topic will be considered in

closer detail in Section 3.4.

1.2 P-recursive functions

There are other important properties of D-finite functions. A D-finite function

in one variable has coefficients that satisfy a finite recurrence.

Definition 1.2 P-recursive function. A function p : N → K is said to be

P-recursive if it satisfies a homogeneous linear recurrence with polynomial co-

efficients in n. In this case, we also say that the sequence given by (p(n))n is

P-recursive.

A series F (x) =
∑

n≥0 p(n)xn is D-finite if and only if p(n) is P-recursive. One

way to view this correspondence is a map from one sort of finite description (a

differential equation) to another, (a recurrence). Similarly, other connections

between notions of finite description are interesting and useful. More precisely,

given two rings, each with their own proper notion of D-finite, (or, more gener-

ally, finite description), we search for ring homomorphisms which map D-finite

elements to other D-finite elements.

In the next section we define what it means to be D-finite in the ring K[[x1,. . ., xn]]

and in later sections we consider the ring of symmetric functions. In the final

chapter of this part we present a very generalized notion of D-finite, called ∂-

finite, which includes both “classical” D-finiteness and P-recursiveness as a spe-

cial case.

1.3 D-finite functions in multiple variables

D-finite power series in n variables, n ≥ 1 are defined using a natural general-

ization of the univariate version, stated in terms of vector spaces.

Definition 1.3 D-finite functions of multiple variables. A formal power se-

ries f ∈ K[[x1, . . . , xn]] is D-finite in x1, . . . , xn (or with respect to x1, . . . , xn)

24 A Holonomic Systems Approach to Algebraic Combinatorics

when the set of all partial derivatives, ∂i1+···+inf/∂xi11 · · · ∂xinn , spans a finite-

dimensional vector space over the field K(x1, . . . , xn).

Any set of differential equations which illustrates this property is called a D-finite

description of a function.

Many of the properties of univariate power series carry over to this case. The set

of D-finite power series is a K-subalgebra of K[[x1, . . . , xn]] for the usual product

of series. Furthermore, algebraic functions are D-finite. The following theorem

summarizes the main closure properties of this family of series.

Theorem 1.5 (Classic D-finite closure properties II).

1. If f is D-finite with respect to x1, . . . , xn then for any subset {xi1 , . . . , xik}
of those variables, the specialization F |xi1

=···=xik
=0 is D-finite with respect

to the remaining variables;

2. If f(x1, . . . , xn) is D-finite, and for each 1 ≤ i ≤ n, gi(y1, . . . , ym) is

an algebraic function of y = y1, . . . , ym, then whenever the substitu-

tion f(g1(y), . . . , gn(y)) is well-defined as a power series, it is D-finite with

respect to y;

3. If f(x1, . . . , xn) is D-finite, then
∫ xn

0 f(x1, . . . , xn−1, t) dt is a D-finite func-

tion with respect to x1, . . . , xn;

4. If f and g are D-finite in the variables x1, . . . , xm+n, then the Hadamard

product1 f × g with respect to the variables x1, . . . , xn is D-finite in

x1, . . . , xm+n.

These properties are now classical. The first two are elementary, and can be

proved with basic vector space arguments as in the univariate case. Property (3)

is considered in [88]. Property (4) relies on more delicate properties of dimension

and is due to Lipshitz [48]. Later sections describe how to make these closure

properties effective.

1Recall that if uα = u
α1
1 · · ·u

αk
k , then the Hadamard product of two series is

X

α∈Nk

aαu
α
×

X

β∈Nk

bβu
β =

X

α∈Nk

aαbαu
α
.

Chapter 2

Symmetric functions

The notation pertaining to symmetric functions herein follows [52]. Here are

some of the basic definitions.

A partition of n, denoted λ ⊢ n, is a weakly decreasing sequence of positive

integers λ = (λ1, . . . , λk), whose sum λ1 + · · · + λk is equal to n. Denote the

set of all partitions P. Each λi is a part . The length of a partition, l(λ), is the

number of parts. The conjugate partition of λ is the partition λ′ defined by λ′i =

card{j : λj ≥ i}. An alternative notation for the partition λ is λ = 1m1 · · · kmk ,

which means that i occurs mi = mi(λ) times in λ, for i = 1, 2, . . . , k. These

definitions are best visualized with the aid of a diagram. The Young diagram

of a partition is a subarray where each part corresponds to a row of blocks.

The number of blocks in row i is λi. The conjugate partition is the partition

determined by flipping the diagram of λ along the principal diagonal, as in the

following figure, illustrating the partition λ = (5, 4, 1, 1) of 11 (equivalent to

12 4 5 in the alternate notation), and its conjugate λ′ = (4, 2, 2, 2, 1).

λ = λ′ =

Figure 2.1 Young diagrams of a partition and its conjugate

A polynomial f(x1, x2, . . . , xn) is said to be symmetric if for any permutation

26 A Holonomic Systems Approach to Algebraic Combinatorics

of n, σ ∈ Sn,

f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)).

Denote by Λn the vector space over K of symmetric polynomials in n variables.

The monomial symmetric polynomial, mα ∈ Λn, is defined for a given α =

(α1, . . . , αk) ∈ N
k, k < n, by the sum over all permutations σ ∈ Sn of distinct

monomials xα1

σ(1)x
α2

σ(2) · · · x
αk

σ(k).

The set of monomial polynomials mλ where λ is a partition form a vector space

basis of Λn. We generalize this basis to an infinite number of variables by defining

mλ(x1, x2, . . .) as the formal series,

mλ(x1, x2, . . .) =

∗∑

n∈N l(λ)

xλ1
n1
. . . x

λl(λ)
nl(λ)

,

where the star indicates that the sum is over all l(λ)-tuples of positive integers

which yield distinct monomials. Accordingly, we define Λ as the vector space

generated by the basis of all mλ, with λ a partition of any integer. This is

derived more formally in [52] as an inverse limit of vector spaces.

There are other families of symmetric functions that can be defined with the aid

of the monomial polynomial: the power symmetric functions,

pn = m(n) = xn1 + xn2 + . . . ,

the elementary symmetric functions,

en = m(1n) = x1x2 · · · xn + x2x3 · · · xn+1 + · · ·

and the complete homogeneous symmetric functions,

hn =
∑

λ⊢n

mλ,

where the sum is over all partitions of n. We write pα = pα1 . . . pαk
, and define

eα and hα similarly. Using the usual notion of monomial degree, we can impose

a grading on this vector space, Λ =
⊕

k Λk, where Λk is the vector space of

homogeneous symmetric functions of degree k in the symmetric variables xi.

There are several known bases of Λk, described as sets indexed by partitions λ

of k. The principal among them are: the monomial (mλ), the elementary (eλ),

Chapter 2. Symmetric functions 27

the complete homogeneous (hλ), and the power (pλ). There is another basis, the

Schur basis (sλ) which is arguably the most important, and Section 2.1 describes

it in detail.

Since Λ is clearly closed under multiplication, it can alternatively be viewed as a

polynomial ring generated by p = p1, p2, In order to distinguish this point of

view from the previous, we write K[p]. This is isomorphic to Λ as it is a different

point of view with respect to the same set of functions. Similarly, the hn and en

form ring bases and these will be referred to as the h and e bases respectively.

Generating series of symmetric functions live in larger rings of symmetric series,

such as K[[p]] = K[[p1, p2, . . .]], and K[t][[p]] = K[t][[p1, p2, . . .]]. For example, in

K[t][[p]], we have the generating series of complete homogeneous and elementary

functions:

H(t) =
∑

n≥1

hnt
n = exp

(
∑

m

pm
tm

m

)
,

E(t) =
∑

n≥1

ent
n = exp

(
∑

m

(−1)mpm
tm

m

)
.

Often we will refer to H(1) as simply H and E(1) as E .

2.1 Schur functions

Owing to their link to representations of the symmetric group, Schur functions

form the most interesting basis of the symmetric functions. There are several

different ways to define a Schur function indexed by a partition λ. Here, we

write them as a determinant of an l(λ) × l(λ) matrix of complete homogeneous

functions,

sλ = det
(
[hλi−i+j]1≤i,j≤l(λ)

)
. (2.1)

This is generalizable to skew-schur functions

sλ/µ = det(hλi−µj−i+j). (2.2)

Here, h−n = h|n|, and h0 = 1. For example, sn = hn and s12 = h2
1 − h2 = e2,

(and in general, s1n = en). The Schur functions play an important role in

28 A Holonomic Systems Approach to Algebraic Combinatorics

defining the link between the irreducible representations of the symmetric group

and symmetric functions. In fact, the irreducible representations Vλ of Sn are

indexed by λ, partitions of n, and their characters χ(Vλ) are directly linked to

Schur functions via the Frobenius map. For more details on this interesting link,

see [68].

2.2 Operations on symmetric functions

2.2.1 The Kronecker product of symmetric functions

It is clear that in the ring of symmetric functions that the “usual” polynomial

multiplication serves as a product. The connection coefficients cνµλ of products

of Schur functions:

sλsµ =
∑

ν

cνµλsν ,

are quite interesting. The cνµλ are non-negative integers known as the Littlewood-

Richardson numbers and although they have many combinatorial interpreta-

tions, and algorithms for their computation (see [75, §7.15], for example), none

of them are particularly explicit.

There is a second interesting product, which arises in computing characters of

the symmetric group. We follow Macdonald and call it the Kronecker product

of symmetric functions and denote it by ∗. It was first described by Redfield as

the cap product of symmetric functions and was rediscovered by Littlewood [50].

This product can be defined in representation theory terms using induced charac-

ters of representations of the symmetric group, however here we use the following

relation to the power symmetric functions, and extend linearly:

pλ ∗ pµ = δλµzλpλ, (2.3)

where δλµ = 1 if λ = µ and 0 otherwise and we define the normalization constant

zλ = 1m1m1! · · · kmkmk!.

Calculating the connection coefficients γ
(ρ)
λ,µ for this product

sλ ∗ sµ =
∑

ρ

γ
(ρ)
λ,µsρ

Chapter 2. Symmetric functions 29

is also challenging, and quite interesting. There are some combinatorial inter-

pretations which have yielded results when λ, ρ and µ are of a particular form,

for example, the work of Goupil and Schaeffer [38] or Rosas [65].

There is a direct correspondence with irreducible representations,

χ(Vλ ⊗ Vµ) =
∑

ρ

γ
(ρ)
λ,µ χ(Vρ).

2.2.2 Scalar product and coefficient extraction

The ring of symmetric series is endowed with a scalar product defined as a

symmetric bilinear form such that the bases (hλ) and (mλ) are dual to each

other:

〈mλ, hµ〉 = δλµ. (2.4)

At times we may emphasize which variables are annihilated by the scalar product

by a subscript. For example, 〈f(p1, t), g(p1)〉p is a function of t. MacMahon [53]

describes actions which closely resemble the scalar product, or more accurately

the adjunction relative to it. Section 2.3.2 describes an operator acting on sym-

metric function which he uses in much the same way that we use the scalar

product. It is Redfield [64] who first formulates it in this way and makes the

important observation that it is symmetric. Subsequently, this product is redis-

covered, and initially (incorrectly) attributed to Hall [40].

The constant zλ = 1m1m1! . . . k
mkmk!, plays the role of the square of a norm

of pλ in the following important formula:

〈pλ, pµ〉 = δλµzλ. (2.5)

The Schur basis is an orthonormal symmetric function basis under this scalar

product. In fact, Schur functions can be defined as the result of applying the

Gramm-Schmidt process for orthogonalizing a basis, applied to the monomial

basis with the partitions ordered lexicographically1.

1In such an ordering, 1n < 1n−12 < · · · < n.

30 A Holonomic Systems Approach to Algebraic Combinatorics

2.2.3 Plethysm

Plethysm is a way to compose symmetric functions. It can be defined on the

power sum ring basis and extended to all of K[[p]]. It is defined by pn [pm] = pnm

and extended by

(fg) [h] = f [h] g [h] , (f + g) [h] = f [h] + g [h] and pn [g] = g [pn] . (2.6)

To clarify this action, observe that

f(p1, p2, . . . , pk, . . .) [pn] = f(p1n, p2n, . . . , pkn, . . .). (2.7)

It can also be defined on the level of Λ :

pk [f(x1, x2, . . .)] = f(xk1, x
k
2 , . . .). (2.8)

For more details see Macdonald [52, p. 77].

2.3 Differential operators for symmetric functions

The subject of differential operators arises naturally in the study of the scalar

product of symmetric functions.

2.3.1 The adjoint of multiplication

The adjoint, ⊥, of multiplication with respect to the symmetric scalar product

is an endomorphism of the ring of symmetric series ⊥: K[[p]] → K[[p]] which is

defined by the following relation

〈
G,F⊥H

〉
= 〈FG,H〉

for all F,G,H ∈ K[[p]]. We can describe this action on the power, complete

homogeneous and Schur bases in a natural way. These are derived in [52, §I 5.],

and we summarize them here.

Schur functions satisfy the relation 〈sλ, sµsν〉 =
〈
sλ/µ, sν

〉
thus,

s⊥µ sλ = sλ/µ. (2.9)

Chapter 2. Symmetric functions 31

The action on orthonormal bases (hλ) and (mλ) can be determined similarly.

Create a new partition µ = λ∪ ν by ordering the parts λ1, . . . , λl(λ), ν1, . . . , νl(ν)

into a partition µ. Then we have h⊥λmµ = 0 unless µ = λ∪ ν for some partition

ν. One implication of this, is that h⊥nmµ = 0 unless µ has at least one part

equal to n. If so, then h⊥nmµ = mν where ν is the µ with exactly one n part

removed. It is this removal action that led MacMahon to call h⊥n the obliterating

operator [53, §26].

The adjoint of multiplication by a power symmetric function is easiest to de-

scribe in terms of a differential operator: p⊥n = n ∂
∂pn

. As the pn form a ring basis

of K[p] over K, this gives a way to describe the adjoint of multiplication by any

symmetric function. If F ∈ K[[p]] is given as F (p1, p2, . . .), then F⊥ is the differ-

ential operator F (∂
∂p1
, 2 ∂

∂p2
, . . .), a linear differential operator with coefficients

in K.

2.3.2 Hammond operators

Although we will largely focus on the power differential operators, historically

some attention has been paid to the complete homogeneous and elementary

differential operators. Hammond introduced a family of such operators in the

19th century [41]. MacMahon made extensive use of them as well [53]. The

Hammond operator Hn was originally defined in a way that is equivalent in

modern notation to h⊥n . MacMahon describes how to associate differentiation

with a combinatorial notion of obliteration and applies it to symmetric functions

to count matrices with positive integer entries and limitation on the row and

column sums. We describe these ideas in Part 3.

2.3.3 The Heisenberg Lie algebra

It is an interesting aside to note other formalisms in which these operators have

been studied. Define the family of operators πn : K[[p]] → K[[p]] for n ∈ Z

as follows: when n is positive, πn is multiplication by pn; when n is negative,

πn = p⊥|n|; and π0 is the identity. The algebra is formed by the linear span of

32 A Holonomic Systems Approach to Algebraic Combinatorics

these elements and has the following bracket operator:

[πm, πn] = nπ0δm+n,0.

Jing [43] considers various classes of classical symmetric operators from the

viewpoint of vertex operators.

2.4 D-finite symmetric series

Gessel defines D-finiteness for series in an infinite number of variables by gen-

eralizing property Theorem 1.5(1). A series F ∈ K[[x1, x2, . . .]] is said to be

D-finite with respect to the xi if the specialization of all but a finite choice S of

variables to 0 is D-finite for any choice of S. In this case, all of the properties in

Theorem 1.5, except (2), hold in the infinite multivariate case. Proposition 2.1

gives an analogue for (2), a result for algebraic substitution in the infinite case.

This definition is tailored to symmetric series K[[p]] by considering the power

sum basis.

Definition 2.1 D-finite symmetric series. A symmetric series in K[t][[p]] is said

to be D-finite when it is D-finite with respect to p1, p2, . . . and the t variables.

Example. Two simple examples of D-finite series are

H = exp

(
∑

n

pn/n

)
and E = exp

(
∑

n

(−1)n+1pn/n

)
.

In each case a specialization of all but a finite number of pn to 0 results

in a function of the form exp(polynomial), which is clearly D-finite. These

and other other examples from Section 2.7 are given in Table 2.1.

Other definitions of D-finite are possible, in particular with respect to other

bases. The power sum basis is a useful choice since we have a natural differen-

tiation connected to the scalar product and furthermore, as an application one

can connect to the standard D-finite definition via the scalar product, as we

shall see in Theorem 2.7. A different choice of basis leads to a different set of

D-finite functions, as the next example illustrates.

Chapter 2. Symmetric functions 33

S generating series

{(n)}n H = exp(
∑

n pn/n)

{(1n)}n E = exp(
∑

n(−1)n+1pn/n)

all partitions S = H [e1 + e2]

λ all parts even SE(−1)

λ′ all parts even SH(−1)

Table 2.1 Generating series for
∑

λ∈S sλ for different families of partitions.

Example. The series y = exp(
∑

n hn) is clearlyD-finite with respect to the

h basis, just as
∑

n hn = exp(
∑
pi/k) is D-finite with respect to the power

sum basis. However, if we re-write each hn in the power sum basis, we see

that y = exp(exp(pi/k)) and, as exp(exp(p1)) is not D-finite considering

the example on page 21, neither is y D-finite with respect to the power sum

basis.

2.5 Closure properties of D-finite symmetric series

Many symmetric function operators are closed under D-finiteness. In this section

we explore plethysm, the Kronecker product, and the scalar product. The usual

product of polynomials is also D-finite.

2.5.1 Algebraic substitution

The change of basis map from the h basis to the power sum basis in the earlier

discussion illustrates that when an infinite number of variables are involved, some

care must be taken in the study of D-finiteness with respect to substitution. Here

is a more restrictive version of Theorem 1.5(2) suitable for the case of an infinite

number of variables.

Proposition 2.1 (D-finite algebraic substitution). Let x and y respectively

denote the (possibly infinite) sets of variables x = x1, x2, . . . and y = y1, y2,

Suppose f(x) is a D-finite function with respect to the x variables. Suppose,

xi = gi(y) for a finite number of i and furthermore:

1. Each gi is an algebraic function of y;

34 A Holonomic Systems Approach to Algebraic Combinatorics

2. For each k there exists an Nk such that gi is not a function of yk for i > Nk;

3. The substitution F (g1, g2, . . .) is defined as a power series;

Then f(g1, g2, . . .) is a D-finite function of y.

Proof. Fix n ∈ N and let rn be the specialization yi = 0 for i > n. If

N = max1≤i≤n{Ni}, then rn(f(g1, g2, . . .)) = rnf(g1, . . . gN). As a function

in a finite number of variables F (y1, . . . , yN) is D-finite, and the substitution

yi = gi(t1, . . . , tn, 0, . . .) is finite and algebraic. The result follows by an applica-

tion of Theorem 1.5(2). ✪

An example of a ring morphism which satisfies these three properties, commonly

denoted ω, sends hi 7→ ei and preserves D-finiteness since ω(pλ) = sgn(λ)pλ

with sgn(λ) = (−1)n−l(λ). Since this morphism is equivalent to the algebraic

substitution, pn 7→ (−1)n−1pn, in which each pi is used exactly once, it is D-

finite preserving. Notably, it has the following effect on the Schur functions:

ω(sλ) = sλ′ , where λ′ is the conjugate partition to λ.

Plethysm is also clearly a composition that satisfies these conditions. In fact,

many of the most interesting symmetric series can be written as a plethysm of

two symmetric series. Gessel gives the following result for preservation of D-

finiteness under plethysm in a simple case, essentially restating Corollary 1.3.

However, we give the proof to illustrate a typical argument to show an operation

preserves D-finiteness. It is followed by the argument for the more general case,

using Theorem 2.1.

Proposition 2.2 (Plethysm and D-finiteness I; Gessel). If g is a polyno-

mial in the pi’s, then H [g] and E [g] are D-finite.

Proof. Define Rn : K[[p]] → K[[p1 . . . , pn]] as the ring homomorphism which maps

pm to 0 for m > n. To establish that H [g] is D-finite we show that for any n,

Rn (H [g]) is D-finite in the variables p1, p2, . . . , pn.

Chapter 2. Symmetric functions 35

Remark, that if g = g(p1, . . . , pN),

Rn (H [g]) = Rn


exp



∑

k≥1

pk
k

[g]






= Rn


exp



∑

k≥1

g(pk, . . . , pkN)

k






= exp

(
n∑

k=1

Rn (g(pk, . . . , pkN)/k)

)
,

which is D-finite by Proposition 1.5. The D-finiteness of E [g] is proven similarly.

✪

Theorem 2.3 (Plethysm and D-finiteness II). Let f be any D-finite sym-

metric series and g any symmetric series which is algebraic. Then the plethysm

f [g] is a D-finite symmetric series.

Proof. The plethysm f [g] is algebraic substitution pn = pn [g] in f . The hy-

potheses of Proposition 2.1 applies. Each of these substitutions is an algebraic

function and, as the plethysm will always be defined as a power series, we can

conclude that f [g] is D-finite. ✪

2.6 Symmetric function specializations

As we have seen, a symmetric function can be viewed to be either an element

of Λ or K[p]. In either case, the variables are independent and we can therefore

consider homomorphisms to other rings, defined by the action on either the

symmetric variables x1, x2, . . ., or the ring basis p. Let R be a commutative K-

algebra with identity. A specialization of Λ is a ring homomorphism φ : Λ → R.

Similarly, a specialization of the power sum basis is a homomorphism from K[p]

to R, or K[[p]] to R. We are interested in homomorphisms that are D-finite

preserving. The notation here is from [75, §7.8].

By Theorem 1.5(1), we have that the exponential specialization

ex : K[p] → K[[t]]

36 A Holonomic Systems Approach to Algebraic Combinatorics

which sends p1 to t and pn to 0 when n > 1, maps a D-finite symmetric series to

a D-finite univariate power series, and is thus D-finite preserving. This action,

and a generalization of it, will be treated in finer detail in the context of the

scalar product of symmetric functions, in the next section.

A second simple example is the reduction specialization, rn : Λ → Λn defined by

specializing variables to zero:

rn(f(x1, x2, . . .)) := f(x1, . . . , xn, 0, 0, . . .).

This is often implied by the notation f(x1, . . . , xn). Note, we have that each of

the following sets,

{rn(mλ)}, {rn(eλ)}, {rn(pλ′)}, and {rn(hλ)},

where λ ranges over partitions of length less than n form K-bases of Λn. Under

this specialization the set {rn(pλ)} is not a basis for Λn, and thus we cannot

take it for granted that this map automatically preserves D-finiteness in the

smaller ring. In fact, r1 does not preserve D-finiteness. If we write it as a

specialization of the pi variables, we see that it maps pn to xn1 , and hence the

D-finite symmetric function
∑

λ pλ is mapped to

r1

(
∑

λ

pλ

)
= r1

(
∏

n

1

1 − pn

)
=
∏

n

1

1 − xn1
,

which is not a D-finite function in x1 since it possesses an infinite number of

singularities, contrary to the characterization in Proposition 1.4. However, if we

consider the subset of Λ which is also D-finite with respect to the xi variables,

then rn is a D-finite preserving homomorphism by the definition of D-finiteness.

2.6.1 Some q-specializations

A particularly interesting case, the q-specializations, occurs when R = K(q)[[t]].

Here, q is a formal parameter, assumed not to be root of 1. These are investigated

in further detail in Section 4.4.

First we introduce some basic notation. Define the q-factorial and q-binomial

respectively as

(q)n = (1 − q)(1 − q2) · · · (1 − qn)

(
n

k

)

q

=
(q)n

(q)k(q)n−k
. (2.10)

Chapter 2. Symmetric functions 37

More generally, we have the q-Pochhammer function with respect to a variable

a

(q|a)n = (1 − a)(1 − aq) · · · (1 − aqn−1),

with (q|q)n = (q)n. Finally, define a second q-analogue of the factorial,

n!q = (1 + q)(1 + q + q2) · · · (1 + q + . . . + qn−1).

There is a natural q-analogue of the exponential specialization. Define

exq : Λ → K(q)[[t]]

as the symmetric function specialization which sends xn to tqn−1(1 − q), for

1 ≤ i. This is called the q-analogue of the exponential specialization in [75,

§7.8]. Its effect on the power basis is follows:

exq (pn) = exq (xn1 + xn2 + . . .) =
(1 − q)ntn

(1 − qn)
.

The ring morphism exq is expressed in the other symmetric bases as the follow-

ing:

exq (hn) = tn/n!q and exq (en) = q(
n
2)tn/n!q. (2.11)

This is called a q-analogue of ex because

lim
q→1

exq (F (t)) = ex(F)(t).

Later, we determine how this specialization fits into the discussion of D-finite

preserving operations, although we first need a notion of D-finite in the ring

K(q)[[t]]. We address this question in Chapter 4 after having developed suitable

machinery.

Now we describe a second q-specialization. The principal specialization is defined

as a Λ specialization by psn(xi) = qi−1 if i ≤ n and 0 otherwise. Defined as a

K[p] specialization, it maps pk to 1−qk(n+1)
1−qk . Under this map, we have

psn(hk) =

(
n+ k − 1

k

)

q

and psn(ek) = qk(k−1)/2

(
n

k

)

q

If we let n→ ∞, we have a limiting value, ps. Under this map,

ps(pk) = 1/(1 − qk), ps(hk) = 1/(q)k and ps(ek) = qk(k−1)/2/(q)k.

38 A Holonomic Systems Approach to Algebraic Combinatorics

These are all obtained by simple combinatorial reasoning (see [75, §7.8]). We

note that for F ∈ Λn,

exq (F) = (1 − q)ntn ps(F).

To conclude this discussion, we define a specialization of a specialization, ps1n,

ps1n(F) = lim
q→1

psn(F).

For F ∈ Λ, this is also denoted F (1n). If we treat n as a variable, the action of

this maps pk(x1, x2, . . .) = xk1 + xk2 + . . .+ xkn + . . . to

psn(pk(1, 1, . . . , 1, 0, . . .)) = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

+0 + 0 . . . = n

for all k. If we view n as a variable, this will be a function in n. This may not

be D-finite preserving even in cases when the resulting series in n makes sense,

for example, exp(
∑

k p
k
n/k!) is a D-finite symmetric function, whereas the image

under this specialization, exp(exp(n)) is not.

2.6.2 A refined notion of D-finite symmetric series

Each of the above specializations has a simple description in terms of the xi (or

symmetric) variables, that is when viewed as a function in Λ. Clearly many of

the specializations of x are D-finite preserving with respect to the x variables.

This suggests the following problem.

Problem 9. Characterize D-finite symmetric series which, when viewed as el-

ements of Λ, are D-finite with respect to the symmetric variables, x1, x2,

In simple cases, we have some positive results.

Proposition 2.4. The symmetric series E and H are D-finite with respect to

the xi variables.

Chapter 2. Symmetric functions 39

Proof. Consider

rn(H) = exp

(
∑

k

1

k
(xk1 + xk2 + . . .+ xkn)

)

=

n∏

i=1

exp(
∑

k

1

k
xki)

=

n∏

i=1

exp(log
1

1 − xi
)

=
n∏

i=1

1

1 − xi
,

which is a finite product, and hence D-finite. ✪

This proof generalizes to prove an analogue of Proposition 2.2.

Proposition 2.5. The plethysm H [g] of H =
∑

n hn with a polynomial in the

pi, g, such that g(0) = 0, is D-finite as a function of the xi variables.

Proof. The idea, as in the previous example, is to simplify the arguments of

the exponential to a logarithm which then simplifies the expression to a finite

product of rational functions, which is clearly D-finite.

Write g in the monomial basis as the finite sum
∑

λ cλmλ. Recall that

pk [g] =
∑

λ

cλmλ(x
k
1 , x

k
2 , . . .),

and that rn(mλ) = 0 when l(λ) > n.

Using this, we expand H [g]:

rn (H [g]) = exp

(
∑

k

1

k
rn(pk [g])

)

= exp

(
∑

k

1

k

∑

λ

cλx
kλ1
1 xkλ2

2 · · · xkλn
n)

)

= exp

(
∑

λ

cλ
∑

k

1

k
xkλ1

1 xkλ2
2 · · · xkλn

n

)

=
∏

λ

exp
(
cλ log(1 − (xλ))−1

)

=
∏

λ

1

(1 − (xλ))cλ
,

40 A Holonomic Systems Approach to Algebraic Combinatorics

which is a finite product of rational functions, and is consequently D-finite. The

D-finiteness E [g] is shown similarly. ✪

2.6.3 The Kronecker and scalar products

The specialization ex from the last section is a specific case of a larger closure

result. Theorem 1.5(4) has the following very important consequence.

Proposition 2.6 (Kronecker product and D-finiteness; Gessel). Let f

and g be D-finite symmetric series in K[[p]]. Then the Kronecker product f ∗ g
is D-finite.

Proof. Suppose that f =
∑

λ cλpλ, and g =
∑

λ aλpλ for cλ, aλ ∈ K. Then the

Kronecker product can be written as a Hadamard product:

f ∗ g =

(
∑

λ

cλpλ ×
∑

λ

aλpλ

)
×
∑

zλpλ.

Note that

∑

λ∈P

zλpλ = lim
N→∞

N∏

n=1

A(npn) with A(x) =

∞∑

n=0

n!xn

is clearly D-finite when all but a finite number of the pn are set to 0. A double

application of the closure of D-finiteness under Hadamard product implies that

f ∗ g is D-finite. ✪

The following result is a direct consequence of this.

Theorem 2.7 (The scalar product and D-finiteness; Gessel). Let f and

g in Λt be D-finite symmetric series, and suppose that g involves only finitely

many of the pi’s. Then 〈f, g〉 is D-finite with respect to the ti variables provided

it is well defined as a power series.

Proof. By Theorem 2.6, f ∗ g is D-finite. In the case when g contains only a

finite number of pi, say p1, . . . , pn, the algebraic substitution pi = 1, 1 ≤ i ≤ n is

finite, and thus by Theorem 2.1, if f ∗ g
∣∣
pi=1

= 〈f, g〉 is well defined as a power

series then it is D-finite. ✪

Chapter 2. Symmetric functions 41

For any finite set of integers S, this theorem gives the D-finiteness of the scalar

product
〈
f,
(
1 − t

∑
n∈S hn

)−1
〉
, which can also be described in terms of coeffi-

cient extraction as in the next corollary.

Corollary 2.8 (Gessel). Let f be a D-finite symmetric function and let S
be a finite set of integers. Define Sn ∈ Z as follows: Sn is the sum over all

n-tuples (s1, . . . , sn) ∈ Sn of the coefficient xs11 x
s2
2 · · · xsn

n in f . Then s(t) =
∑

n Snt
n is D-finite.

One of the principal contributions of this work is a collection of algorithms,

presented in Part 2, which makes Theorem 2.7 effective. We remark that the

condition of using only a finite number of pi variables can not be omitted, since

given a sequence cn which is not P-recursive, we can construct
〈
∑

pncn/n,
∑

n

pnt
n

〉
=
∑

n

cnt
n,

which is not D-finite, yet it is the scalar product of two D-finite symmetric series.

On the other hand, it is also not a necessary condition, since

〈H,H(t)〉 =
1

1 − t
,

is D-finite and H uses an infinite number of pi.

There are other scalar products for symmetric functions that are particularly rel-

evant to the development of important symmetric functions, such as Macdonald

polynomials. They are treated in Chapter 6.

2.7 A collection of D-finite symmetric series

For future reference we describe a collection of symmetric series. Gessel [34]

defines ck =
∑∞

n=0 hnhn+k; This is D-finite as it is the Hadamard product of

two D-finite symmetric series, namely
∑∞

n=0 hnt
n and

∑∞
n=0 hnt

n+k, evaluated

at t = 1. This can be used to establish the D-finiteness of
∑

n sn,n, since sn,n =

h2
n − hn−1hn+1.

Next, we also use some classic results in symmetric series to deduce that
∑

λ∈P
sλ

and
∑

λ sλ/µ (for fixed µ) are D-finite.

42 A Holonomic Systems Approach to Algebraic Combinatorics

Since
∑

λ∈P
sλ = H [e1 + e2] and

∑
λ sλ/µ = h [e1 + e2]

∑
µ sν/µ, the D-finiteness

follows from the earlier discussion on plethysm. These last two examples, under

the restriction that the sums are limited to partitions with at most k parts are

also D-finite, but this requires a more detailed argument using a determinantal

formula.

2.8 Generalizing symmetric functions

Generalizing symmetric functions to accommodate multiple variable sets pre-

sents several options. The most straightforward of which uses disjoint variable

sets, (in the simplest case say x = x1, x2, . . . and y = y1, y2, . . .), and functions

independently symmetric in the x′is and the y′is. In this case, a symmetric

function can be written in the form

∑

λ,µ

cλµpλ(x)pλ(y),

where λ and µ are partitions. A function is D-finite if it is D-finite with respect

to the pn(x) and the pn(y). This case introduces new variables but still largely

resembles the case of the (infinite) multivariate. However Gessel gives some

interesting applications to permutations with longest increasing subsequence of

a fixed, given length in [34, §7]. For example, he uses that the scalar product

can be defined in this case by the relation

〈f(x, y), g(x, y)〉x,y = 〈f(x), g(x)〉x 〈f(y), g(y)〉y .

On the other hand, one can consider a slightly modified definition and solve a

larger collection of interesting problems, including Latin rectangles.

2.8.1 MacMahon symmetric functions

A second generalization considers functions of the following flavor:

L(x, y) =
∏

i6=j

(1 + xiyj), (2.12)

where the product is over all pairs of distinct positive integers. MacMahon

introduces in [53] a family of functions possessing the key property of this nearly

Chapter 2. Symmetric functions 43

symmetric example. Here we give the definition for just two sets of variables for

the sake of simplifying notation, but the general definition is straightforward.

Definition 2.2 MacMahon symmetric function. A function

f(x1, x2, . . . ; y1, y2, . . .) ∈ K[[x, y]]

is a MacMahon symmetric function if the coefficient of xα1
1 xα2

2 · · · yβ1
1 yβ2

2 · · · is

equal to the coefficient of xα1
i1
xα2
i2

· · · yβ1
i1
yβ2
i2

· · · for any finite set of distinct inte-

gers {i1, i2, . . .}.

MacMahon used these functions and a suitably generalized notion of Hammond

operators (defined here in Section 2.3.2) to determine some enumerative formu-

las for Latin rectangles and other related combinatorial objects. Unfortunately,

his presentation lacked a requisite elegance (due in part to the youth of linear

algebra at the time) for this method to become popular. Fortunately Gessel rec-

ognized [33] how this could be reformulated and fit into a theory of D-finiteness of

MacMahon symmetric functions. A different direction is taken by Doubilet [25],

and subsequently Rosas [65] with combinatorial interpretations of the functions,

and some of their operators. In particular, Rosas shows in [66] that they are

the generating functions for the orbits of sets of functions indexed by partitions

under the diagonal action of the Young subgroup of a symmetric group. This

gives a description of the change of bases matrix between the different bases.

She describes in [67] the action of the principal specialization on several of the

bases.

Remarkably, the algorithms developed in Part 2 for the usual symmetric func-

tions will also work for these functions with only a slight modification. Using

these algorithmic results we can revisit some of the original examples of MacMa-

hon as part of our unified approach to scalar products and symmetric functions.

There is a rather complete parallel theory developed for MacMahon symmet-

ric functions. Indeed they generalize well in a natural way to a class of non-

commutative symmetric functions. However, here we discuss only the basic

notions and properties. Complete definitions and developments are provided

in [66].

44 A Holonomic Systems Approach to Algebraic Combinatorics

Define a bipartite number (a, b) as a pair from N
2 \ {(0, 0)}.

Definition 2.3 Bipartite partition. A bipartite partition of (a, b) ∈ N
2 \{(0, 0)}

is a set of bipartite numbers π = {(ai, bi)} whose pointwise sum is (a, b). That

is,
∑

i ai = a and
∑

j bj = b. These are generally written as the unordered list

(a1, b1)(a2, b2) · · · .

For example, {(1, 1)(1, 0)(1, 0)} is a bipartite partition of (3, 1). This can also

be written {(1, 1)(1, 0)(1, 0)} ⊢ (3, 1).

Bipartite numbers and partitions generalize in the obvious way to k−ary parti-

tions of integer vectors of length k (k-ary numbers).

We can define analogues to most of the common bases using these partitions.

The monomial MacMahon symmetric function associated to a bipartite partition

π is the sum over all distinct monomials of the form:

xa1i1 y
b1
i1
xa2i2 y

b2
i2
· · · .

For example, m(2,3)(1,1) =
∑

i6=j x
2
i y

3
i xjyj and m(1,1)(1,1) =

∑
i≤j xiyixjyj. The

power symmetric functions are defined on bipartite numbers as

p(a,b) =
∑

i

xai y
b
i = m(a,b),

and extended to a bipartite partition π = {(ai, bi)} multiplicatively:

pπ =
∏

i

p(ai,bi).

We define eπ the elementary Macmahon functions and hπ, the complete homo-

geneous MacMahon functions using the following products:

1 +
∑

a,b∈N2

e(a,b)s
atb =

∏

i

(1 + xis+ yit)

so that e(a,b) = m(1,0)a(0,1)b and

1 +
∑

a,b∈N2

h(a,b)s
atb =

∏

i

1

1 − xis− yit
.

These bases are also extend multiplicatively to bipartite partitions. Further,

for any of these four types, we can describe a basis for the vector space of

Chapter 2. Symmetric functions 45

all MacMahon symmetric functions with total x-degree a and total y-degree b

by indexing over all bipartite partitions of (a, b). This is the vector space of

bi-homogeneous degree (a, b).

2.8.2 The scalar product

The scalar product is defined in a manner analogous to the usual symmetric

functions. The formulas appear to be almost identical to Eq. (2.4) and Eq. (2.5):

〈hπ,mµ〉 = δπ,µ.

MacMahon proves symmetry of this operation. Using this, one can likewise

deduce that

〈pπ, pµ〉 = δπ,µzπ, (2.13)

where

zπ =
∏

(ai,bj)

m(ai,bj)(π)

(
ai!bj !

(ai + bj − 1)!

)
mai,bj

(π)

Here π is the bipartite partition {(ai, bj)}, and m(ai,bj)(π) is the multiplicity of

(ai, bj) in π.

Remark that when π ⊢ (a, 0), (that is, bj = 0 for all j) this reduces to the usual

symmetric function scalar product and zπ.

Definition 2.4 D-finite MacMahon symmetric function. A MacMahon symmet-

ric function is D-finite if it is D-finite with respect to the p(a,b).

For example, one can show that L(x, y) of Eq. (2.12) is also equal to

L(x, y) = exp




∞∑

j=1

(−1)j−1

j

(
p(j,0)p(0,j) − p(j,j)

)

 .

An analogue to Theorem 2.7 is also true.

Theorem 2.9 (MacMahon scalar product and D-finiteness). If f =
∑
fπpπ and g =

∑
gπpπ are two D-finite MacMahon symmetric functions such

that g uses only a finite number of pπ, then 〈f, g〉 is D-finite.

46 A Holonomic Systems Approach to Algebraic Combinatorics

Proof. This can be proved in a fashion analogous to the usual symmetric func-

tions. First remark that

∑

π

zπpπ =
∏

(a,b)∈N2

A

(
a!b!

(a+ b− 1)!
p(a,b)

)
, where A(x) =

∞∑

n=0

n!xn.

By Theorem 1.5(4), we have that the Hadamard product

(
∑

π

fπpπ ×
∑

π

gπpπ

)
×
∑

π

zπpπ,

is D-finite, and so is the specialization p(a,b) = 1. Together this implies that the

scalar product of D-finite MacMahon symmetric functions is D-finite. ✪

In Part 2. we make this effective, and in Part 3 we give some combinatorial

applications of this theory, notably the enumeration of Latin rectangles.

There are several ring morphisms from MacMahon symmetric functions that

should preserve D-finiteness, such as specializations to one set of variables, as

well as other diagonal-like operators.

Chapter 3

An introduction to holonomy

3.1 Algebraic properties of differential operators

Once it is known that an operation preserves D-finiteness, it is very natural to

ask how to determine the differential system satisfied by the resulting function.

The algebra in which our manipulations occur is generated by two types of el-

ements: One is the differential operator ∂x, which is differentiating a function

with respect to x; the second is x, a multiplication operator which is multipli-

cation on the left by x. Each time we wish to indicate an operator we use ·.
That is, x · f(x) = xf(x) and ∂x · f(x) = df(x)

dx . Under this view, a differential

equation, say f ′′(x) + x2f ′(x) + f(x) = 0, corresponds to the polynomial oper-

ator ∂2
x + x2∂x + 1 · f(x) = 0. Thus, any differential expression is viewed as a

non-commuting expression in ∂x and x.

In fact, the essential aspects of the differential operator approach are reduced

to defining a suitable commutation relation between multiplying by x and dif-

ferentiating with respect to x. We can then work within the algebra of such

differential operator expressions, and manipulate differential equations. This

algebra is known as the Weyl algebra, and is detailed in Section 3.2.

If a function f(x) satisfies a linear differential equation with polynomial coeffi-

cients, it will satisfy many differential equations of this form (for example, dif-

ferentiating the differential equations yields new differential equations of higher

order). In fact, the set of these differential equations form a left ideal in the Weyl

algebra. The theory of holonomy links properties of these ideals of operators

48 A Holonomic Systems Approach to Algebraic Combinatorics

with the property of being D-finite. This gives us an alternate characterization

of D-finite.

The study of holonomic systems was initiated by Bernstein [8] in order to answer

a question of Gel’fand about whether a certain function of a complex variable

could be extended to a meromorphic function defined in the whole complex

plane. The study of these systems has since branched into several different

directions. For a complete picture of developments related to the algebraic study

of differential equations, consult the introduction of [20]. Here, we limit our

discussion to aspects of holonomic systems pertaining to effective computation

of D-finite closure properties.

Galligo made a key contribution to this topic in [29] with the assertion that a

non-commutative version of Buchberger’s algorithm applied to the Weyl alge-

bra yields Gröbner bases of left ideals. This result is an important element of

Takayama’s work on the effective integration of holonomic functions [80]. Zeil-

berger illustrated how this effective integration can be utilized to find differential

equations satisfied by certain special functions, and how to verify certain families

of identities automatically, using computer algebra [88]. These studies were also

propelled by a renaissance of interest in hypergeometric functions, which began

around the time of Apéry’s proof of the irrationality of ζ(3) [82]. The problem

of integration of a holonomic function is of interest for the purpose of this thesis

since it shares many algorithmic properties with the computation of the scalar

product of symmetric functions, the central problem of this work. The algo-

rithms we describe here therefore bear resemblance to some known algorithms

for integration.

Indeed, the 1990s marked a very active period for the development of com-

puter algebra tools for the treatment of holonomic systems. A small selection

of available packages for the major computer algebra systems includes: pack-

ages for general manipulation of holonomic systems such as KAN [79], gfun and

Holonomy [16, 70] for Maple, and D-module for Macaulay II [47]; packages treat-

ing the hypergeometric case for summation and integration such as the Ekhad

packages [86] for Maple, and the work of the RISC group for a Mathematica

version [61].

Chapter 3. An introduction to holonomy 49

One parallel development is a treatment for a general class of linear operators,

called the Ore operators. We consider this in the next chapter.

A useful tool for computation is Gröbner bases, modified for a non-commutative

setting. We provide a small summary of some vocabulary and basic results in

the final section of this chapter.

The goal of this brief introduction to holonomic systems is to provide sufficient

background to ensure that the motivation, and correctness of the algorithms

introduced in the next part is clear.

3.2 The Weyl algebra of differential operators

As we have already outlined, differential equations can be efficiently manipulated

in a suitable algebra. We call the algebra generated by differential operators,

and multiplication by variables, the Weyl algebra. The book of Coutinho [20]

is an excellent introduction to this topic, and the theorems referenced in this

chapter indexed with the letter C refer to theorems from this book. (Ex. Thm.

C.2.1)

Definition 3.1 The Weyl Algebra An. The Weyl algebra An of dimension n is

the associative K-algebra

An = K
〈
x1, . . . , xn, ∂x1 , . . . , ∂xn ; [∂xi

, xj] = δi,j , 1 ≤ i, j ≤ n
〉
,

where the bracket [a, b] denotes ab− ba and δi,j is the Kronecker notation. This

algebra can be identified with the algebra of linear differential operators with

coefficients that are polynomial in x = x1, . . . , xn. Related to this is An(x), the

algebra of linear differential operators with coefficients in K(x).

The algebra An has a natural action on the ring K[[x1, . . . , xn]]:

∂i · f =
∂f

∂xi
, xi · f = xif. (3.1)

If there exists a polynomial P ∈ An such that f ∈ K[[x1, . . . , xn]] satisfies the

differential equation P · f = 0, then QP · f = Q · (P · f) = Q · 0 = 0 for any

Q ∈ An.In fact, if there is a system of Pi ∈ An, 1 ≤ i ≤ k that satisfy Pi · f = 0,

50 A Holonomic Systems Approach to Algebraic Combinatorics

then f also satisfies (
∑k

i=1QiPi) · f = 0. Consequently, the set of elements of

An which annihilate f in this manner form a left ideal. This ideal is denoted

by If and is called the annihilating ideal of f . Note that this is not a two sided

ideal, and in fact An contains only trivial two sided ideals (Thm. C.3.1).

Annihilating ideals of D-finite functions warrant a special label.

Definition 3.2 D-finite ideal. A left ideal I of An is D-finite if An/I is finite

dimensional over K(x).

The name comes from the following observation. When I is the annihilating

ideal of a function f , then the quotient An/I is isomorphic to the An-module

Anf . This module is generated by partial derivatives of f , and thus is finite

dimensional if and only if f is D-finite. This bears repeating. An annihilating

ideal If is a D-finite ideal if and only if f is D-finite function.

A very important feature of this algebra is that each element can be written

uniquely as a polynomial in non-commuting variables:

F =
∑

(α,β)∈N2n

cαβ x
α∂β ,

where xα = xα1
1 · · · xαn

n , and ∂β = ∂β1
1 · · · ∂βn

n . This form is obtained by repeated

application of the relation

∂ixi = xi∂i + 1.

The fact that there is such a standard form is extremely useful. Essentially,

it implies that there is a natural vector space isomorphism between the Weyl

algebra and the polynomial algebra K[x1, . . . , xn, y1, . . . yn], specifically the map

sending xα∂β to xαyβ. This form greatly simplifies manipulation within the

algebra and renders the computations amenable to computer algebra treatment.

3.2.1 Gradations and filtrations

Another important feature of An-modules is the existence of a natural algebra

filtration and an associated grading. The definition of holonomy presented here

is phrased in terms of gradations, as are many of the related algorithms.

Chapter 3. An introduction to holonomy 51

Definition 3.3 graded ring. A K-algebra R is graded if there are K-vector

subspaces Gi, i ∈ N such that

Gi ·Gj ⊆ Gi+j and R =
⊕

i∈N

Gi.

Each Gi is called a homogeneous component , of degree i.

Example. The ring of polynomials K[x1, . . . , xn], graded with degree

function deg(xα) = |α| = α1 + . . . + αn. In this ring, a homogeneous

component Gi is the vector space generated by monomials of degree i.

The Weyl algebra resembles the polynomial ring, however it does not admit a

grading under the usual polynomial degree. The element ∂1x1 appears to be ho-

mogeneous of degree 2, yet it is also equal to x1∂1+1, which is not homogeneous.

Instead, we consider a filtration of this ring.

Definition 3.4 filtered algebra. Let R be a K-algebra. A family F = (Vi) of

increasing K-vector spaces K = V0 ⊆ V1 ⊆ · · · ⊆ R is a filtration of R if

Vi · Vj ⊆ Vi+j and R =
⋃

i≥0

Vi.

An algebra admitting such a filtration is a filtered algebra.

One example of a filtration of An, the Bernstein filtration, (Bk), filters according

to the maximal degree of an element in standard form. This filtration has the

useful feature that each Bk is a vector space of finite dimension, with basis xα∂β,

satisfying |α| + |β| ≤ k.

Given a filtration F for a ring R, we construct an associated graded ring, grFR,

called the graded algebra of R associated with the filtration F ,

grFR =
⊕

i≥0

(Vi/Vi−1) . (3.2)

The multiplication in this algebra can be defined using the canonical projection

of vector spaces, σk : Vk → Vk/Vk−1 where σk(a) is non-zero only when a /∈ Vk−1.

Thus, the multiplication is given by σm(a)σn(b) := σn+m(ab) for σm(a)σ ∈

52 A Holonomic Systems Approach to Algebraic Combinatorics

grFR. It is straightforward to verify that this multiplication is compatible with

the algebra and the obvious filtration.

Surprisingly, the graded algebra of An associated with the Bernstein filtration

is isomorphic to the polynomial ring over K in 2n variables (Theorem C.3.1).

Next, we provide analogous definitions for modules of filtered rings. Suppose R
is a K-algebra furnished with either a gradation (Gi) or a filtration (Vi), and

that M is a left R-module.

A module gradation of M is a family (Γi) of vector subspaces of M such that

Gi · Γj ⊆ Γi+j and
⊕

i≥0

Γi = M.

A filtration of M is an increasing family of subspaces (Φi) of M satisfying

fi · Φj ⊆ Φi+j and
⋃

i≥0

Φj = M.

As in the case of an algebra, to each module admitting a filtration, we associate

a graded module.

Definition 3.5 associated graded module. Suppose R is a K-algebra with a

filtration F , and M a filtered left R-module with filtration Φ. The grFR-left

module grΦM ,

grΦM =
⊕

n

(Φi+1/Φi) .

is the associated graded module to M .

Again we use projections to complete the definition, and here one is used to define

the module action. Define µ to be the canonical projection µj : Φ −→ Φk/Φk−1.

Then, using the same projection σm as defined earlier, we define the action

σk(a) · µi(u) = µi+k(a · u), and extend linearly. This defines a module action on

grΦM .

A filtration of a module is said to be good if Φn is a finite dimensional vector

space for all n.

Chapter 3. An introduction to holonomy 53

It might be desirable to index a filtration by a totally ordered monoid different

from that of the integers. We could, for example, refine a polynomial algebra

filtration by degree, into a filtration of degree sequence of the leading monomial.

The above definitions can be suitably modified to handle this more general

situation.

3.2.2 The Hilbert polynomial

Here, our examples use only good filtrations. In this case, there is an interesting

polynomial associated to the filtration.

Theorem 3.1 (The Hilbert polynomial; Hilbert). Suppose M is a finitely

generated left K[u1, . . . , ur]-module with grading Γ = (Γi). Then there exists

rational numbers c0, . . . , cd for d ≤ r with cd 6= 0 such that

HM(n) :=
∑

i≤n

dimK Γi =
cd
d!
nd + · · · + c0

for sufficiently large n. The polynomial HM (n)is called the Hilbert polynomial

of M .

The degree of this polynomial is an important invariant of the module called the

Hilbert dimension of the module. The leading coefficient cd is equally important,

it is the multiplicity of the module.

A useful result for our purposes is the case of the associated graded module of

a good filtration Φ of a An-module M . The Hilbert polynomial is equal to

HM (n) = dimK Φn = dimK Bn/ (M ∩ Bn) . (3.3)

3.3 Holonomic modules

Bernstein’s inequality states that the Hilbert dimension of a non-trivial An-

module is greater than or equal to n [9, Thm. 1.3]. The finitely generated

modules with this dimension exactly form a special class. First we give some

basic definitions, and then we consider the intuition behind the definitions.

Definition 3.6 holonomic module. A finitely generated left An-module is

holonomic if it is either trivial, or if it has Hilbert dimension n.

54 A Holonomic Systems Approach to Algebraic Combinatorics

Example. Perhaps the simplest example of a non-trivial holonomic Ad-

module is M = K[x1, . . . , xd], under the usual action. Filtered by total

degree into (Mn)n which is equivalent to Mn = (M ∩Bn) where (Bn) is the

Bernstein filtration of Ad, we have by Eq. (3.3) that

HM (n) = dimK (Bn/ (M ∩ Bn)) = dimK (Bn/Mn)

= dimK Bn ∩ K[[∂1, . . . , ∂d]]

=

(
n+ d

n

)
= nd + lower order terms.

Thus, the Hilbert dimension is d, and the module is holonomic.

We shall say an ideal is a holonomic ideal if, when viewed as a An-module, it is

a holonomic module.

If f ∈ K[[x]] is contained in a holonomic module, then it is a holonomic function.

This definition is motivated by the fact that f is holonomic when its annihilating

ideal, If , is a holonomic ideal. That is, Anf ≃ An/If is a holonomic An-module.

Thus, f is holonomic when An/If is a holonomic module.

Example. In the univariate case, a function f(x) is holonomic if

dimK Bn · f(x) = dimK

⊕

j+k≤n

(
K ⊗ xjf (k)

)
= O(n).

Consider the function sin(x). Observe that

⊕

j+k≤n

K ⊗ xj sin(k)(x) = (K[x])n sin(x) ⊕ (K[x])n cos(x)

with (K[x])k the set of polynomials of degree at most k. The dimension of

this space over K is 2n, which is of order n, and thus sin(x) is holonomic.

More generally, the intuition is as follows. The Bernstein filtration (Bk) of Ad

is composed of a sequence of finite dimensional vector spaces each of dimension
(d+2n

2n

)
= O(n2d), which corresponds to Hilbert dimension 2d. For any Ad-

module M , generated by yi ∈ K[[x1, . . . , xd]] such that M =
⊕

iAdyi, we have

that M is a holonomic module if, for n large, the space
⊕

i Bnyi has dimension

O(nd).

Chapter 3. An introduction to holonomy 55

3.3.1 D-finite functions are holonomic

Holonomic systems are of interest to us because D-finite functions are also holo-

nomic. Recall that f ∈ K[[x]] is D-finite if and only if its annihilating ideal is

D-finite.

Proposition 3.2 (Holonomy and D-finiteness; Bernstein, Takayama).

A function f is holonomic if and only if it is D-finite.

The converse direction is the more difficult [81], however, the general idea of this

should be clear from the above discussion. This is the characterization of D-finite

functions that allow us to determine numerous effective closure properties. To

develop this topic in depth, we first develop a second theoretical tool, Gröbner

bases for the Weyl algebra.

Very often we are interested in An(x) ≃ K(x) ⊗An. Holonomy is not impeded

by this extension.

Theorem 3.3 (Holonomy and K(x); Bernstein, Kashiwara). Suppose I
is a left An-ideal. Then An/I is a holonomic module if and only if K(x)⊗I is a

D-finite ideal of K(x) ⊗An. Otherwise stated, any ideal J ⊆ An(x) is D-finite

if and only if the module An/J ∩ A is D-finite.

3.3.2 Some closure properties

We now list some basic properties of holonomic modules that will be useful in

the next part. These results are found in [20, 10, Ch. V], for example.

Submodules and quotients of holonomic modules are holonomic. The Weyl al-

gebra is Noetherian, that is every decreasing chain of ideals is finite. Holonomic

An-modules are cyclic, that is, generated by a single element.

In general, twisting a left R-module M by an R-automorphism σ results in a

new R-module Mσ. The underlying space is the same, but we define a different

action for elements of R. Suppose that the action of r ∈ R on m ∈ M is given

by r ·m. For any automorphism σ of R, the twisted module of M by σ, Mσ,

56 A Holonomic Systems Approach to Algebraic Combinatorics

is equal to M as a group, however, the action of r on m in Mσ is defined as

σ(r) ·m. We will denote this twisted action in the following way:

r ·σ m := σ(r) ·m. (3.4)

Sometimes, for notational convenience, we use a twisting action to denote a right

module action. Thus, we may denote the right action m . r with r ·σ m.

r ·σ m = m.r. Throughout we denote a right action by “.”, (as in x.a, for a

acting on x to the right).

One particular classic twist action closely resembles the scalar product adjoint.

Definition 3.7 Fourier transform of a module. The An-automorphism F defined

by

F(xi) = ∂i and F(∂i) = −xi

for 1 ≤ i ≤ n is the called Fourier transform of an An-module.

The name comes from the fact that it sends linear differential operators with

complex coefficients to polynomials.

This automorphism preserves the Bernstein filtration. In fact, for any finitely

generated left An-module M , M and MF have the same multiplicity and Hilbert

dimension. This implies the following useful result.

Proposition 3.4 (Fourier transform of holonomic modules). Holonomic

An-modules are closed under Fourier transform. That is, if M is a holonomic

module, so is MF .

In general, any twisting that preserves the Bernstein filtration will also preserve

holonomy by Eq. (3.3).

3.3.3 Products of modules

In order to consider the tensor product of Weyl algebras, we must, for clarity’s

sake, develop notation to handle multiple variable sets. Denote by Ax the Weyl

algebra over indeterminates x = x1, . . . xn and by Ay the Weyl algebra over

Chapter 3. An introduction to holonomy 57

indeterminates y = y1, . . . , ym. The Weyl algebra over the union of these variable

sets shall be denoted Ax,y.

Now, suppose M is an Ax-module and that N is a Ay-module. Recall that the

tensor product of M and N , is a K-vector space, linearly generated by the set of

m⊗n where m ranges over all generators of M , and n ranges over all generators

of N , and where scalar multiplication satisfies k(a⊗ b) = (ka) ⊗ b = a⊗ (kb).

We define an Ax,y action on M ⊗ N as follows. First, we write Ax,y as the

external product Ax ⊗ Ay. Next, for all (p, q) ∈ Ax ⊗ Ay and (u, v) ∈ M ⊗ N

define

(p, q) · (u, v) = (p · u, q · v),

and extend bilinearly.

One deduces the following from simple properties of dimension of tensor prod-

ucts.

Proposition 3.5. Let M be a holonomic Ax module and N and holonomic Ay

module. Then M ⊗N is a holonomic Ax,y-module.

3.4 Effective properties using Gröbner bases

Gröbner bases serve here as the primary tool for making several closure prop-

erties of holonomic functions effective. This section is a short detour to recall

many of the basic definitions and classic results for commutative algebras as

presented in the excellent reference [21], as well as the extension of this theory

to non-commutative cases. The reader already familiar with basic facts about

Gröbner bases could easily skip to the final section of this chapter.

3.4.1 Canonical bases for ideals

In order to manipulate ideals, it is convenient to be able to describe a canonical

basis. Also, given a set of generators for an ideal in a polynomial algebra K[x],

it is of interest to be able to determine if a polynomial p(x) is contained in this

ideal. Both of these problems can be solved using Gröbner bases. The basic

idea is to “reduce” elements with respect to an ordering. Basis generators can

58 A Holonomic Systems Approach to Algebraic Combinatorics

be reduced to give a “least” or canonical basis. This solves the first problem.

If a given element, when “reduced” by the basis element, reduces to 0, then

one can deduce that it is a member of the ideal. This reduction can be done

with an algorithm known as Buchberger’s algorithm and we give some of the

fundamental elements in it.

The idea of reduction of a polynomial is rooted in the Euclidean algorithm

for integers, which generalizes in a straightforward manner to reduction modulo

principal ideals: Given two polynomials p(x), q(x) ∈ K[x], p(x) is reduced modulo

q(x) (and also the ideal generated by q(x)) to its remainder (of smaller total

degree) r(x) of the polynomial division p(x)/q(x). That is, an element written

p(x) = q(x)t(x)+r(x), where deg(r(x)) < deg(p(x)), reduces to r(x). This shall

be denoted p(x)
q(x)−−→ r(x). This r(x) is called the normal form of p(x).

In the more general setting of Noetherian rings, where ideals are generated by

a finite number of elements, a similar set-up exists, but requires some work to

establish.

First, recall the notion of a monomial ordering. All of the multivariate monomial

orderings reduce to “degree” in the univariate case. A monomial order is a total

ordering, �, of monomials that satisfies two properties:

• if a � b then sa � ab for any s in the ring;

• and, for any monomial a we have 1 � a.

Two useful monomial orderings are the lexicographical ordering, briefly, Lex , and

total degree, denoted DegLex. Assuming an ordering x1 � x2 � . . . of the vari-

ables, Lex compares two monomials xα = xα1
1 xα2

2 . . . xαk

k and xβ = xβ1
1 x

β2
2 . . . xβl

l

with the rule that xα � xβ if and only if αi = βi for i from 1 to some n − 1,

and αn > βn. Total degree first compares the total degree of the monomials and

then breaks ties with lexicographical ordering. In the applications we consider

we shall use a third ordering, the elimination ordering, �Elim. Here the vari-

ables are divided into two sets, those to be eliminated, x = x1, . . . , xn, and the

remaining variables, say y = y1, . . . , ym. In this ordering, xαyβ �Elim xα
′

yβ
′

if

xα �DegLex x
α′

, with the tie α = α′ broken by the comparison yβ �DegLex y
β′

.

Chapter 3. An introduction to holonomy 59

To illustrate these orderings, here are the smallest terms of {x, y, z}∗, ordered

alphabetically, according to the different term orderings:

Lex 1 � x � x2 � x3 � y � xy � x2y � . . . � y2 � . . . � xyz � x2yz

DegLex 1 � x � y � z � x2 � xy � xz � y2 � . . .

Elim(z) 1 � x � y � x2 � xy � y2 � . . . � z � xz � yz � . . .

The leading monomial of a polynomial is the monomial which is greatest with

respect to a particular monomial ordering. The function which produces the

leading monomial of a polynomial p is lm(p). If x � y � z, then

lmLex(x
3 + z2 + x2y2) = z2 lmDegLex(x

3 + z2 + x2y2) = x2y2.

If we use the elimination ordering, with elimination set x, then lm(x3 + z2 +

x2y2) = x3.

The reduction algorithm uses the same basic idea as the univariate case: we

apply a division algorithm to determine a remainder which is smaller with re-

spect to the chosen monomial ordering, and proceed recursively with reducing

this remainder.

3.4.2 Gröbner bases

The observation which motivates the next definition states that if p(x) can be

reduced by q(x), then it must be that one of its terms is a multiple of the leading

term of q(x).

Definition 3.8 (commutative) Gröbner basis. For an ideal I of the commutative

ring K[x1, x2, . . . , xn] and any monomial ordering � of x = x1, . . . , xn, a Gröbner

basis is a subset G of I with the property that the ideal generated by the set of

leading monomials of G is equal to the ideal generated by the leading monomials

of I. Concisely,

〈lm(p)|p ∈ G〉 = 〈lm(q)|q ∈ I〉.

The interest in such a generating set of an ideal comes from the following key

properties:

• Every non-empty ideal possesses a finite Gröbner basis;

60 A Holonomic Systems Approach to Algebraic Combinatorics

• Every Gröbner basis also generates the complete ideal.

What we previously referred to as Buchberger’s algorithm takes as input a gen-

erating set of an ideal and does a finite set of comparisons and reductions to

construct Gröbner basis of this ideal. The reduction step compares leading terms

of polynomials and reduces them using a syzygy, that is, a well-chosen combi-

nation of the two elements whose leading term is smaller than the initial two

elements with respect to the monomial ordering. For more details, the reader is

referred to [21].

The non-commutative setting

Thus far we have limited our view to the commutative case. In order to treat

Weyl algebras we require a natural extension of this theory. The work of Mora on

the cases of free monoids is a thorough investigation. Galligo [29] considered

the Weyl algebra case, and Chyzak unified these two approaches to suit the

context of Ore algebras of linear operators. In order to prevent too great a

diversion in this direction, we restrict our discussion to a reassurance to the

reader that we have suitable analogues of all of the elements required from the

commutative case, notably, Gröbner bases and Buchberger’s algorithm. This

is by no means a trivial assertion, and the interested reader is encouraged to

consult the development and proofs in [13, 60].

As remarked upon in the discussion of the commutative case, an important

property of an algebra is the existence of some version of the division algorithm,

which allows one to compute normal forms. In many cases this is accomplished

with Buchberger’s algorithm using monomial orderings. Essentially, one first

constructs a Gröbner basis (canonical with respect to the monomial ordering)

and then “reduces” the polynomial using this Gröbner basis.

There are certain filtration properties of the Weyl algebra which make this par-

ticular non-commutative version feasible. The existence of a normal form for

elements in this algebra, the proximity of this normal form to the (commuta-

tive) polynomial algebra and the compatibility between the monomial ordering

and the algebra operations are all essential ingredients.

Chapter 3. An introduction to holonomy 61

The following example provides some insight into what these computations re-

semble. It also illustrates a step that forms a part of the algorithms.

Example. The symmetric series given by G(t, p1, p2) = exp(t/2(p2
1 + p2))

satisfies three differential equations which can be determined by differenti-

ating the function in turn by t, p1, and p2:

∂G

∂t
(t, p1, p2) − (p2

1/2 − p2/2)G(t, p1, p2) = 0

∂G

∂p1
(t, p1, p2) − (tp2

1)G(t, p1, p2) = 0

∂G

∂p2
(t, p1, p2) − (−t/2)G(t, p1, p2) = 0.

Thus, the annihilating ideal IG ⊂ At,p1,p2
contains

{p2
1 − 2∂t + p2, tp1 − ∂p1

, 2∂p2
+ t}.

In fact, this is a Gröbner basis with respect to the LexDeg(t < p1 < p2 <

∂t, < ∂p1
< ∂p2

) monomial ordering. We can reduce a polynomial from

At,p1,p2
with respect to this ordering.

Consider the polynomial tp1∂p1
− t. To reduce this modulo this ideal

we remark that the leading term is a multiple of the leading term of one

of the elements of the basis, namely tp1 − ∂p1
. Thus, we can reduce the

leading monomial by taking the well chosen multiple of this element (to

make a syzygy, in fact):

tp1∂p1
− t

∂p1(tp1−∂p1)−−−−−−−−−→ −∂2
p1
.

Remark, ∂p1
(tp1−∂p1

) = t∂p1
p1−∂2

p1
= tp1∂p1

−t−∂2
p1

by the commutation

rule of p1 and ∂p1
. The leading term of the reduced polynomial is not a

multiple of a leading term of any element of the basis, thus, it is completely

reduced. Since it is not 0, we conclude that it is not in the ideal.

3.4.3 Effective integration

We are now sufficiently equipped to return to the discussion of effective, holon-

omy preserving operations. We immediately focus our energy on integration,

since it most closely resembles the symmetric function scalar product, and algo-

rithms for its effective calculation are known.

62 A Holonomic Systems Approach to Algebraic Combinatorics

Here we follow [20, Ch. 10] to give an indication of how to use Theorem 3.6 to

make integration effective for D-finite functions.

Suppose we are given a D-finite function f(x, y) ∈ R[[x, y]] satisfying

lim
y→±∞

xayb∂cx∂
d
y · f(x, y) = 0, (3.5)

for all a, b, c, d ∈ N. More precisely, say we have a D-finite description of f(x, y),

that is, the differential system it satisfies. We can use holonomic systems to

determine a differential equation satisfied by F (x) =
∫∞
−∞ f(x, y) dy in the

following way.

Further, suppose we have some way to compute a non-trivial D ∈ Ax, which

decomposes into a sum of two (non-trivial) operators,

D = S + ∂yT,

with S ∈ IF and T ∈ Ax,y. In this case,

D · f(x, y) = (S + ∂yT) · f(x, y) = 0 + ∂yT · f(x, y). (3.6)

Thus, integrating the leftmost and rightmost sides of Eq. (3.6), and applying

the fundamental theorem of calculus, we have
∫ ∞

−∞
D · f(x, y) dy =

∫ ∞

−∞
∂y · (T · f) dy = [T · f]∞−∞ = 0,

by Eq. (3.5). Now, since D ∈ Ax is not a function of y nor ∂y, it commutes, as

an operation, with integration by y:
∫ ∞

−∞
D · f(x, y) dy = D ·

∫ ∞

−∞
f(x, y) dy = D · F (x) = 0.

This gives us D · F (x) = 0, that is, a non-trivial differential equation satisfied

by F (x).

Such an element D lives in the vector space

(If + ∂yAx,y) ∩ Ax. (3.7)

This is a left ideal plus a right ideal intersected with a particular sub-algebra.

The fact that this intersection is non-trivial follows from Theorem 3.6 (in the

next section) combined with some closure properties of holonomic modules.

Chapter 3. An introduction to holonomy 63

Takayama [80] has developed an algorithm to find elements precisely like D, thus

making integration effective. Iterating over k, he generates bases of (Bk ∩ If)
and (Bk ∩ ∂yAx,y)

1. The sum of these contains a non-trivial holonomic module,

we use an elimination ordering to determine a Gröbner basis of a non-trivial

(sub)ideal contained in the intersection given by Eq. (3.7). Success is guaranteed

by Theorem 3.6.

In Part 2, when we consider an effective scalar product, the problem will be

of a similar nature. Remark that the key step involved eliminating variables

in a sum of two ideals, one a left ideal and the other a right. Essentially, this

elimination succeeds because of a holonomic module which is contained in the

sum, to which we apply Theorem 3.6.

3.5 Holonomy and elimination

The holonomy is used in effective integration because it guarantees that the sub-

module formed by the intersection of a holonomic module and reduced variable

set was non-trivial. This was important in the above integration to find the ele-

ment D which contained only x and ∂x. The formal statement of this property

of holonomic modules is as follows.

Theorem 3.6 (Holonomy and elimination; Bernstein). Let x = x1,. . ., xr,

and suppose that I is a left ideal of An such that An/I is a holonomic An-

module. Then the subalgebra S of An generated by any of the r + 1 of the 2n

elements taken from the generators of An has a non-trivial intersection with I.

In particular, this is true for

S = {xr, ∂1, ∂2, . . . , ∂r},

implying that it is possible to simultaneously eliminate all polynomials from I
which contain x1, x2, . . . xr−1, and still have a non-trivial ideal remaining.

Proof. Define Sn = S∩Bn, a filtration of S, contained in the Bernstein filtration.

The sequence of dimensions of Sn over K is of asymptotic order O(r + 1) since

S is generated by r + 1 elements.

1
Bk is the Bernstein filtration defined on page 51.

64 A Holonomic Systems Approach to Algebraic Combinatorics

At the same time, the module Ar/I is filtered by, say, In = Bn/(Bn ∩ I). The

sequence of dimensions of In = O(r) by virtue of the holonomicity of I.

Both of these filtrations exist as a sequences of subspaces (Bn), that is In∪Sn ⊆
Bn. Suppose In and Sn are disjoint for all n. Then, dimK In ∪ Sn = O(2r + 1),

which, for n large enough is too large, since it is contained in Bn, which has

dimension O(2r). Thus, there must be a non-trivial intersection of In∪Sn ⊆ Bn

eventually, giving a S and I. ✪

Chapter 4

Non-commutative algebras of linear operators

Just as Weyl algebras provide suitable algebraic machinery to manipulate dif-

ferential equations, it is possible to define a similar algebraic structure for other

families of linear operators. The property of Weyl algebras, owing to Galligo [29],

which enables effective closure properties of D-finite ideals is the existence of

Gröbner bases. This is also true in the more general setting of Ore algebras,

which are introduced in this chapter. Chyzak and Salvy, in [16], define ∂-finite

functions, and generalize many of the important results of the previous chapters

to the context of linear operators of Ore type. This makes it possible to enfold,

in a common theoretical framework, effective computations such as summation,

multiplication, certain specializations and integration. Their work capitalizes

on the fact that division algorithms are available in skew polynomial rings, thus

making it possible to generalize Buchberger’s algorithm. One important con-

tribution of Chyzak’s thesis is an effective implementation in Maple of these

closure properties, in [17]. The setting is very general, and the system is well

suited to mixed problem types.

The connection to our investigation of symmetric functions and D-finiteness

stems from the suitability of Ore algebras for computation of q-specializations

of symmetric functions. In particular, this set up is well-suited to describe

effective maps from the ring of symmetric functions to K(q)[[t]] which yield ∂-

finite functions. These are examined in the final section of this chapter.

66 A Holonomic Systems Approach to Algebraic Combinatorics

4.1 Ore algebras

The commutation rule central to the definition of Weyl algebras comes from

Leibnitz’ rule for differentiating a product:

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

This is specific instance of a Skew polynomial ring, a ring generated by operators

denoted ∂ and x which act on some other ring of functions, for example, K[[x]]

or K[n].

Definition 4.1 Skew polynomial ring. A skew polynomial ring A[∂;σ, δ], is

defined for any integral domain A; where ∂ as an A-endomorphism satisfying a

relation of the type

∂ · f = δ(f) + σ(f)∂;

with σ any A-endomorphism, and δ a linear function satisfying

δ · (fg) = (σ · f) (δ · g) + (δ · f) g

for all f and g. In this case δ is said to be a σ-derivation.

In the differential case “∂” is differentiation and “x” is multiplication by x

acting on differentiable functions. Thus, we set σ(x) = x and δ = d
dx . A second

example sets “∂” to the shift operator Sn, which sends f(n) to f(n + 1), and

“x” is multiplication by n, and these operator act on integer functions. In this

case, σ(f) = 0 and δ = Sn.

In these cases, it is sufficient to describe σ and δ of the above equation to

determine how the two operations interact. In the cases where σ and δ are

constants, the operations are called Ore operators. In the case when A is a field

we call it an Ore algebra. It is also possible to describe Ore algebras of several

operators. This general case shall be denoted

On = K[∂1;σ1, δ1][∂2;σ2, δ2] · · · [∂n;σn, δn] (4.1)

When the context is clear, we may also denote this by K[∂1, . . . , ∂n]. Table 4.1

describes some Ore operators.

Chapter 4. Non-commutative algebras of linear operators 67

Operator (∂ · f)(x) (x · f)(x) (∂ · fg)(x)

Differentiation, d
dx

f ′(x) xf(x) f(x)(∂ · g)(x) + (∂ · f)(x)g(x)

Shift, Sx f(x + 1) xf(x) f(x + 1)(∂ · g)(x)

Difference, ∆ f(x + 1) − f(x) xf(x) f(x + 1)(∂ · g)(x) + (∂ · f)(x)g(x)

q-Dilatation, Hx;q f(qx) xf(x) f(qx)(∂ · g)(x)

q-Differentiation, Dq
f(qx)−f(x)

(q−1)x
xf(x) f(qx)(∂ · g)(x) + (∂ · f)(x)g(x)

q-shift, Sx;q f(x + 1) qxf(x) f(x + 1)(∂ · g)(x)

Table 4.1 Ore operators and their Leibnitz rules

The key properties of skew polynomial rings of interest here include the fact

that this algebra permits division algorithms, and that we have the necessary

machinery to describe an analogue of Buchberger’s algorithm.

4.2 A generalization of D-finite: ∂-finite

One strong motivation for studying D-finite functions is that, from a computer

algebra perspective, they can be represented by a finite amount of information

well suited for algebraic manipulation. This allows automatic verification of

identities of a certain nature. Algebraically speaking, their annihilating ideals

are defined by a finite number of relations. We generalize this aspect of a D-finite

ideal to Ore algebras as follows.

Definition 4.2 ∂-finite ideal. Let O be a an Ore algebra over a field K. A left

ideal I of O is ∂-finite if O/I is a finite dimensional vector space over K.

The functions (or series, or sequences) upon which these operators act, which

are annihilated by a ∂-finite idea are called ∂-finite. Thus, to be ∂-finite with

respect to the Ore algebra K(x)[∂x; 1, ∂x] of operators acting on K[[x]] corresponds

the usual notion of D-finiteness and, likewise P-recursiveness is equivalent to ∂-

finiteness with respect to K[n][Sn; 0, Sn], acting on the ring of sequences.

In the case of the Weyl algebra there is a direct correspondence between D-

finite functions and holonomic functions. It is therefore natural to ask if a

similar quality holds for ∂-finite functions, but to date, no such general quality

is known.

68 A Holonomic Systems Approach to Algebraic Combinatorics

4.3 Closure properties of ∂-finite functions

Remarkably, in the rather general setting of Ore algebras it is possible to describe

(effective) closure properties. Thus, many of important characteristics of the

Weyl algebra case remain true. The next theorem summarizes the major closure

properties of the set of ∂-finite ideals.

Theorem 4.1 (Closure properties of ∂-finite functions; Chyzak and

Salvy). Suppose f and g are ∂-finite functions with respect to On. Then

1. The function f + g is a ∂-finite functions with respect to On;

2. The function fg is a ∂-finite functions with respect to On;

3. Given any P ∈ On, f satisfies an equation
∑k

i=0

(
aiP

i
)
· F = 0 with

k ≤ dimO/ ann f .

There is also a result for specializations:

Proposition 4.2 (Specializations of ∂-finite functions; Chyzak and Sal-

vy). Let x = x1, . . . , xn and y = y1, . . . , ym. If f(x, y) is ∂-finite with respect

to

K(x, y)[∂x;σx, δx][∂y;σy, δy],

then for any a ∈ K
m, the specialization f(x, a) is ∂-finite with respect to

K(x)[∂x;σx, δx].

4.3.1 Effective closure properties

The characterization of ∂-finite ideals by rectangular systems is useful for iden-

tification purposes. However, in general they can be computationally intensive

to determine.

Definition 4.3 rectangular system. A system of polynomials

Pi(x1, . . . , xn, ∂1, . . . , ∂n), 1 ≤ i ≤ n

of an Ore algebra is said to be rectangular when each ∂i is involved in exactly

one of its elements. That is, we can rearrange the indices to write

Pi(x1, . . . , xn, ∂1, ∂2, . . . , ∂n) = Qi(x1, . . . , xn, ∂i), 1 ≤ i ≤ n.

Chapter 4. Non-commutative algebras of linear operators 69

For example, the following differential system of A3, {∂2
1x2 +3, ∂2

2 +2∂2, ∂3−1},
is rectangular. The following result is a straightforward consequence of linear

dependence.

Proposition 4.3. An ideal of an Ore algebra is ∂-finite if and only if it contains

a rectangular system.

4.3.2 Summation

One of the most useful closure properties of holonomic functions is closure under

integration. This property generalizes in Ore algebras as the “anti-derivatives”

of Ore operators.

Consider the Ore algebra O = K(xi)[∂x;σx, δx], of operators acting upon an

algebra F of functions. We assume the existence of an indefinite operator ∂−1

and a definite operator ∂−1, for some boundary. For example, in the differential

case ∂ = d
dx , ∂−1 corresponds to integration (modulo some analytic conditions)

and in the shift case ∂ = Sn−1, we have that ∂−1 =
∑n−1

−∞ . Further, we assume

that they commute with the ∂j of O whenever j 6= i and that they satisfy

∂−1∂ = ∂∂−1 = 1 in the indefinite case and ∂−1∂ = ∂∂−1 = 0 in the definite

case. This latter requirement is frequently a constraint on the functions from

F .

Effective versions of the anti-derivative can be determined using a modified

strategy to that presented for integration in Section 3.4.3. In particular, we

determine an annihilating ideal contained in the sum of a left ideal and a right

ideal. The success of our approach relies in part on the following result, which

generalizes Theorem 3.6.

Theorem 4.4 (Ore Algebras and Elimination; Chyzak). Given Ore alge-

bra O, suppose that J is a left ideal of O and consider the subalgebra S generated

by a family

{xi1 , . . . , xiu , ∂j1 , . . . , ∂jv}

of u + v indeterminates taken from the set of generators of O. Then, if the

dimension d of O/J is such that d > u+ v, then the intersection S ∩ J is non-

trivial. That is, it is possible to simultaneously eliminate at least r + s− d− 1

70 A Holonomic Systems Approach to Algebraic Combinatorics

indeterminates of the ideal J .

One application of this theory here concerns the effective summation of ∂-finite

functions, as we shall see in the following section.

4.4 Some ∂-finite preserving q-specializations

The q-specializations of symmetric functions exq and ps introduced in Sec-

tion 2.6.1 describe generating functions of many combinatorial objects, for ex-

ample plane partitions [75, §7]. Now, q-series appear as refinements of general

results, and Dq-equations are refinements of differential equations, in the sense

that Dq becomes a derivation as q tends to 1:

lim
q→1

(Dq · F (x; q)) =
d

dx

(
lim
q→1

F (x; q)

)
.

Here, we use Ore algebras to determine Dq-equations of q-specializations of

symmetric functions.

4.4.1 Two Ore algebras of interest

Two Ore operators of particular interest to this discussion are the q-differen-

tiation (Dq) and q-dilation (Hq):

Dq · F (x; q) =
F (x; q) − F (qx; q)

(1 − q)x
and Hq · F (x; q) = F (qx; q). (4.2)

We note that Dq · exq (H) = H and Hq · exq (E) = E1. Thus, if we define

corresponding Ore algebras OD and OH generated by these operations over K,

we have already found a ∂-finite element for each. This suggests the following

problem.

Problem 10. Characterize the elements of K[[p]] whose image under exq are

∂-finite with respect to either OD or OH .

A partial answer can be obtained by applying the effective summation described

in the previous section to families of symmetric polynomials, and a flavour of the

1Recall H =
P

n
hn and E =

P

n
en

Chapter 4. Non-commutative algebras of linear operators 71

Generating series q-Differential equation satisfied

exq (H) =
∑

n
xn

(q)n
Dq − 1

exq (E) =
∑

n
xn

(q)n
q(

n
2) Dq −H

exq (H[pk]) Dq − xk−1(1 − q)k−1

exq (
∑

n hn,n) xqDq
2 +

(
−x2q3 + x2q + 1

)
Dq + x3q(q − 1)2 − x(q + 1)2

Table 4.2 Symmetric series under exq

corresponding results appear in Table 4.2. These were calculated automatically

with the aid of the Holonomy package of Chyzak [17].

We obtain a second family of examples using some basic plethysms. The fol-

lowing lemma is inspired by the q-exponential formula that Gessel describes

in [30].

Lemma 4.5. The following Dq-equation is valid for any k:

(
Dq − xk−1(1 − q)k−1

)
· exq(H[pk]) = 0 (4.3)

Proof. By definition, H[pk] =
∑

λ
pkλ

zλ
and thus, when we apply exq

exq (H[pk]) =
∑

n≥0

xkn(1 − q)kn
∑

λ⊢n

1∏
i(1 − qkλi)

=
∑

n≥0

xkn(1 − q)kn
1

(qk)n
.

From which we deduce

xk−1(1 − q)k−1 exq (H[pk]) =
∑

n≥1

xkn−1(1 − qkn−1)

(qk)n−1
.

Now,

Dq · exq (H[pk]) =
∑

n≥0

xnk−1(1 − q)nk−1(1 − qnk)

(qk)n

=
∑

n≥0

xnk−1(1 − q)nk−1

(qk)n−1
.

The n = 0 term in the bottom sum vanishes since when n = 0, qnk − 1 = 0, and

thus these two series are equal. ✪

72 A Holonomic Systems Approach to Algebraic Combinatorics

In general the problem of determining Dq-equations of specialization of H[pnk]

for n > 1 is much harder.

This is certainly an interesting direction to explore. Indeed, one can also ask

the same question about other specializations, and about other Ore algebras and

arrive at the following definition and subsequent general question.

Definition 4.4 ∂-finite preserving q-specialization. Let O be an Ore algebra

generated by Ore operators that act on K(q)[[x]]. A homomorphism φ : K[[p]] →
K(q)[[x]] is a ∂-finite preserving q-specialization for O if for any D-finite symmet-

ric series F ∈ K[[p]], φ(F)(x; q) is a ∂-finite function of O.

Problem 11. Determine a suitable Ore algebra O of operators acting on K(q)[[t]]

and a homomorphism φ : K[[p]] → K(q)[[x]] that is ∂-finite preserving.

4.5 Application: Enumeration of plane partitions

To close this section, we describe a combinatorial application of this collection

of techniques towards the enumeration of plane partitions.

A plane partition is a two dimensional subarray of positive integers such that

they are (weakly) decreasing horizontally from left to right, and from top to

bottom. For example,

6 4 4 1

6 3 2 .

1 1

Remark that the shape of a plane partition is a partition, in this case (4,3,1).

The weight of the plane partition is the sum of the elements in the subarray, in

this case 28. Define the generating series Pλ(q) defined as the sum over all plane

partitions p of shape λ,

Pλ(q) =
∑

qweight(p).

The fact that relates plane partitions to the discussion here, is the surprising

result that

Pλ(q) = ps sλ.

Chapter 4. Non-commutative algebras of linear operators 73

Thus, using the summation technique for Ore algebras, we can determine the

Dq equations satisfied by generating series of plane partitions.

74 A Holonomic Systems Approach to Algebraic Combinatorics

Part 2

Algorithms

75

Summary of this part

The goal of this part is to provide effective algorithms closure properties de-
scribed in the previous part. The inputs and outputs of the algorithms should
be understandable to those who have bypassed the description of holonomy in
the previous part, however, the description of the algorithms and certainly the
proof that they offer what they promise requires holonomy. Applications of these
algorithms are provided in the next part.

The algorithms are defined on the following pages:

Algorithm Name What it computes Location

scalar de 〈f(p), g(p, t)〉 Page 84

hammond 〈f(p),
∑

n h
n
k t
n〉 Page 89

scalar de2 〈f(p, t), g(p, t)〉 Page 93

itensor de f(p) ∗ g(p) Page 113

78

Chapter 5

An effective scalar product

This chapter focuses on calculating the scalar product of symmetric functions,

introduced in Section 2.2.2. We first briefly recall some classic techniques for

computation and then introduce our solution using holonomic systems. This

results in three different algorithms, which are presented and then analysed.

5.1 Existing techniques for computing the scalar product

Scalar product calculations arise in several applications. It is thus useful to have

an efficient, or at least effective, way to compute them. Many algorithms to com-

pute scalar products rely on rewriting all functions considered in some orthogonal

basis (see Eq. (1.2.4) and Eq. (1.2.5). This is the usual method to compute the

scalar product of symmetric functions in the main symmetric function computer

algebra packages ACE [83], SCHUR [85], SF [77], and Symmetrica [46]. The major

drawback of this technique is that the computations can become intensive for

symmetric functions of degree as low as 10, and are unsuited to computations

with series.

However, many generating series of symmetric functions have a nice closed form

(see Table 2.1, for example), it is thus reasonable to try to determine scalar

products in terms of generating series. This is much more efficient, when it

is possible, and it allows computations of scalar products of higher degree. In

particular, if the generating function is D-finite, the coefficients are P-recursive.

Thus they are computable in a number of arithmetic operations linear in n in

terms of simple polynomial algebra computations.

80 A Holonomic Systems Approach to Algebraic Combinatorics

This is precisely the approach presented for a special case by Goulden and Jack-

son in in [36, 37]. They outline, via two well-chosen examples, a method for

computing
〈
f,
∑

λ hλt
λ
〉

and 〈f,∑λ h1ntn〉. They call the former the Hammond

series of f , a nod to the indirect use of Hammond operators.

Gessel, in [34] contributes techniques to compute scalar products of the form

〈
f,
∑

m

hn1h
m
2 t

m

〉
and

〈
f,
∑

m

hn1h
m
3 t

m

〉

for fixed n. The explicit formulas he gives require that f be expressed as a

formal sum in the power sum basis of symmetric series. He indicates that other

cases would be rather cumbersome to pursue in this manner.

Here we consider the general automatic computation of 〈f, g〉, for D-finite g

provided f satisfies a natural condition. More accurately, we give an algorithm

to compute a differential equation satisfied by 〈f, g〉. In that sense, the algo-

rithms presented in this chapter are similar to effective integration of holonomic

functions. We also prove correctness and termination of the algorithms.

5.2 Calculating 〈f, g〉 by holonomic systems

In this section we introduce a basic algorithm to compute the differential equa-

tion satisfied by the scalar product of two D-finite symmetric series (under some

hypotheses), one of which depends on the extra variables (typically denoted us-

ing t) that “survive” the scalar product computation. Hence, we get a result

which is a series in these variables. When the number of additional variables

is 1, the output is a single differential equation for which existing computer al-

gebra algorithms might find a closed-form solution. In most cases however, no

such solution exists and we are content with a differential equation from which

useful information can be extracted. Once the ideas are clear on how to pro-

ceed, we describe a succinct formulation of the Hammond series algorithm. The

third algorithm generalizes the first, and allows the t variables to appear in both

symmetric series.

The basic tool in use here is non-commutative Gröbner bases in extensions of

Weyl algebras. We work primary with two Weyl algebras Ap,t(t), the algebra of

Chapter 5. An effective scalar product 81

differential operators polynomial in p but possibly rational in t; and At(t), the

restriction of At to K(t).

For the algorithm, we work in an extension

Ap,t(t) = K(t) ⊗K[t] Ap,t

of the Weyl algebra in which the coefficients of the differential operators are

still polynomial in p but rational in t. Suppose f and g are D-finite symmetric

series from K[t][[p]] as per the hypotheses of Theorem 2.7. In particular, they both

satisfy systems of linear differential equations with coefficients polynomials from

K(t)[p]. We can write these equations as elements of Ap,t(t) acting on f and g.

The set Ig = annAp,t(t) f (resp. Ig) of all operators of Ap,t(t) annihilating f

(resp. g) is then a left ideal of Ap,t(t). Given as input Gröbner bases for If
and Ig, our algorithm outputs non-zero elements of the annihilating left ideal

annAt(t) 〈f, g〉.

Example. Suppose

f(p1, p2) = exp
(
(p2

1−p2)/2−p2
2/4
)

and g(p1, p2, t) = exp
(
t(p2

1+p2)/2
)
.

Differentiating f with respect to p1 yields a differential equation

∂f(p1, p2)

∂p1
− p1f(p1, p2) = 0.

Differentiating f and g with respect to all variables in this manner gives

generators for their annihilating Ap,t-ideals:

If = 〈p2 + 2∂p2
+ 1, p1 − ∂p1

〉

and

Ig =
〈
p2
1 + p2 − 2∂t, 2∂p2

− t, ∂p1
− tp1

〉
.

These ideals are used by the algorithms to compute the following element

of I〈f,g〉:

2(1 − t)∂t − t2.

To calculate such a result, elements of If and Ig are combined with the aid

of the adjunction map ⊥. Recall this is defined for an operator P ∈ Ap,t by

82 A Holonomic Systems Approach to Algebraic Combinatorics

〈P · f, g〉 =
〈
f, P⊥ · g

〉
. Observe that the adjunction map is an involution as

well as an algebra anti-automorphism. For any Ap-ideal I, define

I⊥ = {m⊥ : m ∈ I}.

Note that, although adjunction extends to Ap(t) by setting t⊥i = ti, no adjoint

for the ∂ti can be defined in any consistent way.

We now proceed to outline the algorithm for the simple case. From this point on

we elect to have f ∈ K[[p]], i.e., f independent of the variables t. The condition

on f that it does not involve t implies that ∂ti · f = 0 for i from 1 to k. We can

use this fact to simplify our calculations. In this case, we will take Jf = annAp f .

Note that Jf = I⊥
f ∩ Ap.

This allows us to determine the action of combinations of P ∈ J ⊥
f At(t) and

Q ∈ Ig. For example, given S ∈ Ap, T ∈ Ap,t,

〈
f, (P⊥S + TQ) · g

〉
=
〈
S⊥P · f, g

〉
+
〈
f, TQ · g

〉
= 0.

Furthermore, if we can find a combination such that P⊥S + TQ = R ∈ At, and

is non-zero, we have 0 = 〈f,R · g〉 = R · 〈f, g〉.

Thus, we conduct our search for an element of annAt 〈f, g〉 by determining a

non-zero element of (J⊥
f At(t) + Ig) ∩ At. We shall prove in Section 5.6.1 that

such an element exists. Basically, the goal of our algorithms is to compute

sufficiently many non-zero elements of (J ⊥
f At(t) + Ig) ∩ At so as to generate a

D-finite description of the scalar product. We now give an example of what this

set up looks like, followed by a formalization of the ideas.

Example. We continue the above example to illustrate how to find such a

combination. We remark that the generators we determined for If and Ig

are in fact Gröbner bases with respect to the DegRevLex ordering, where

monomials are first compared by degree, with ties broken by reverse lexico-

graphical ordering. The variables are ordered t < ∂t < p1 < p2 < ∂p1
< ∂p2

.

To generate an element of J⊥
f At(t) + Ig we begin with a monomial,

say p1∂p1
, and reduce it modulo the two ideals. In order to create the

desired syzygy once we apply adjunction, however, we must apply ⊥ to the

monomial and the order of the variables before reducing with respect to

Chapter 5. An effective scalar product 83

Jf . This has no effect on this particular monomial, however we reverse the

ordering of the pi and ∂p1
. The reduction resembles:

p1∂p1

Jf−−→ ∂2
p1

p1∂p1

Ig−→ tp2
1

Ig−→ −tp2 + 2∂t.

By this reduction we have that p1∂p1
−∂2

p1
∈ Jf and p1∂p1

+tp2−2t∂t ∈ Ig.

We use adjunction to combine them in the following way:

0 = 〈0, g〉 + 〈f, 0〉 =
〈(
p1∂p1

− ∂2
p1

)
· f, g

〉
+
〈
f,
(
p1∂p1

+ tp2
1

)
· g
〉

=
〈
f,
(
(p1∂p1

− ∂2
p1

)⊥ + p1∂p1
− tp2 + 2t∂t

)
· g
〉

=
〈
f,
(
−p2

1 + tp2 − 2t∂t

)
· g
〉
.

We have thus generated, −p2
1 + tp2 − 2t∂t, an element of J ⊥

f At(t) + Ig.

By considering other monomials we can generate other elements of this set.

We describe below how we can take linear combinations of such elements

over K(t) to find an element in At.

Remark the similarity to the integration situation. Here Ig is a left Ap,t(t) ideal,

J ⊥
f At(t) is right Ap,t-ideal and objects of the form p+q, p ∈ J⊥

f At(t) and q ∈ Ig
does not form an ideal. We generate elements of J ⊥

f At(t) and Ig, and reduce

them in this vector space.

The structure of the sum J⊥
f At(t) + Ig that we use is that of a vector space

over K(t). The idea is to use K(t)-linear algebra with the vector space structure

to eliminate both the the ∂pi
’s and the pi’s. Roughly speaking, we perform

Gaussian elimination to remove the monomials involving the pi’s and the ∂p’s.

The main loop of the algorithm considers monomials of increasing degree with

respect to any monomial ordering on p, ∂p, ∂t, although we typically choose the

monomial ordering DegRevLex(t � ∂t � p � ∂p). We reduce each monomial α

with respect to (the Gröbner bases for) J⊥
f At(t) and Ig. Note that the chosen

monomial ordering is the same for both Ig and J⊥
f At(t). As a variant calcula-

tion, the remainder of the reduction of a monomial α with respect to J⊥
f At(t)

can be viewed as the adjoint of the remainder of the reduction of α⊥ with re-

spect to If . However, to reflect the fact that adjunction modifies the variables,

when reducing with respect to If we need to use a different order, specifically,

the ordering �⊥ defined by β1 �⊥ β2 if and only if β⊥1 � β⊥2 . Notice, here this

order is simply DegRevLex(∂p � p).

84 A Holonomic Systems Approach to Algebraic Combinatorics

Algorithm: scalar de

Input: Symmetric functions f ∈ K[[p]] and g ∈ K[t][[p]], both D-finite

in p, t, respectively given by a system of linear differential op-

erators of Ap and Ap,t(t).

Output: A system of differential equations satisfied by 〈f, g〉, which de-

scribes it as D-finite.

1. Determine a Gröbner basis Gg for the left ideal annAp,t(t) g with re-

spect to any monomial ordering �, as well as a Gröbner basis Gf⊥

for the right ideal annAp
f⊥ with respect to the monomial ordering

induced by � on Ap;

2. B := {};

3. Iterate through each monomial α in p, ∂p, ∂t in the increasing order

given by �;

(a) Write α = βγ with β ∈ Ap and γ ∈ K[∂t];

(b) αf :=
(
β − (β red� Gf⊥)

)
γ;

(c) αg := α− (α red� Gg);

(d) Introduce αf and αg as two new elements into B and reduce so

as to eliminate p, ∂p;

(e) Compute the dimension of the ideal generated by B ∩ At(t). If

this dimension is 0, break and output B ∩ At(t).

Algorithm 1 A basic algorithm for an effective scalar product

We now state the algorithm more formally as Algorithm 1, followed by an ex-

ample in the next section. After this example, we describe the modifications

necessary to handle specific cases more efficiently, and how to treat the gen-

eral case. The proofs that these algorithms work and terminate are delayed to

Section 5.6.

Notice, if m = 1, as will be the case in our examples, there is only one variable t,

and the dimension condition in 3(d) is simplified to

(d) If B contains an element P 6= 0 from At, break and return P .

Chapter 5. An effective scalar product 85

The remainder of the reduction with respect to the Gröbner basis Gg is a mul-

tivariate analogue of the remainder of the division. It is such that for any α,

αG = α − (α redG) belongs to the ideal generated by G. A similar statement

holds for Gf .

For this description we have assumed that Gröbner bases can be computed for

both left and right ideals. If they can only be computed on one side, say for left

ideals, then the operators αf can be obtained as follows: first, determine the

monomial ordering �⊥ induced by adjunction on Ap viewed as a left structure

from the ordering � on Ap viewed as a right structure; then, replace the Gröbner

basis Gf⊥ with the Gröbner basis Gf for the left ideal annAp f with respect to �⊥;

αf is then computed as α− (α⊥ red�⊥
G⊥
f). This way we get Gf⊥ = (Gf)⊥.

The introduction into the basis B performs a Gaussian reduction of α with

respect to the elements already in B and returns the new value of B. In practice,

B can be handled (not inefficiently) by a computation of Gröbner basis over a

module with respect to a monomial order that eliminates the pi’s and ∂pi
’s.

Finally, some classical technique can be applied at Step 3(b) to avoid the repe-

tition of reduction for the same β.

5.3 Enumerating k-regular graphs

The enumeration of regular graphs is a basic, interesting question of graph theory

which has been considered in several investigations [19, 62, 37, 34]. Nonetheless,

it is an instructive example of our approach and appears as the simplest case of

a whole family of examples. We treat the general case in Chapter 7. The set

of all simple graphs labelled with integers from N \ {0} can be encoded in the

product:

G(x) =
∑

G∈G

∏

(i,j)∈E(G)

xixj =
∏

i<j

(1 + xixj), (5.1)

as each edge (i, j) ∈ E(G) is either in the graph or not. We can similarly encode

graphs with multiple edges (multigraphs) by

M(x) =
∏

i<j

1

(1 − xixj)
.

86 A Holonomic Systems Approach to Algebraic Combinatorics

Clearly both of these are symmetric functions, and in fact, G = E [e2] and

M = H [e2]. Section 7.1 will discuss how to determine these equivalences. Both

are easily rewritten in terms of the pi’s:

G = exp

(
∑

n

(−1)n(p2
n − p2n)/2n

)
and M = exp

(
∑

n

(
p2
n − p2n

)
/2n

)

(5.2)

In any given term, the degree of xk gives the valency of node k. So, for example,

the coefficient gn = [x1 . . . xn]G gives the number of 1-regular graphs, or perfect

matchings on the complete graph on n vertices, and in general the coefficient

g
(k)
n = [xk1 . . . x

k
n]G, also given as [mkn]G, gives the number of k-regular graphs

on n vertices. By virtue of (2.4), coefficient extraction amounts to a scalar

product, and the generating function Gk(t) of k-regular graphs is given by

Gk(t) :=
∑

n

g(k)
n

tn

n!
= 〈G,Hk〉 , (5.3)

where

Hk(t) :=
∑

n

hkn

tn

n!
=
∑

n

(hkt)
n

n!
= exp(hkt).

Now, as hk =
∑

λ⊢k pλ/zλ (where the sum is over all partitions λ of k), the

exponential generating function Hk(t) is also exp
(
t
∑

λ⊢n pλ/zλ
)
, an exponential

in a finite number of pi’s. By Theorem 1.5(3), this is D-finite. Further, as a

result of scalar product property (2.5), we can rewrite Eq. (5.3) as

Gk(t) =

〈
exp




∑

n even, n≤k

(−1)n/2
p2
n

2n
+
pn
n

+
∑

n odd, n≤k

p2
n

2n


, exp

(
t
∑

λ⊢k

pλ
zλ

)〉

(5.4)

and now by Theorem 2.7 this generating function Gk(t) is D-finite.

The generating function for 2-regular graphs, according to Eq. (5.4), is given by

G2(t) =
〈
exp
(
(p2

1 − p2)/2 − p2
2/4
)
, exp

(
t(p2

1 + p2)/2
)〉
.

As we saw in our previous example, Algorithm 1 calculates that G2(t) satisfies

the differential equation

2(1 − t)G′
2(t) − t2G2(t) = 0,

Chapter 5. An effective scalar product 87

which is easily solved to find G2(t) = e−
1
4
t(t+2)/

√
1 − t.

Table A.1 summarizes the results by the same algorithm for k = 2, 3, 4. These

match with the results in [37].

5.3.1 Efficient enumeration of k-regular graphs

An efficient procedure for the enumeration of k-regular graphs derives immedi-

ately from the differential equations for the generating series of k-regular graphs

collected in Table A.1. Indeed, one simply needs to convert the differential

equation for Gk(t) into a recurrence relation for its coefficients g
[k]
n and to de-

termine sufficiently many starting values g
[k]
0 , g

[k]
1 , . . . , from which unrolling the

recurrence enables one to compute g
[k]
n for any n efficiently.

Implementations are available to help with this approach. For example, the

Maple package gfun by Salvy and Zimmerman [70] contains commands ded-

icated to the conversion step and the iterative calculations based on a linear

recurrence. Computations in the case k = 4 result in a recurrence relation of

order 15 already published by Read and Wormald [62] and can be found as a

formula accompanying sequence number A005815 in Sloane’s encyclopedia of

integer sequences [72]. From this recurrence relation and initial terms, it is then

a matter of seconds to compute the exact integer values for hundreds of terms

in the sequence.

It should be stressed that this method proves much more efficient than the direct

computation of the scalar product based on a term wise expansion and applica-

tion of formula (2.5). For example, Stembridge’s implementation in the package

SF for symmetric function manipulation in Maple [77] already requires several

minutes to compute the g
[4]
n for n up to 15, and becomes unsuitable to handle

the symmetric functions that would be necessary to obtain g
[4]
20 . Far from show-

ing any weakness of SF’s general approach, this illustrates the computational

progress provided by our techniques in the specific setting of differentiably finite

series.

88 A Holonomic Systems Approach to Algebraic Combinatorics

5.4 Hammond series

In the example above it turned out that, apart from monomials of degree 1, we

needed only to examine the monomials p2
1 and p1∂p1 to reach the solution. In

general, depending on the monomial order, the algorithm might well consider

many monomials before it adds the ones that eliminate the pi’s and ∂pi
’s. The

problem becomes far more serious as the number of monomials increases. It

turns out that, in some cases when the scalar product is of the type
〈
f,H(k)(t)

〉
,

it is possible to modify the approach and eliminate the pi’s and the ∂pi
’s in a

manner using the Hammond series1 of Goulden, Jackson and Reilly in [37]. Here

we offer a concise description of their approach and give an explicit algorithm

for their technique.

For f ∈ K[[p1, p2, . . .]], the Hammond series of f , is defined as

H(f)(t1, . . . , tn) =

〈
f,
∑

λ

hλt
λ/m(λ)!

〉
,

where the sum is over all partitions λ and if λ = 1m1 · · · kmk then tλ = tm1
1 · · · tmk

k

and m(λ)! = m1!m2! · · ·mk!.

Observe that the generating function for k-regular graphs is

Gk(t) = H(G)(0, . . . , 0, t, 0, . . .)

where the t occurs in position k. This is true for any generating function which

takes the form
〈
f,H(k)(t)

〉
, for some f .

The H-series theorem from [37] is useful here. It states that H(∂pn ·f) and H(pn ·
f) can be expressed as polynomials in the ∂tiH(f)’s. In terms of Gröbner bases,

this corresponds to introducing the additional variables t1, . . . , tk (instead of t =

tk alone) and working with the generating series Hk(t1, . . . , tk) of the hλz
−1
λ

over partitions whose largest part is k, instead of the univariate H(k)(t). The

H-series theorem therefore implies that for an appropriate monomial order, there

is a Gröbner basis of the set IHk
of all operators of Ap,t annihilating Hk, with

1also referred to as the Gamma series or the H-series.

Chapter 5. An effective scalar product 89

Algorithm: hammond

Input: An integer k, and f ∈ K[[p1, . . . , pn]].

Output: A differential equation satisfied by H(f)(0, . . . , 0, t) where t is

in position k

1. Compute Gf , a Gröbner basis for the left ideal Jf annihilating f in Ap;

2. Compute GHk
, a Gröbner basis of the form (5.5);

3. For each U ∈ Gf , compute rU ∈ At as the reduction of U⊥ by GHk

for an order which eliminates p, ∂p. Let R0 be the set of rU ’s;

4. for i from 1 to k − 1 eliminate ∂pi
from Ri−1 and set ti = 0 in the

resulting polynomials; call Ri the new set;

5. Return Rk−1.

Algorithm 2 An algorithm to compute the Hammond series of a symmetric

series

elements of the form

pi − Pi(t,dt), ∂pi
−Qi(t,dt), i = 1, . . . , k. (5.5)

The modified algorithm is shown in Algorithm 2.

After Step (3), all the pi’s and ∂pi
’s have been eliminated and R0 contains a

set of generators of a D-finite At(t)-ideal annihilating 〈f,Hk〉. Then, in order to

obtain differential equations satisfied by the specialization at t1 = · · · = tk−1 = 0,

Step (4) proceeds in order by eliminating differentiation with respect to ti and

then setting ti = 0 in the remaining operators.

Note that the Gröbner basis of Step (2) can be precomputed for the required k’s

(although most of the time is actually spent in Step (4)).

In order to compute the elimination in Step (4), one should not compute a

Gröbner basis for an elimination order, since this would in particular perform

the unnecessary computation of a Gröbner basis of the eliminated ideal. Instead,

one can modify the main loop in the Gröbner basis computation so that it stops

90 A Holonomic Systems Approach to Algebraic Combinatorics

as soon as sufficient elimination has been performed or revert to skew elimination

by the non-commutative version of the division algorithm as described in [16].

This calculation is comparatively rapid since the size of the basis is greatly re-

duced. Further, it reduces as it progresses, on account of setting variables to 0.

We can compute the case of 4-regular graphs in a second, in place of a couple

of minutes using the general algorithm. The 5-regular expression requires sig-

nificantly more computation time, and the memory limitations on our machines

prevented us from being able to compute it.

As a variant calculation for Step (3), one could compute rU by simply replacing

each monomial of U of the form pα1
1 . . . pαn

n ∂β1
p1 . . . ∂

βn
pn with the product

Qβn
n . . . Qβ1

1 P
αn
n · · ·Pα1

1 .

5.4.1 Proof of Termination and Correctness

Termination of hammond is obvious. On the other hand, the full proof of

correctness requires a technical result proved in Section 5.6. Essentially, we need

the result to show that Hk(t− 1, . . . , tk) is D-finite, from which we can deduce

correctness. The following corollary articulates a property of D-finite functions

in the simple language of symmetric functions and D-finite descriptions, and is

a direct consequence of Proposition 5.6 that will be proved independently.

Corollary 5.1. Let f ∈ K[[p1, . . . , pn]] and g ∈ K[t1, . . . , tk][[p1, . . . , pn]] be D-

finite symmetric series with corresponding D-finite descriptions Jf ⊂ Ap and

Ig ⊂ Ap,t(p, t). Under these conditions, the vector space
(
J⊥
f At(t) + Ig

)
∩At(t)

is non-trivial and contains a D-finite description of 〈f, g〉.

Proposition 5.2. Algorithm 2 terminates and is correct.

Proof. First, we remark that for fixed k,

Hk(t1, . . . , tk) = exp




k∑

j=1

hjtj




is a D-finite symmetric series by Theorem 1.5 since each hj is a finite combination

of p1, . . . , pj. Thus, f = H(f)(t1, . . . , tk) = 〈Hk(t1, . . . , tk), f〉 is a D-finite

function of t1, . . . , tk, by Theorem 2.7.

Chapter 5. An effective scalar product 91

We proceed by proving the following invariant of the main loop: the set Ri−1

generates a D-finite description of H(f)(0, . . . , 0, ti, ti+1, . . . , tk). This estab-

lishes the result since it implies that Rk−1 contains a D-finite description of

H(f)(0, . . . , 0, tk), in this case, a single differential equation. This is precisely

what the algorithm claims to determine.

To prove the base case of this invariant, note that R0 contains the generators of(
J⊥
f At(t) + IHk

)
∩At(t). We appeal to Corollary 5.1, to conclude that R0 con-

tains a D-finite description of H(f)(t1, . . . , tk).

The general case is proven with the known result [16] that given a D-finite de-

scription of a function f(x1, x2, . . . , xn), one can compute the D-finite description

of the specialization f(x1, . . . , xn−1, 0). This can be done, for example, by first

eliminating ∂xn , removing factors of xn in the remaining polynomials, and fi-

nally, setting xn = 0 in the equations. This is precisely the process outlined in

Algorithm 2. ✪

5.5 The general situation of the scalar product of symmetric

functions

So far, we have limited the scope of the algorithms to pairs of D-finite sym-

metric functions where only one of the two functions contains the variables

t1, . . . , tk. While this is sufficient in many applications, it is possible to modify

scalar de in order to accommodate the ti’s in both functions and thus make

the full power of Theorem 2.7 effective. While no additional ideas are to be

used, the description of the algorithm is more technical.

scalar de manipulates monomials α and reduces them modulo the ideals If
and Ig in order to determine equations of the form

〈
f,
(
α− (α red� J⊥

f At(t))
)
· g
〉

= 0 and
〈
f,
(
α− (α red� Ig)

)
· g
〉

= 0,

(5.6)

where, by hypothesis, on the left, α does not involve any of the ∂ti ’s. What

makes the situation of scalar de and the left-hand identity in (5.6) simple is

the assumption that f does not depend on t, making the action of At on 〈f, g〉
act on the right-hand argument only. The difficulty in generalizing lies in that,

92 A Holonomic Systems Approach to Algebraic Combinatorics

in general, the action of ∂ti on f may be non-trivial and must be considered in

the differentiation rule for scalar products,

∂ti · 〈f, g〉 = 〈∂ti · f, g〉 + 〈f, ∂ti · g〉 , (5.7)

which itself stems from the differentiation rule for usual products on the level of

coefficients.

The idea is to manipulate operators in three sets of ∂ti ’s: one which acts on the

full scalar product 〈f, g〉, and one for each of its components, acting directly

on the component. To facilitate the description of this situation, we denote the

former by ∂ti , the one acting on the left component by ∂li , and the one acting

on the right component ∂ri . Using this notation, we wish to view Eq. (5.7) as

∂ti = ∂li + ∂ri . (5.8)

We thus modify scalar de by enlarging the family of monomials over which

we iterate, and use Eq. (5.8) to eliminate the ∂li ’s before beginning Gaussian

elimination. Here, we iterate over monomials α∂βl ∂
γ
r of the free commutative

monoid {p, ∂p, ∂l, ∂r}∗ with α ∈ {p, ∂p}∗ to examine the following generalizations

of Eq. (5.6):
〈(
α⊥∂βt − (α⊥∂βt redGF)

)
· F, ∂γr · g

〉
= 0 (5.9)

and
〈
∂βt · f,

(
α∂γt − (α∂γt redGg)

)
·g
〉

= 0,

or, in operator notation,

(
α⊥∂βl − (α⊥∂βl redGf)

)
∂γr · 〈f, g〉 = 0 and ∂βl

(
α∂γr − (α∂γr redGg)

)
· 〈f, g〉 = 0.

Making use of Eq. (5.8) and applying adjunction to the first equation in Eq. (5.9),

we get a linear combination of terms of the form ∂β
′

t · 〈f, α′ · g〉 with coefficients

in K[t], where β′ ∈ N
k, and α′ ∈ Ap,t(t). The algorithm proceeds as before by

performing Gaussian elimination over K(t) to eliminate p, ∂p, and ∂r. In our

implementation, the monomial order � is DegRevLex(p < ∂p < ∂l < ∂r). The

algorithm is summarized in Algorithm 3.

Chapter 5. An effective scalar product 93

Algorithm: scalar de2

Input: f ∈ K[t][[p]] and g ∈ K[t][[p]], both D-finite in p, t.

Output: A system of differential equations satisfied by 〈f, g〉, which de-

scribes it as D-finite.

1. Determine a Gröbner basis Gg for the left ideal annAp,t(t) g with re-

spect to any monomial ordering �, as well as a Gröbner basis/ Gg⊥

for the right ideal annAp
g⊥ with respect to the same ordering;

2. B := {};

3. Iterate through each monomial α in p, ∂p, ∂l, ∂r with respect to any

ordering which, after setting ∂l = ∂t, ∂r = 1 or ∂r = ∂t, ∂l = 1,

respectively, induces the ordering �;

(a) αl := α|∂l=∂t,∂r=1;

(b) αf := αl − (αl red� Gf⊥);

(c) αr := α|∂r=∂t,∂l=1;

(d) αg := αr − (αr red� Gg);

(e) Introduce αf |∂l=∂t−∂r
× α|p=∂p=∂l=1 and αg × α|p=∂p=∂r=1

into B and reduce so as to eliminate p, ∂p, ∂r;

(f) Compute the dimension of the ideal generated by B ∩At(t). If

this dimension is 0, break and output B ∩ At(t).

Algorithm 3 A general algorithm for the scalar product of symmetric functions

94 A Holonomic Systems Approach to Algebraic Combinatorics

5.6 Termination and Correctness

The common goal of the algorithms present thus far, is to find a system of

differential equations satisfied by 〈f, g〉, a task equivalent to finding a non-zero

element in At which annihilates 〈f, g〉. In this section we present the proofs of

correctness for Algorithms 1 and 3. This is the principal results of Theorem 5.3.

Although Algorithm 1 is a specialization of Algorithm 3, parts of the proof would

become artificially more involved if restricted to the simple case. We thus treat

both algorithms simultaneously.

5.6.1 Sketch of the proof

The discussion at the beginning of Section 5 has illustrated how to manipulate

the annihilators of f and g to determine a combination

P⊥S + TQ ∈ At with P ∈ I⊥
f , Q ∈ Ig, S ∈ Ap(t), T ∈ Ap,t(t),

which annihilates 〈f, g〉. Not all of the elements in annAt 〈f, g〉 are of this form,

however, as the following simple example illustrates. If f = p1 − p2 and g =

p1 + p2/2, then 〈f, g〉 = 1 − 1 = 0 and thus 1 ∈ annAt 〈f, g〉, but 1 can not be

written as a combination of the form P⊥S+TQ for these f and g. Nonetheless,

we show that the annihilating elements that can be written this way form a

non-trivial subideal of annAt 〈f, g〉, generated by the algorithms we describe.

The adjunction properties of scalar products are naturally accommodated by

tensor products. Specifically, the proof below centers around a certain At-

module S whose elements are tensors, twisted by an action resembling the scalar

product adjunction. For example,

(i−1pi · u) ⊗ v = (u.∂pi
) ⊗ v = u⊗ (∂pi

· v),

which corresponds to the equivalence
〈
(i−1pi) · f, g

〉
= 〈f, ∂i · g〉. (See also

Eq. (5.10–5.13) below.) On the other hand, the ∂li and ∂ri that are involved

in the description of Algorithm 3 really are the operators ∂ti ⊗ 1 and 1 ⊗ ∂ti

respectively, acting on S, where 1’s denote identity maps.

The module S can be expressed in terms of the ideal annAt(f
⊥ ⊗ g), itself

contained in annAt 〈f, g〉. The former ideal is non-trivial and in fact, is suf-

Chapter 5. An effective scalar product 95

ficient to describe the scalar product as holonomic, a property which implies

D-finiteness. We demonstrate that the algorithms calculate a Gröbner basis for

annAt(t)(f
⊥⊗g), in other words a ∂-finite description of the scalar product 〈f, g〉.

The main result is summarized by the following theorem.

Theorem 5.3 (Termination of Algorithms 1 and 3). Suppose f and g are

symmetric series subject to the conditions of Algorithm 1 (resp. Algorithm 3).

Then, Algorithm 1 (resp. Algorithm 3) determines, in finite time, a Gröbner

basis for a non-zero ∂-finite ideal contained in annAt(t) 〈f, g〉.

The discussion so far has not relied on the explicit description of the scalar

product. Rather, remark that Algorithms 1 and 3 are essentially parameter-

ized by the adjunction property of the scalar product of symmetric functions,

and can easily be redefined and adapted to other adjunctions. It suits our

needs for the proof to consider adjoints for the usual scalar product of functions,

〈f |g〉 :=
∫
f(x)g(x) dx. (To avoid confusion, we notationally distinguish 〈f |g〉

from 〈f, g〉.)

Indeed, guided by existing results concerning the preservation of holonomy under

operations involving the usual scalar product, we link the symmetric case to the

usual one with a map from one adjunction to the other. This reduction also

demonstrates how algorithms analogous to Algorithms 1 and 3 for other scalar

products could be shown to terminate with the correct output. (See Section 6.)

To raise this comparison to the level of intuition, we could identify 〈f, g〉 with

the integral

∫

Rn

L
(
q 7→ f(q1, 2q2, . . . , nqn)

)
(p)G(p) dp1 . . . dpn,

where L is the modified Laplace transform L(f)(p) =
∫

Rn f(q)e−(p1q1+···+pnqn) dq,

and which satisfies

L
(
q 7→ qif(q)

)
(p) = −(∂pi

◦ L)(f)(p).

96 A Holonomic Systems Approach to Algebraic Combinatorics

Notice, for example:

〈
i−1pi · f, g

〉
=

∫

Rn

L
(
q 7→ qif(q1, . . . , nqn)

)
(p) g(p) dp1 . . . dpn (5.10)

= −
∫

Rn

(∂pi
◦ L)(f)(p) (∂qi · g)(p) dp1 . . . dpn

=

∫

Rn

L
(
q 7→ f(q1, . . . , nqn)

)
(p) (∂qi · g)(p) dp1 . . . dpn

= 〈f, ∂pi
· g〉 .

Formally, we must work on the level of abstract modules, however. This avoids

situations where the integral is not convergent or the Laplace transform is not

defined as a function.

To prove Theorem 5.3, we show Corollary 5.7 which states that annAt

(
f⊥ ⊗ g

)
is

a non-zero subideal of annAt 〈f, g〉 such that At/ annAt

(
f⊥ ⊗ g

)
is a holonomic

module. This is done in multiple stages. First, in Section 5.6.2, we define S,

the algebraic structure in which our calculations take place, and prove that it

is holonomic by reducing the problem to the usual scalar product analogue,

where similar results are known. This analogue is detailed in Section 5.6.3.

Next, in Section 5.6.4 we express S as a quotient. Corollary 5.7 follows from

this discussion. Finally, to conclude that the algorithm terminates, we relate S

directly to the algorithm and prove in Section 5.6.5 that all of the generators are

determined in finite time. Together, these results prove Theorem 5.3 and thus

the correctness and termination of Algorithms 1 and 3.

5.6.2 The scalar product of symmetric functions

We now formally define the At-module S. Begin with U = Ap,t·f and V = Ap,t·g,
two holonomic Ap,t-modules. We shall denote by U⊥ the module of adjoints

of U : as K-vector spaces, U = U⊥, and a right Ap[t]-action is defined on U⊥ by

u ·P = P⊥ ·u for any u ∈ U⊥ and P ∈ Ap,t, where the last operation is taken for

the left structure of U . Set S as the tensor product U⊥ ⊗Ap[t] V , which makes

it a K[t]-module. This has the desirable effect of encoding the scalar product

Chapter 5. An effective scalar product 97

adjunction relations: for all u ∈ U and all v ∈ V ,

(∂pi
· u) ⊗ v = (u.∂⊥pi

) ⊗ v = (u · i−1pi) ⊗ v = u⊗ (i−1pi · v), (5.11)

(pi · u) ⊗ v = (u · p⊥i) ⊗ v = (u.i∂pi
) ⊗ v = u⊗ (i∂pi

· v), (5.12)

ti · (u⊗ v) = (ti.u) ⊗ v = (u · ti) ⊗ v = u⊗ (ti · v). (5.13)

To endow S with a At-module structure, let ∂ti act on a pure tensor u⊗ v by

∂ti · (u⊗ v) = (∂ti · u) ⊗ v + u⊗ (∂ti · v), (5.14)

and extend to S by K-linearity. In other words, ∂ti = ∂li + ∂ri after defining

∂li = ∂ti ⊗ 1 and ∂ri = 1 ⊗ ∂ti , where 1’s are identity maps.

Armed with this definition and Theorem 5.4 (formally stated and proven in-

dependently in Section 5.6.3), we prove that S is holonomic. Theorem 5.4 is

an analogous result for the usual scalar product, its corresponding adjunction,

and the corresponding adjoint module M⋆ of a module M . It states that for

holonomic M and N , M⋆ ⊗Ap[t] N is a holonomic At-module under the same

action (5.14) under ∂ti . We appeal to this theorem with an appropriate choice

for M and N .

To determine the relationship between the two scalar products and make our

choice for M and N , we compare both adjunction operations. In the symmetric

case, adjunction is defined as the anti-automorphism ⊥ which maps pi to i∂pi

and ∂pi
to i−1pi, for all i, and the usual scalar product adjunction is defined

as the anti-automorphism ⋆ which maps ∂pi
to −∂pi

, and leaves the pi vari-

ables unchanged. One way to connect both adjunctions is to factor ⊥ into the

composition of three algebra morphisms:

1. The automorphism τ mapping (pi, ∂i) to (ipi, i
−1∂i). This corresponds to

the dilation which maps a function f to p 7→ f(p1, 2p2, . . . , npn);

2. The Fourier transform automorphism F mapping (pi, ∂i) to (−∂i, pi) intro-

duced in Section 3.3.2. Informally speaking, this corresponds to mapping

a function f to its Laplace transform L(f);

3. The anti-automorphism ⋆ mapping (pi, ∂i) to (pi,−∂i).

98 A Holonomic Systems Approach to Algebraic Combinatorics

The important property to note is that each of these three maps preserves holon-

omy since they preserve total degree, hence are filtration-preserving bijections.

A direct calculation on pi and ∂i verifies that ⊥= ⋆ ◦ F ◦ τ , so that the com-

posite ⊥ also is a holonomy-preserving linear bijection. Thus, we appeal to

Theorem 5.4 with M = UF◦τ and N = V , which are both holonomic. One

concludes that

S = U⊥ ⊗Ap[t] V =
(
UF◦τ

)⋆ ⊗Ap[t] V = M⋆ ⊗Ap[t] N (5.15)

is a holonomic At-module. After we have deduced the quotient structure of S in

Section 5.6.4, this information is used to prove that annAt(f
⊥⊗ g) is non-trivial

and that the quotient module At/ annAt(f
⊥ ⊗ g) is holonomic, a fact we use to

show that the algorithms terminate.

5.6.3 Preservation of holonomy under the usual scalar product

In the previous section, we reduced the proof of the holonomy of S = U⊥⊗Ap[t]V

to an analogous result in terms of the usual scalar product, to be proven in this

section: the holonomy of T = M⋆ ⊗Ap[t] N for holonomic modules M and N .

The following notion will be used in the proof: the integral of a Ap,t-module P

is defined as ∫
P =

∫
P dp1 . . . dpn = P

/ (∑

i

∂pi
· P
)
.

It is the image of composed maps: the Fourier transform F , the inverse image π∗

under the projection π from K
n+m to K

n defined by π(p, t) = t, and the inverse

Fourier transform. Specifically we have,

∫
P = F−1π∗F(P).

These maps preserve holonomy (see [10, Th. 3.3.4] or [20, Th. 18.2.2; Sec. 20.3]),

so that the integral of a holonomic Ap,t-module is a holonomic At-module. (See

also [10, Th. 3.1.8].)

The module T fits naturally in between an existing holonomy-preserving surjec-

tion from the At-module
∫
M ⊗K[p,t]N to the space 〈M |N〉. Factoring this map

to pass through T = M⋆ ⊗Ap[t] N yields:

Chapter 5. An effective scalar product 99

∫
M ⊗K[p,t] N

φ
−։ M⋆ ⊗Ap[t] N

ψ
−։ 〈M |N〉 , (5.16)

where ψ maps m⊗n to 〈m|n〉, and φ is a natural At-linear surjection that we are

about to define in the course of the next theorem, as well as the integral module

to the left of it. After proving that the first module in (5.16) is holonomic, the

surjectivity of φ implies the holonomy of T .

Theorem 5.4 (Holonomy of M⋆ ⊗Ap[t] N). Suppose that M and N are two

holonomic Ap,t-modules, and define T as M⋆ ⊗Ap[t] N . Then, T is a holonomic

At-module under the action of ∂ti given by

∂ti · (m⊗ n) = (∂ti ·m) ⊗ n+m⊗ (∂ti · n).

Proof. We first focus our attention on
∫
M ⊗K[p,t] N in (5.16). Consider the

Ap,t-module P := M ⊗K[p,t] N , with action of ∂pi
defined by

∂pi
· (m⊗ n) = (∂pi

·m) ⊗ n+m⊗ (∂pi
· n),

and action of ∂ti defined similarly.

We can also write this as the inverse image ι∗ (M ⊗K N), where ι is the map

from K
m+n to K

(n+m)+(n+m) which sends (p, t) to (p, t, p, t). The advantage of

the second presentation is that the holonomy of P is obtained from the holo-

nomic closure under inverse image under embeddings (see [10, Th. 3.2.3] or [20,

Sec. 15.3 and Ex. 15.4.5]) and the holonomic closure under tensor product over K

by Cor. C.13.4.2. Therefore,
∫
P is holonomic.

Next we define a At-linear surjection to T . Define a map from M × N to T

which sends (m,n) to m⊗ n. This map is K[p, t]-balanced, K[p, t]-bilinear, and

surjective. By the universality of the tensor product, this induces a surjective

map φ : M ⊗K[p,t] N ։ T . Consider the action of ∂pi
on the tensor m⊗ n,

φ
(
∂pi

· (m⊗ n)
)

= φ
(
(∂pi

·m) ⊗ n+m⊗ (∂pi
· n)
)

= (∂pi
·m) ⊗ n+m⊗ (∂pi

· n)

= m⊗ (−∂pi
· n) +m⊗ (∂pi

· n) = 0.

100 A Holonomic Systems Approach to Algebraic Combinatorics

That is,
∑

i ∂pi
·P ⊂ ker φ, and thus φ also induces a well-defined surjective map

from
∫
P to T . Any good filtration of

∫
P will induce a good filtration for T

(see [10, Prop. 1.11] or [20, Lemma 7.5.1]). Thus, T is finitely generated with

dimension bounded by that of
∫
P . Therefore, T is holonomic. ✪

5.6.4 The quotient structure of S

The next task is to express the S = U⊥ ⊗Ap[t] V . This requires modules over,

and ideals of Ap,t rather than Ap,t(t). We therefore complete our notation and

introduce the annihilators If = annAp,t f and Ig = annAp,t g, which to be used

in place of If = annAp,t(t) f and Ig = annAp,t(t) g, respectively. Note that

If = If ∩ Ap,t and If = K(t) ⊗K[t] If , and similarly for g. Last, although

adjunction has not been defined for ∂t, we use the notation A⊥
p,t to denote Ap,t

endowed with both structures of At-module on the left and Ap[t]-module on the

right.

Proposition 5.5. The At-module S = Ap,t · f⊥ ⊗Ap[t] Ap,t · g is isomorphic to

(A⊥
p,t ⊗Ap[t] Ap,t)/(I

⊥
f ⊗Ap[t] Ap,t + A⊥

p,t ⊗Ap[t] Ig).

Proof. The At-module S is also a module over A⊥
p,t⊗Ap[t]

Ap,t, generated by f⊥⊗
g. Consider the two exact sequences of respectively right and left Ap[t]-modules

0 −→ I⊥f
ρ−→ A⊥

p,t
α−→ U⊥ −→ 0,

0 −→ Ig
σ−→ Ap,t

β−→ V −→ 0,

where α(P) = f⊥.P , β(Q) = Q · g, and ρ and σ are inclusions. (Here, f = f⊥,

but we write f⊥ when viewed as an element of U⊥, f when viewed as in U .) We

combine them to make a third exact sequence:

ker(α⊗ β) −→ A⊥
p,t ⊗Ap[t] Ap,t

α⊗β−−−→ S −→ 0,

P ⊗Q 7−→ (f⊥.P) ⊗ (Q · g)
(5.17)

where, by [11, II.59, Proposition 6],

ker(α⊗ β) = im(ρ⊗ 1Ap,t) + im(1A⊥
p,t

⊗ σ) = I⊥f ⊗Ap[t] Ap,t + A⊥
p,t ⊗Ap[t] Ig

Chapter 5. An effective scalar product 101

as K[t]-modules. We conclude that as K[t]-modules, then, as At-modules,

S ≃ (A⊥
p,t ⊗Ap[t] Ap,t)/ ker(α⊗ β)

≃ (A⊥
p,t ⊗Ap[t] Ap,t)/(I

⊥
f ⊗Ap[t] Ap,t + A⊥

p,t ⊗Ap[t] Ig).

✪

To be more explicit, note that this isomorphism maps the class of 1 ⊗ 1 in the

quotient to f⊥ ⊗ g ∈ S. Remark also that, as At-modules,

ker(α⊗ β) =
{
P ⊗Q ∈ A⊥

p,t ⊗Ap,t : (α⊗ β)(P ⊗Q) = 0
}

=
{
P ⊗Q ∈ A⊥

p,t ⊗Ap,t : (f⊥ · P) ⊗ (Q · g) = 0
}

=
{
P ⊗Q ∈ A⊥

p,t ⊗Ap,t : (P ⊗Q) · (f⊥ ⊗ g) = 0
}

= annA⊥
p,t⊗Ap[t]Ap,t

(f⊥ ⊗ g),

so that we also have

annA⊥
p,t⊗Ap[t]Ap,t

(f⊥ ⊗ g) = ker(α ⊗ β) = I⊥f ⊗Ap[t] Ap,t + A⊥
p,t ⊗Ap[t] Ig. (5.18)

Proposition 5.6. The At-module S′ = At · (f⊥ ⊗ g) is a submodule of S,

isomorphic to

A′
t

/ (
(I⊥f ⊗Ap[t] Ap,t + A⊥

p,t ⊗Ap[t] Ig) ∩ A′
t

)
,

where A′
t ≃ At is the smallest K-subalgebra of A⊥

p,t ⊗Ap[t] Ap,t generated by

K[t], 1 ⊗ ∂t1 + ∂t1 ⊗ 1, . . . , 1 ⊗ ∂tk + ∂tk ⊗ 1. In the simplified situation when

If = ∂tAp,t + AtJf for Jf = annAp f , S′ is isomorphic to

At

/ (
(AtJ

⊥
f + Ig) ∩ At

)
.

We first prove this proposition, and then in the next section we discuss how to

connect the above description of S′ directly to the algorithm and how to apply

it to show that the algorithms terminate.

Proof. The annihilator of f⊥ ⊗ g in A′
t · (f⊥ ⊗ g) is

annA′
t
(f⊥ ⊗ g) = annA⊥

p,t⊗Ap[t]Ap,t
(f⊥ ⊗ g) ∩ A′

t.

102 A Holonomic Systems Approach to Algebraic Combinatorics

In view of the action of At on S′ through the isomorphism between At and A′
t,

we thus have that S′ is isomorphic to

At/ annAt(f
⊥ ⊗ g) ≃ A′

t/ annA′
t
(f⊥ ⊗ g) = A′

t/
(
annA⊥

p,t⊗Ap[t]Ap,t
(f⊥ ⊗ g) ∩A′

t

)
.

Owing to (5.18), this proves the general quotient expression for S′ in the propo-

sition statement.

Now, to prove the formula in the simpler case, observe that when If = ∂tAp,t +

AtJf ,

I⊥f ⊗Ap[t]
Ap,t = ∂tA⊥

p,t ⊗Ap[t]
Ap,t + AtJ

⊥
f ⊗Ap[t]

Ap,t

= ∂tAt ⊗K[t] Ap,t + At ⊗K[t] AtJ
⊥
f

while A⊥
p,t ⊗Ap[t] Ig = At ⊗K[t] Ig, whence the relation

ker(α⊗ β) = ∂tAt ⊗K[t] Ap,t + At ⊗K[t] (AtJ
⊥
f + Ig).

Since A⊥
p,t ⊗Ap[t] Ap,t = At ⊗K[t] Ap,t, we have

S ≃ (At ⊗K[t] Ap,t)/ ker(α⊗ β)

≃ (K[t] ⊗K[t] Ap,t)/
(
K[t] ⊗K[t] (AtJ

⊥
f + Ig)

)

≃ Ap,t/(AtJ
⊥
f + Ig).

Following these isomorphisms, A′
t can be identified as the copy of At included

in Ap,t in the last quotient above. Therefore, the submodule S′ of S is isomorphic

to the quotient announced in the proposition statement. ✪

Corollary 5.7. The ideal annAt(f
⊥ ⊗ g) is:

1. Isomorphic to (I⊥f ⊗Ap[t] Ap,t + A⊥
p,t ⊗Ap[t] Ig) ∩ A′

t as a At-module;

2. A non-trivial ideal contained in annAt 〈f, g〉 and such that At/ annAt(f
⊥⊗

g) ≃ S′ is holonomic.

Proof. From (5.18),

annA′
t
(f⊥ ⊗ g) =

(
annA⊥

p,t⊗Ap[t]Ap,t
(f⊥ ⊗ g)

)
∩ A′

t

=
(
I⊥f ⊗Ap[t] Ap,t + A⊥

p,t ⊗Ap[t] Ig

)
∩ A′

t (5.19)

Chapter 5. An effective scalar product 103

and we have shown (1) in the corollary statement. The At-module

S′ ≃ At/ annAt(f
⊥ ⊗ g)

is a holonomic At-module, as a submodule of the holonomic module S. Now

as At is not holonomic, thus annAt(f
⊥ ⊗ g) must be non-trivial by a simple

dimension argument. Finally, we recall that this non-trivial ideal is contained

in annAt 〈f, g〉, since there is a surjection from S′ to At/ annAt 〈f, g〉 given by

ψ : (u⊗ v) 7→ 〈u, v〉. This proves (2) in the corollary statement. ✪

5.6.5 Termination

We now link the modules S and S′ to the algorithms and prove their termina-

tion. The termination of Algorithm 3 is more technical to prove than that of

Algorithm 1 since ∂ti can act separately on f and g. Thus, for ease of presen-

tation, we consider Algorithms 1 and 3 in turn, to show that they eventually

generate a Gröbner basis for annAt(t)(f
⊥ ⊗ g).

Termination of scalar de

The basic idea of Algorithm 1 is to compute filtrations of If and Ig incre-

mentally and to recombine them at each step. The algorithm terminates when

condition (3e) in the algorithm description is satisfied. We show that the al-

gorithm will satisfy this condition by eventually producing a Gröbner basis for

annAt(t)(f
⊥ ⊗ g). This subideal describes f⊥ ⊗ g and 〈f, g〉 as D-finite.

Proof. (Theorem 5.3, Algorithm 1) Algorithm 1 places a constraint on f that

allows us to take advantage of the simpler At-structure of U = Ap,t · f : when

each ∂ti · f is 0, we have U = K[t] ⊗K (Ap · f) and If = ∂tAp,t + AtJf . Taking

the intersection with A′
t is then far more transparent: from the previous section,

we obtain the following simplification of Eq. (5.19):

annAt(f
⊥ ⊗ g) =

(
J⊥
f At + Ig

)
∩ At. (5.20)

Consider the monoid of monomials generated by p, ∂p, ∂t, ordered by the mono-

104 A Holonomic Systems Approach to Algebraic Combinatorics

mial order � specified by the algorithm, and denote by Vα the filtration

Vα =
⊕

β�α

K(t)β.

After Step (3d) in the main loop of Algorithm 1, with α as loop index, B gen-

erates

Lα =
(
J⊥
f At(t) ∩ Vα

)
+
(
Ig ∩ Vα

)
.

By our choice of the elimination term order, B ∩At(t) consists in generators of

the intersection Lα ∩ At(t).

Next we show that for each β,
(
J⊥
f At(t) + Ig

)
∩ Vβ is in Lα for some α. Since

Vβ is finite-dimensional, so must be the intersection under consideration. Let us

introduce a basis b1, . . . , bd of it; each bi can be written in the form ui + vi for

fi ∈ I⊥
f

(
= J⊥

f At(t)
)

and gi ∈ Ig, so that the intersection

(
J⊥
f At(t) + Ig

)
∩ Vβ =

d⊕

i=1

K(t)(fi + gi)

is a subset of

d∑

i=1

K(t)fi +
d∑

i=1

K(t)gi ⊂
(
At(t)J

⊥
f ∩ Vα

)
+
(
Ig ∩ Vα

)
= Lα

provided α = max{maxi deg fi,maxi deg gi}.

Assume that Algorithm 1 fails to terminate on some input f and g. Since

annAt(t)(f
⊥ ⊗ g) is finitely generated by noetherianity of At(t), we can choose

a finite set of generators for it, and set β to their maximal leading monomial.

Consequently, the chosen generators are in

annAt(t)(f
⊥ ⊗ g) ∩ Vβ ≃

(
At(t)J

⊥
f + Ig

)
∩ At(t) ∩ Vβ.

By the reasoning above, the latter is a subspace of Lα for some α. When the loop

index reaches α, annAt(t)(f
⊥ ⊗ g) is a subideal of the ideal generated in At(t)

by B∩At(t). Since, by Corollary 5.7, At/ annAt(f
⊥⊗g) is a holonomic module,

annAt(t)(f
⊥⊗g) is of dimension 0, and condition (3e) is satisfied. The algorithm

terminates, a contradiction to our assumption. ✪

Chapter 5. An effective scalar product 105

A limitation of the algorithm is that we cannot predict in advance how many

monomials must be tested, and hence cannot estimate the running time. Also

note that the proof has used the fact that Algorithm 1 loops over α in the same

order � as the one used for reductions.

Termination of scalar de2

The termination of Algorithm 3 can be proved similarly, but we must use greater

care when treating the ∂ti .

Proof. (Theorem 5.3, Algorithm 3) Since there is no adjoint action for ∂ti , we

consider occurrences of ∂ti in the left argument of the scalar product differently

from those on the right side. This is modelled in S by tensoring over Ap[t],

where ∂t is absent and thus, ∂ti ⊗1 differs from 1⊗∂ti . Both still obey the same

commutation law with ti as ∂ti . Denote the former by ∂li and the latter by ∂ri .

Having distinguished these two cases, we rewrite several of the important ele-

ments from the previous proof using this new notation. For example,

A⊥
p,t ⊗Ap[t] Ap,t = K

〈
p, t, ∂p, ∂l, ∂r; [∂pi

, pj] = [∂li , tj] = [∂ri , tj] = δi,j ,

[pi, pj] = [pi, tj] = [ti, tj] = [∂li , pj] = [∂ri , pj] = [∂pi
, tj] = 0

〉
,

and its subalgebra A′
t is generated by K[t], ∂l1 + ∂r1 , . . . , ∂lk + ∂rk . We can also

rewrite I⊥f ⊗Ap[t] Ap,t + A⊥
p,t ⊗Ap[t] Ig in the form I⊥f

∣∣
∂t=∂l

K[∂r] + K[∂l]Ig
∣∣
∂t=∂r

.

Recall from the algorithm description that the ordering of the monomials in

p, ∂p, ∂l, ∂r chosen at Step (3) is subject to constraints that relate it with the

ordering � of monomials in p, ∂p, ∂t; it is thus again denoted by �.

Algorithm 3 actually computes with coefficients that are rational functions in t,

and so with elements of I⊥
f

∣∣
∂t=∂l

K[∂r] + K[∂l]Ig
∣∣
∂t=∂r

. After the algorithm has

introduced (variants of) αf and αg at Step (3e) with loop index α, the set B

contains generators of the vector space obtained after setting ∂l = ∂t − ∂r in

(
I⊥
f

∣∣
∂t=∂l

K[∂r]
)
∩ Uα +

(
K[∂l]Ig

∣∣
∂t=∂r

)
∩ Uα,

where Uα denotes the filtration
⊕

β�α K(t)β for α, β ranging over the monomials

in the variables p, ∂p, ∂r, ∂l. We use this fact to conclude termination.

106 A Holonomic Systems Approach to Algebraic Combinatorics

Let V ′
β be the image of the Vβ of the previous section, under the same transfor-

mation which takes At(t) to A′
t(t), that is,

V ′
β =

⊕

pa∂b
p∂

c
t�β

K(t)pa∂bp (∂l + ∂r)
c .

For each β, there is β′ such that V ′
β ⊂ Uβ′ . By noetherianity of At(t), we have

that annAt(t)(f
⊥⊗ g) is finitely generated. Choose a finite set of generators and

set β to their maximal leading monomial. The generators are thus contained

in annAt(t)(f
⊥ ⊗ g) ∩ Vβ, which is isomorphic to annA′

t(t)
(f⊥ ⊗ g) ∩ V ′

β, itself a

subset of annA′
t(t)

(f⊥ ⊗ g)∩Uβ′ for some β′. By (5.19) the latter is also X ∩Uβ′

for

X = I⊥
f ⊗Ap(t) Ap,t(t) + Ap,t(t)

⊥ ⊗Ap(t) Ig.

The intersection X ∩Uβ′ is finite-dimensional, since Uβ′ is so; suppose it has for

basis b1, . . . , bd, with each bi of the form bi = fi⊗ri+ li⊗gi, where fi ∈ I⊥
f

∣∣
∂t=∂l

,

gi ∈ Ig
∣∣
∂t=∂r

, ri ∈ K[∂r], and li ∈ K[∂l]. Then,

X ∩ V ′
β ⊂

d⊕

i=1

K(t)(firi + ligi).

Set α′ = max{maxi deg firi,maxi deg ligi}, where here deg extracts the leading

monomial. This implies that the generators of the intersection X ∩ Uβ′ are

contained in the space

(
I⊥
f

∣∣
∂t=∂l

K[∂r]
)
∩ Uα′ +

(
K[∂l]Ig

∣∣
∂t=∂r

)
∩ Uα′ .

By our earlier loop invariant, the same generators, after setting ∂l = ∂t−∂r, are

contained in the space spanned by B when the loop index is set to α′. Thus, it

suffices to run the algorithm until α = α′ and the generators of annAt(f
⊥ ⊗ g)

will be contained in B. At this point the termination conditions are satisfied,

and the algorithm terminates. ✪

Chapter 6

Related algorithms

6.1 Computing other scalar products

The work in the previous chapter used the fact that the usual scalar product

of functions, 〈f |g〉 =
∫
fg, preserves D-finiteness. Further, the proof indirectly

described an effective algorithm for its calculation; an algorithm more direct than

simply the composition of effective algorithms for integration and the product.

In fact, we remarked at the time that the algorithms given are easily modified to

accommodate other scalar products, provided that the adjoint to multiplication

satisfies a particular (natural) property.

We now state explicitly the generalization of Algorithm 1 (and by extension,

Algorithm 3), to other scalar products. First, we give the preservation of D-

finiteness.

Theorem 6.1 (General D-finite scalar products). Suppose x = x1, x2, . . .,

y = y1, y2, . . . and

φ : K[[x, y]] × K[[x, y]] → K[[y]]

is a symmetric, bilinear form with a degree preserving K(x, y)-automorphism

as multiplication adjunction.

1. If f ∈ K[[x, y]] and g ∈ K[[x, y]] are D-finite with respect to the x and

y variables, one of which requires only a finite number of the xi’s, then

φ(f, g) is D-finite with respect to the y variables.

2. Furthermore, a D-finite description of φ(f, g) is contained in
(
(If)

+ Ig
)
∩

Ay.

108 A Holonomic Systems Approach to Algebraic Combinatorics

Proof. Begin, as before, setting U = Ax,y ·f and V = Ax,y ·g, and denote by U#

the adjoint module of U . Set S as the tensor product U#⊗Ap[t]V , a K[t]-module

which encodes this scalar product.

Now, any filtration preserving K(x, y)-automorphism can be rearranged into an

action that twists the module U#, into a module M⋆, with M holonomic. By

Theorem 5.4, we have that S = M⋆ ⊗Ap[t] N is holonomic.

Both of the results now follow from Corollary 5.7. ✪

Thus, we modify Algorithm 1 (or 3) by essentially doing a text substitution of

⊥ by #. The modified version of Algorithm 1, gen scalar de, follows.

6.1.1 Macdonald polynomials

Macdonald polynomials are a generalization of Schur functions, which incor-

porate two additional variable parameters, generally denoted q and t. These

functions generalize the orthogonality property of Schur functions with respect

to a modified scalar product. This approach can also be used to define Hall

polynomials, a slightly simpler generalization which can in fact be obtained

from Macdonald polynomials. The book of Macdonald [52] provides a thorough

description of Macdonald and Hall polynomials, although [51] specifically devel-

ops the analogy between Schur, Hall and Macdonald polynomials using modified

scalar products.

The scalar products in each of these three cases preserve D-finiteness, as they

satisfy the conditions of Theorem 6.1, as we shall see.

The first, which can be used to define Hall polynomials, is a symmetric, bilinear

map,

〈, 〉t : K[[p]] → K(t)[[p]],

defined by the relation

〈pλ, pµ〉t = δµλ
∏(

k

1 − tk

)
mλ(k)

mλ(k)!. (6.1)

Denote the value of 〈pλ, pλ〉t by zλ(t). In this case, the adjoint ∗ to multiplication

Chapter 6. Related algorithms 109

Algorithm: gen scalar de

Input: Symmetric functions f ∈ K[[p]] and g ∈ K[t][[p]], both D-finite

in p, t, respectively given by a system of linear differential op-

erators of Ap and Ap,t(t).

The adjoint function # of a symmetric, bilinear function

φ : K[t][[p]]K[t][[p]] → K[[t]] such that # is degree preserving.

Output: A system of differential equations satisfied by φ(f, g), which

describes it as D-finite.

1. Determine a Gröbner basis Gg for the left ideal annAp,t(t)G with re-

spect to any monomial ordering �, as well as a Gröbner basis Gf#

for the right ideal annAp
f# with respect to the monomial ordering

induced by � on Ap;

2. B := {};

3. Iterate through each monomial α in p, ∂p, ∂t in the increasing order

given by �;

(a) Write α = βγ with β ∈ Ap and γ ∈ K[∂t];

(b) αf :=
(
β − (β red� Gf#)

)
γ;

(c) αg := α− (α red� Gg);

(d) Introduce αf and αg as two new elements into B and reduce so

as to eliminate p, ∂p;

(e) Compute the dimension of the ideal generated by B ∩At(t). If

this dimension is 0, break and output B ∩ At(t).

Algorithm 4 An algorithm for effective general scalar products

110 A Holonomic Systems Approach to Algebraic Combinatorics

is straightforward to compute,

p∗n =
n

1 − tn
∂pn , ∂∗pn

=
1 − tn

n
pn, (pn∂pn)∗ = ∂pnpn. (6.2)

Remark that ∗ is a degree preserving bijection. Theorem 6.1 implies that a

function 〈F (p, x), G(p)〉t is D-finite with respect to x over K(t).

Example. The function 〈H(x),H[e2]〉t satisfies a differential equation in x

with coefficients from K(t). This differential equation can be computed by

Algorithm 4.

One interest of this map, apart from defining Hall polynomials, is that it yields

a familiar q-specialization:

〈
f((1 − q)p1, (1 − q)2p2, . . .),

∑
hnx

n
〉
t

∣∣∣
t=q

= exq (f) .

A second generalized scalar product is used to compute the Mcdonald symmetric

functions. It is defined on the pλ basis by

〈pλ, pµ〉q,t = zλ(q, t),

with

zλ(q, t) =
∏(

k(1 − qk)

1 − tk

)mλ(k)

mλ(k)!.

The adjoint to multiplication by pλ is determined in a similar fashion:

p∗n =
n(1 − qn)

1 − tn
∂pn , ∂∗pn

=
1 − tn

n(1 − qn)
pn, (pn∂pn)∗ = ∂pnpn. (6.3)

Again, this adjunction satisfies the conditions of Theorem 6.1.

Some coefficient extraction problems can be set up using the complete and mono-

mial symmetric functions. In the latter case, we have that

〈mλ, hµ〉q,t = δλµ
∏

λi∈λ

(1 − qλi)

(1 − tλi)
.

Chapter 6. Related algorithms 111

6.2 MacMahon symmetric functions

The scalar product defined for the MacMahon symmetric functions in Section 2.8

is another natural candidate for this approach. Let λ = {(ai, bi)mi}, and µ =

{(ci, di)ni}. Then the scalar product satisfies

〈pλ, pµ〉 = δλ,µ
∏

(ai,bi)

mi!

(
ai!bi!

(ai + bi − 1)!

)
mi

,

where mi is the number of occurrences of (ai, bi) in λ.

The adjoint of multiplication by p(a,b), is given by

p⊥(a,b) =

(
ai!bj !

(ai + bj − 1)!

)
∂p(a,b)

.

This satisfies the conditions given by Theorem 6.1, and thus we can describe

an effective algorithm to compute this. We use this algorithm in Part 3 to

enumerate k × n-Latin rectangles amongst other applications.

6.3 Computing the Kronecker product

Recall we earlier defined the Kronecker product of symmetric functions by the

action on pλ given by

pλ ∗ pµ = 〈pλ(xy), pµ(x)〉y , (6.4)

and then extended linearly. Proposition 2.6 stated that under some conditions,

the Kronecker product of two D-finite symmetric functions is again D-finite.

As we saw in Section 2.2.1, this product arises in many different domains such

as physics and representation theory. In this section we show how to modify

scalar de to give an algorithm to compute the Kronecker product of D-finite

functions.

6.3.1 Existing techniques

Since this problem is of interest in a variety of different contexts, it is not sur-

prising that different techniques have been developed to treat this problem.

Historically, the quantity of interest has been the coefficient of sµ in sλ∗sν , where

λ, µ and ν are all partitions of n. This gives the multiplicity of a character of

112 A Holonomic Systems Approach to Algebraic Combinatorics

the representation. Stein and Zemach [76] note (in 1993) that computing this

for n = 16 (denoted by them to be S(16)) took over 16 hours in 1954, whereas

they are able to compute S(20) in just under a minute on a Cray supercomputer

using their SYMPACK routines. They muse that “perhaps the next 35 years

will see an equivalent improvement”.

To compute these values using computer algebra systems, the packages which

compute the scalar product of symmetric functions, mentioned in the last chap-

ter, also contain procedures to calculate the tensor product of symmetric func-

tions. For example the Maple package of Stembridge dedicated to symmetric

function computations, SF [77], computes, the Kronecker product of two sym-

metric functions of small degree. His algorithm expands the symmetric function

into the power sum basis and then applies (2.3) to a pairwise comparison of

terms.

6.3.2 A slight modification of scalar de

The definition given for the Kronecker product in Eq. (2.3) suggests that an

algorithm to compute the scalar product may be modified to compute the Kro-

necker product. Indeed this is the case. The basic idea is to “tag” instances of

pi with a shadow variable ti in one of the symmetric functions. We compute the

scalar product with scalar de, and the resulting function of ti undergoes the

substitution ti = pi to return it to a symmetric function.

That is, we write Eq. (2.3) as pλ ∗ pµ =
〈
pλt

λ, pµ
〉 ∣∣
ti 7→pi

, and in general we have

f(p1, . . . , pn) ∗ g(p1, . . . , pn) = 〈f(p1(xy), . . . , pn(xy)), g(p1(x), . . . , pn(x))〉x .

6.3.3 Solving problems using itensor de

Many interesting problems which use this operation require an infinite number

of pn, and are thus at first glance seemingly unsuitable for direct application

of our algorithms. However, applying our algorithms for several truncations of

a combinatorial problem can serve as a means to generate information upon

which reasonable conjectures can be formulated. For example, Eq. (??) below

Chapter 6. Related algorithms 113

Algorithm: itensor de

Input: Symmetric functions f ∈ K[[p]] and g ∈ K[t][[p]], both D-finite

in p, t, respectively given by a system of linear differential op-

erators of Ap and Ap,t(t).

Output: A system of differential equations satisfied by f ∗ g, which de-

scribes it as D-finite.

1. Call G the system defining G and set G′ = {t1∂t1 − p1∂p1
, . . . , tn∂tn

−
pn∂pn

};

(a) For each element in G, replace pi with tipi, ∂pi
with t−1

i ∂pi
and

add to G′;

(b) For each element in G, replace pi with tipi, ∂pi
with p−1

i ∂ti
, clear

denominators, and add to G′;

2. Follow the steps of Algorithm 1 on the input system for F and the

modified system G′ for G;

3. In the output of Algorithm 1 make the substitution ti = pi and ∂ti
=

∂pi
and return this value.

Algorithm 5 An algorithm for an effective Kronecker product

114 A Holonomic Systems Approach to Algebraic Combinatorics

was initially conjectured after a clear pattern emerged from a sequence of appeals

to Algorithm 5. For each of these, we render the problem applicable by setting

most pn’s to 0. In some cases, notably symmetric series arising from plethysms,

there is sufficient symmetry and structure which can be exploited to verify these

guesses by applying one of Algorithm 4 to well chosen subproblems. That is, in

certain cases, such as the example that follows, the Kronecker product of two

functions each with an infinite number of pn variables can be reduced to a finite

number of symbolic calculations.

For example, if two symmetric series F and G can be expressed respectively in

the form

F (p1, p2, . . .) =
∏

n≥1

fn(pn) and G(p1, p2, . . .) =
∏

n≥1

gn(pn),

for functions fn, gn, then one can easily deduce that

F ∗G =
∏

n≥1

fn(pn) ∗ gn(pn). (6.5)

Remark that series which arise as plethyms of the form h[u] or e[u], where u

can be written as a sum
∑

n un(pn), for some functions un, are precisely of this

form. For example, we can use this fact to compute the Kronecker product of

the sum of all Schur functions

F (p1, p2, . . .) =
∑

λ

sλ = h[p1 + 1/2p2
1 − 1/2p2] = exp

(
∑

i

p2
i

2i
+
p2i−1

2i− 1

)
,

and itself. Due to the patterns present, we can reduce the calculation of the entire

product to two symbolic calculations. More precisely, in order to determine a

system of differential equations satisfied by G = F ∗F we consider only the even

and odd cases, and set

f2n = exp(p2
2n/4n) and f2n−1 = exp((p2

2n−1/2 + p2n−1)/(2n − 1)).

All of the functions g2n = f2n ∗ f2n are obtained from a single computation

by our Algorithm 4, adapted to handle a formal parameter. This modification

is of the same nature of that described in Section 9.1. Here we introduce the

scalar product given by the adjunction formula p⋄ = n∂ for a formal parameter

n from the field K. Thus computing exp(p2/4n) ∗ exp(p2/4n) with this variant

Chapter 6. Related algorithms 115

algorithm results in a first-order operator in p and ∂, which, once interpreted

back in terms of pn becomes:

(1 − p2
n)
∂gn(pn)

∂pn
+ pngn(pn) = 0, for even n.

A second calculation for g2n−1 = f2n−1 ∗ f2n−1 results in:

n(1 + pn)(1 − pn)
2 ∂gn(pn)

∂pn
−
(
1 + (n+ 1)pn − np2

n

)
gn(pn) = 0, for odd n.

These linear equations are satisfied respectively by the functions

g2n =
(
1 − p2

2n

)−1/2

and

g2n−1 = exp

(
p2n−1

(2n − 1)(1 − p2n−1)

)(
1 − p2

2n−1

)−1/2
.

Applying Eq. (6.5) above, we get the following result.

Proposition 6.2. The Kronecker product of the sum of the Schur functions

with itself is

(
∑

λ

sλ

)
∗
(
∑

λ

sλ

)
= exp



∑

n≥1

p2n−1

(2n− 1)(1 − p2n−1)





∏

n≥1

(
1 − p2

n

)



−1/2

.

116 A Holonomic Systems Approach to Algebraic Combinatorics

Part 3

Combinatorial Applications

117

Summary of this part

This part illustrates some combinatorial problems that can be formulated as a
scalar product computation. The express aim is to automatise the solutions of
these problems. Included among these are: a generalization of regular graph
enumeration using the theory of species; A generalization of involutions related
to Young tableaux with repeated entries; MacMahon symmetric functions are
used to determine enumerative results on k × n-Latin squares.

120

Chapter 7

Coefficient extraction and generating functions

One interesting combinatorial motivation for studying scalar products of sym-

metric functions is the large number of enumeration problems that can be ex-

pressed as such scalar product computations. As we mentioned earlier, a typical

example is the differential equation satisfied by the generating function for k-

regular graphs, seen in Chapter 5. It is but one of the simplest of a family of

combinatorial problems described in this chapter using species theory. Some of

the examples in this section have appeared previously in various sources: see for

example [33, 34, 36, §4.3], and [75, Ch. 7]; They illustrate how algorithms of

Part 2 allow us to determine the solutions automatically, in a unified manner.

Thus, classical results are obtained as output from our algorithms.

These examples are all special instances of a notion of D-finiteness for species

of structures that still has to be rigourously investigated. This notion of D-

finiteness is clear in the instances we consider, but a general framework1 requires

technical development which would distract us from our current purpose. In

each example the essential arguments for D-finiteness are clear and to make this

obvious we exhibit explicit linear differential equations satisfied by the species

under consideration.

The first set of examples illustrates a systematic process for enumerating struc-

tures which can be described as sets of objects, these objects being subject to

certain regularity constraints. As we shall see, these structures are encoded by

symmetric series, and generating functions for some regular sub-families are ex-

1involving the notion of virtual polynomial species, i.e. with finite support

122 A Holonomic Systems Approach to Algebraic Combinatorics

tracted using scalar product computation. Section 5.3 illustrates how labelled

graphs can be encoded using monomials. A scalar product computation

∑

n

gnt
n/n! =

〈
exp

(
∑

n

(−1)n(p2
n − p2n)/2n

)
, exp (hkt)

〉
, (7.1)

determines the generating series for k-regular graphs. (That is, gn is the number

of labelled k-regular graphs on n vertices.)

We explain in the next section how to set up such problems as a scalar product

calculation.

7.1 Theory of species

Species theory (in the sense of [7, 44]) offers a formalism for defining and ma-

nipulating combinatorial structures which provides natural connections between

combinatorial operations on structures, such as union and product; and ana-

lytic operations on corresponding encoding series, like addition and multiplica-

tion. An important connection to our work here is that the series we consider

are D-finite symmetric series, and many of the natural combinatorial actions

preserve D-finiteness on the level of these series. In this section we only out-

line a notion of D-finiteness for species. Strict conditions are not presented in

view of the need for the lengthy development of theoretical tools that would be

disproportionately time consuming compared to our needs.

A description of a species of structures F contains two ingredients. The first

describes how to produce, for any given set U , a finite set F[U]. Intuitively, F[U]

is the set of structures of species F constructed using elements from U . The

second ingredient for a species describes how structures in F[U] can be naturally

translated into structures in F[V], along any explicit bijection from U to V .

The strict sense of “naturally” is made precise in [7]. Practically speaking, a

species could be specified using any of the traditional languages of set theory,

algorithms, diagrams, or any other means that makes F[U] clear given U .

Basic examples of species include: the species of sets E[U] = {U}; the species

characteristic of sets of cardinality k are defined as

Ek[U] = U, if |U | = k and {} otherwise;

Chapter 7. Coefficient extraction and generating functions 123

the species G[U] of graphs with vertex set U ; and the species of permutations,

P[U] = SU . Now, we have not explicitly given the translation rule along bijec-

tions since it is clear in these examples. This is really only necessary when it is

not obvious.

7.1.1 The cycle index series

Associated to each species is a cycle index series, (in the sense of Pólya). This

series makes automatic many notions linked to Pólya theory. In particular the

enumeration of structures up to isomorphism.

Define pn as the power sum symmetric function. To each species F we associate

a symmetric series ZF(p1, p2, . . .), which is defined as follows.

Definition 7.1 cycle index series. For any species F define its cycle index series

ZF as the series in C[[p1, p2, . . .]]:

ZF(p1, p2, . . .) :=
∑

n

∑

λ⊢n

fixF[λ]
pm1
1 pm2

2 · · · pmk

k

zλ
(7.2)

where the value of fixF[λ] is the number of structures of F which remain fixed

under some labelling permutation of type2 λ, and mk gives the number of parts

of λ equal to k.

For example, fixE[λ] = 1, (since any permutation of the elements of U does not

change U). Thus,

ZE(p1, p2, . . .) =
∑

n

∑

λ⊢n

pm1
1 pm2

2 · · · pmk

k

zλ
= exp

(
∑

n

pn/n

)
.

The cycle index series embodies the essence of Pólya Theory, and the enumer-

ation of configurations up to isomorphism. It appears as a set version of the

Frobenius characteristic of the character of a representation of the symmetric

group. It turns out that this gives us a natural way to determine generating

series for combinatorial families, such as in Eq. (7.1), of structures that satisfy

regularity conditions. We develop this further in Section 7.1.4.

2A permutation of type (1m1 , 2m2 , . . .) has m1 fixed points, m2 cycles of length 2, etc.

124 A Holonomic Systems Approach to Algebraic Combinatorics

7.1.2 Combinatorial operations

There are several combinatorial analogues to the usual operations on series, and

we shall see that these operations translate well into operations on cycle index.

For example, for any set U , the sum of two species, F1 + F2 can be defined as

the disjoint union of F1[U] and F2[U]. Correspondingly,

ZF1+F2(p1, p2, . . .) = ZF1(p1, p2, . . .) + ZF2(p1, p2, . . .). (7.3)

Here all sums stand for disjoint union. The product of two species is defined as

(F1 · F2) [U] :=
∑

V+W=U

F1[V] × F2[W].

Correspondingly,

ZF1·F2(p1, p2, . . .) = ZF1(p1, p2, . . .)ZF2(p1, p2, . . .), (7.4)

the usual product in C[[p1, p2, . . .]].

Another useful operation is substitution. The substitution of two species F1 ◦F2,

denoted (F1 ◦ F2)[U] is formally defined as

(F1 ◦ F2) [U] :=
∑

π∈Part[U]

F1[π] ×
∏

β∈π

F2[β],

where Part[U] stands for the set of partitions of U . Elements of π are the blocks

of the partition. Now, instead of unravelling the above definition, we explain

with the aid of an example. The substitution (E ◦ E2) [U] is equal to set of

partitions of U into blocks of size 2. A typical element of E ◦ E2[{1, 2, 3, 4}]
would be {{1, 2}, {3, 4}}. Another is E ◦ C, sets of cycles, which is equivalent

to permutations. The effect on the cycle index series is best described using

symmetric function plethysm pn[g] as defined on page 30

ZF1◦F2(p1, p2, p3, . . .) = ZF1 [ZF2] = ZF1(p1 [ZF2] , p2 [ZF2] , . . .). (7.5)

There are other kinds of combinatorial operations, and the reader is pointed

towards [7] for details.

Chapter 7. Coefficient extraction and generating functions 125

7.1.3 D-finite species

We would like to be able to obtain many examples of D-finite symmetric series

from combinatorial considerations. The notion outlined here, and the subsequent

discussion, rely on some terminology from species which we shall not define, we

only use it to illustrate that there are subtleties surrounding the exact details

of the definition. A polynomial species with finite support essentially has a fi-

nite cycle index. The derivative of a species F, is itself a species denoted F’ is

formulated as

F′[U] := F[U + {∗}],

where “∗” is an element added to U . For example, for k > 2, E′
k[U] = Ek−1[U].

All the usual analytic properties of the derivative apply in the realm of species.

This allows for a formal, combinatorial notion of a differential equation.

Echoing the definition of D-finite function in one variable we could simply say

that a species F is D-finite if it satisfies a linear differential equation with co-

efficients polynomial species, but we need to consider these coefficients to be

“virtual” species in the sense of [7].

To avoid this, we can also define them as follows.

Definition 7.2 D-finite species. A species F is said to be D-finite if and only

if it satisfies an equation of the form

SnF
(n) + . . .+ S0F = RnF

(n) + . . .+ R0F (7.6)

for some polynomial species (in the usual sense3) Sk and Rk, for 0 ≤ k ≤ n. We

assume a condition of non-triviality, Sk 6= Rk .

Now, one might think that this takes care of the notion of D-finiteness for species,

but there is still the problem of describing explicit closure properties in this

setup. Let us just say that this can be done, and instead let us exhibit the

relevant equation of the form Eq. (7.6) for our examples.

3Species which can be written as polynomials of molecular species.

126 A Holonomic Systems Approach to Algebraic Combinatorics

Example. The species of lists is defined

L[U] = {(a1, a2, . . . , an) : ai ∈ U, n ∈ N}.

The species X is the more common notation for E1. Lists satisfy the differ-

ential equation L′ = XL′ + L, thus lists are a D-finite species.

Example. The species of sets E satisfies E′ = E, thus E is a D-finite species.

Furthermore, the species G = E ◦ E2 satisfies

G′ = (E′ ◦ E2) · E′
2 = X · G,

by applying the chain rule. Thus, G is D-finite. In fact, any substitution

of a polynomial species F into E is D-finite since (E ◦ F)′ = F′ · (E ◦ F), and

derivatives of polynomial species are again polynomial species. This is the

case for some of our examples here.

Ideally, the following should hold (but it remains to prove them).

1. If F and G are D-finite species, then so are F + G, and F · G, F′;

2. If G is a polynomial species, (in particular, its cycle index series is a poly-

nomial), then F ◦ G is a D-finite species;

3. If F satisfies an “algebraic equation” of species, including for instance,

equations of the form F = XP(X,F) for polynomial species P, then F is a

D-finite species. (This is the case for many families of trees, for example).

Proving these results should be essentially similar to the function case, however,

particular attention is required when subtraction intervenes. Essentially, we

separate equations into positive and negative parts and manipulate the equations

in such a way as to avoid division. These delicate details should pose no problem,

however they are not treated in this discussion.

One observation that is useful, is that the set of all D-finite species F such that ZF

is a D-finite symmetric series is closed under the above properties and has some

useful applications. One sub-family of this set is treated next. Ideally, we would

like to be able to characterize all species which have D-finite generating functions

Chapter 7. Coefficient extraction and generating functions 127

as D-finite species. To do this propertly we have to invoke generalizations of

derivatives of species.

We now focus our attention on the case of S = E ◦F for polynomial F. Certainly

for all species of this form we have that the cycle index series ZS(p1, p2, . . .)

is a D-finite symmetric series since it is the plethysm of H with a polynomial.

This property yields some interesting applications when other results on D-finite

function are reinterpreted in this context.

The exponential generating series of a species F is the sum F(t) =
∑

n |F[n]|tn/n!,

where |F[n]| is the number of structures of type F on a set of size n. The ordinary

generating function, F̃(t), is the sum F(t) =
∑

n Orb(F[n])tn, where Orb(F[n])

is the number structures of F on a set of size n distinct up to relabelling. Also

recall the notation [xn]f(x) refers to the coefficient of [xn] in the expansion of

f(x). This definition extends likewise to monomials.

This next proposition illustrates how the combinatorial property of D-finiteness

can yield a number of D-finite series. This is useful since in many cases it is

easier, or preferable, to prove D-finiteness on the combinatorial level.

Proposition 7.1. Suppose F is a D-finite species such that ZF is a D-finite

symmetric series and let pn = xn1 + xn2 +

1. The exponential generating function F(t) is D-finite with respect to t.

2. If the cycle index ZF(p1, p2, . . .) is D-finite with respect to the xi variables,

then the ordinary generating function F̃(t) is D-finite with respect to t.

3. For fixed k, the series
∑

n

(
[xk1 · · · xkn]ZF

)
tn is D-finite with respect to t.

Proof. The first two parts are proven using two basic results about cycle index

series:

F(t) = ZF(p1, p2, . . .)|pn=δ1nt
and F̃(t) = ZF(p1, p2, . . .)|pn=tn .

Recall from the discussion on specializations in Section 2.6 that the first preserves

D-finiteness for any n, while a sufficient condition on the second specialization

requires that ZF(p1, p2, . . .) be D-finite with respect to the xi-variables, (when

viewed as a series in C[[x1, x2, . . .]]).

128 A Holonomic Systems Approach to Algebraic Combinatorics

The third item of the proposition is proved by remarking that

∑

n

(
[xk1 · · · xkn]ZF

)
tn = 〈ZF, exp(thk)〉 ,

which is D-finite by Proposition 2.7. ✪

7.1.4 Defining combinatorial families

We offer now a brief combinatorial interpretation of the specialization ZF(p1,

p2, . . .). To illustrate the idea, we consider the impact on Ek. The general theory

is developed as multi-sort species in [2], or as symmetric species by Bergeron [5,

6], and more generally in Pólya theory, see for example, [22].

Note that

ZEk
(p1, p2, . . .) =

∑

λ⊢k

pλ/zλ = hk,

the complete homogeneous symmetric function and consequently

ZE(p1, p2, . . . ,) = H .

The combinatorial interpretation, as prescribed by Pólya Theory, is that this

cycle index series considers all distinct (non-isomorphic) colourings of the ele-

ments, which we explain with the aid of E. In general, ZF counts isomorphism

classes of coloured F-structures. The species E2 over the set {a, b} is the set

with one element {{a, b}}. All possible “colourings” of this set, say by positive

integers, gives S = {{i, j} : i ≤ j}. Observe that colouring a by i, and b by j, is

considered “isomorphic to” colouring a by j and b by i. We encode each {i, j}
in S by the monomial titj . This includes the case when i = j, which we encode

by t2i . Note, if pn = tn1 + tn2 + . . ., we have ZE2(p1, p2, . . .) = h2 =
∑

i≤j titj which

is precisely the sum over all coloured configurations of S.

Using the fact that E ◦ E2 corresponds to the set of pairs, one deduces from the

general notion of cycle index series that ZE◦E2 counts the isomorphism class of

sets of pairs (edges) of elements with colours (vertices). This correspondence is

illustrated in Figure 7.1. These isomorphism classes can be bijectively encoded

as multigraphs on the set of colours.

Chapter 7. Coefficient extraction and generating functions 129

{
{1, 2}, {3, 4},

{5, 6}, {7, 8}
}

Coloured structure

➡
1

2

3

4

8

7

5

6

Diagram

➡

Graph

Figure 7.1 A correspondence between a coloured set partition and a graph

For many applications, like regular graphs, we would like to count colourings

without repetition. There is a notion of series, comparable to the cycle index,

which takes into account this kind of restriction: the asymmetry index series,

denoted ΓF, of a species F as introduced by Labelle [7]. The series Γ behaves

analytically in much the same way as the cycle index series, notably, substitution

(in almost all cases) is reflected by plethysm, etc. This compatibility of Γ with

operations allows one to reduce computations of said Γ to basic species such as

given in the table in Appendix C.

In a fashion similar to the cycle index series, ΓF arises through the enumeration

of colourings of asymmetric F-structures. In this case,

ΓEk
= ek and ΓE = E .

Taking the same species E ◦ E2 as above, and using the asymmetry index se-

ries with a similar argument, we get that ΓE◦E2 = E [e2] encodes simple graphs

without loops on the set of colours precisely as is determined by Eq. (5.4).

This gives us a way to have direct access to monomial encodings of combinato-

rial objects, as symmetric functions expressed in common bases, like the power

sum basis. In fact, one can show that graphs with loops are encoded by E [h2],

and graphs with multiple edges, but no loops are given by H[e2]. Appendix C

presents some series in the power sum basis that can be composed to deter-

mine the encodings of different combinatorial structure. In the next section we

consider sets of sets.

130 A Holonomic Systems Approach to Algebraic Combinatorics

7.1.5 Set Covers

Using this framework we can examine other species of structures built up from

smaller objects. These species will be “D-finite” and both ZF and ΓF will give

rise to interesting combinatorial objects. To begin we treat sets of finite sets.

Definition 7.3 k-cover of a set. A collection of sets B = {B1, . . . , Bk} cov-

ers [n] = {1, 2, . . . , n} if
⋃k
i=1Bi = [n]. A cover is restrictive if all of the Bi

are distinct. Here4, a k-cover of [n] is a cover in which any given element of [n]

occurs in exactly k subsets.

One can deduce with combinatorial reasoning that the number of distinct covers

for a set of n elements is

1

2

n∑

k=0

(−1)k
(
n

k

)
22n−k.

Devitt and Jackson [24] give a generating function for the number of k-covers

of [n] by r subsets, a notion introduced in [18]. Further, they prove that the

number of arithmetic operations required to actually calculate the number of

k-covers of an n set by their method is bounded by cnk log n. Results for fixed

k, specifically k = 2, 3 were treated in [18] and [4] respectively.

We can derive direct enumeration results in a similar manner using hammond.

A j-set is a set of cardinality j. Remark that a k-regular graph on n vertices

is a restrictive k-cover of [n] into 2-sets. In general, calculating the generating

function for restrictive k-covers of [n] into j-sets can be expressed as
〈

ΓE◦Ej
(p1, p2, . . .),

∑

n

hnk t
n

〉
=

〈
E [ej],

∑

n

hnk t
n

〉
.

To determine k-covers with mixed-cardinality sets, say both i and j, we calculate〈
ΓE◦(Ei+Ej)(p1, p2, . . .),

∑
n h

n
k t
n
〉

= 〈E [ei + ej],
∑

n h
n
k t
n〉.

This yields the following simple consequence of Theorem 7.1.

4Some sources use the term k-cover to refer to the covers with exactly k subsets.

Chapter 7. Coefficient extraction and generating functions 131

Corollary 7.2. Let S be a finite set of integers. For fixed n, the generating

function for k-covers of sets by sets with cardinality an integer from S is D-finite.

For example, we express the problem of counting distinct restrictive 2-covers

of a set of cardinality n by sets of cardinality less than 5 as a scalar product.

Denote the generating function of such set covers, by S(t). We have,

S(t) =

〈
E [e1 + e2 + e3 + e4],

∑

n

hnk t
n

〉
. (7.7)

This problem is perfectly suited to hammond. We can determine this differential

equation, and the initial terms of the counting sequence:

1, 0, 1, 8, 80, 1037, 17200, 350682, 8544641, 243758420, 8010360039.

Cycle covers

We modify this notion slightly to consider another related problem, well suited

to this paradigm. Define a restrictive cycle cover as a covering of [n] by distinct

cycles. Again, it is k-regular if every element occurs in exactly k cycles. A

3-regular cycle cover of [5], for example, is {(135)(2453)(14)(1254)(23)}. Notice

that this is distinct from the cover {(153)(2534)(14)(1542)(23)}.

Remark, when k = 1 the total number of 1-regular cycle covers is simply the

number of permutations. In the case of a restrictive cycle cover, this limits the

size of each cycle in the permutation. For example, the number of permutations

in which each cycle is of length less than 3 is
〈

ΓE◦(C1+C2+C3)(p1, p1, . . .),
∑

n

hn1 t
n

〉
=
〈
E [p1 + p2

2/2 + p3
1/3], exp(p1t)

〉
.

This is counted by the sequence

1, 1, 2, 6, 18, 66, 276, 1212, 5916, 31068, 171576, 1014696.

7.1.6 Parameterized solutions

Capitalizing on the symbolic nature of the algorithms, we can add additional

formal variables to determine solutions of parameterized problems, or, rather,

problems with “weighted” parameters.

132 A Holonomic Systems Approach to Algebraic Combinatorics

For example, we can use parameters to describe objects which are, in some sense,

between two objects. For example, E [e2] encodes simple graphs whereas E [h2]

encodes graphs with loops. The series E [ah2 +(1−a)e2] uses a variable a, which

when between 0 and 1 gives a continuous interpolation from the series encoding

simple graphs to the index series encoding graphs allowing loops. We can use

the scalar product algorithm to determine the differential equation satisfied by

two-regular graphs with this extra parameter governing the “simplicity” of the

graph. That is, when the parameter is set to 1 we have count graphs with loops.

When it is set to 0 we have the counting sequence for graphs without loops. For

other values, in particular for values between 0 and 1, this can be viewed as a

random variable, though an explicit combinatorial description is less clear.

The function

Ga(t) =
〈
E [ah2 + (1 − a)e2] ,

∑
hn2 t

n
〉

satisfies the differential equation

(
−2 a− t2 + 2 at

)
Ga (t) + (−2 t+ 2)

d

dt
Ga (t) = 0

(determined by scalar de or hammond), has solution

Ga(t) =
e(−1/4 t+a−1/2)t

√
t− 1

.

The initial terms in the counting sequence are

1, a, a2, 1 + a3, 4 a + a4 + 3, 10 a2 + 15 a+ a5 + 12.

7.2 Generalized involutions and regular tableaux

Another family of combinatorial objects whose generating function can be re-

solved with this method is a certain class of Young tableaux, namely k-uniform

Young tableaux. A Young tableaux is a Young diagram with the entries of the

array filled with positive integers. A standard Young tableaux of shape λ ⊢ n

satisfies the condition that the integers from 1 to n fill the boxes in a manner

which is strictly increasing from top to bottom and weakly increasing along the

rows from left to right.

Chapter 7. Coefficient extraction and generating functions 133

1 1 1 2 3

2 2 3 3 4

4 4 5

5 5

Figure 7.2 A 3-uniform Young tableau

Standard Young tableaux are in direct correspondence with many different com-

binatorial objects. For example, Stanley [75] has studied the link between stan-

dard tableaux and paths in Young’s lattice, the lattice of partitions ordered by

inclusion of diagrams. This link was then generalized to tableaux with repeated

entries (see [35]). Gessel remarks that such paths have arisen in the work of

Sundaram and the combinatorics of representations of symplectic groups [78].

The weight of a tableau is µ = (µ1, . . . , µk) where µ1 is the number of 1’s, µ2 is

the number of 2’s, etc. in the tableau entries. Here we consider Young tableaux

where each entry appears k times that is, tableaux with weight µ = (k, k, · · · , k),
which are column strictly increasing and row weakly increasing. Such a tableau

will be referred to here as k-uniform. Figure 7.2 illustrates a 3-uniform tableau.

Two observations from [52] are essential. First, [xµ1
1 · · · xµk

k]sλ is the number

of (column strictly increasing, row weakly increasing) tableaux with weight µ.

Secondly,

∑

λ

sλ = H [e1 + e2] = exp

(
∑

i

p2
i /2i +

∑

i odd

pi/i

)
,

which is D-finite.

Define y
(k)
n to be the number of k-uniform tableaux of size kn, and let Yk be the

generating series of these numbers:

Yk(t) =
∑

n

y(k)
n tk.

The previous two observations imply

Yk(t) =

〈
exp

(
k∑

i=1

p2
i /2i+

k∑

i odd

pi/i

)
,
∑

n

hkntn

〉
.

134 A Holonomic Systems Approach to Algebraic Combinatorics

This problem is well suited to our methods since again we treat an exponential

of a polynomial in the pi’s.

Calculating the equations for k = 1, 2, 3, 4 is rapid with either Algorithm 1 or

Algorithm 2. The case k = 5 exhausted the memory on the machine after

two weeks of enthusiastic calculation. The resulting differential equations are

listed in Table A.3. For k = 1, 2 these results accord with known results, for

example, [39, 75], and are the entries A000085 and A000985 respectively in the

Sloane encyclopedia of integer sequences [72]. The first few values of y
(k)
n are

summarized in Appendix B. For k = 3, 4 these appear to be new.

7.3 Orthogonal polynomials

Next we consider some problems that are not of “regular structure”-format.

Orthogonal polynomials can be described as solutions of differential equations,

making them ideal candidates for manipulation in the context of holonomy.

The associated Laguerre polynomials, L
(k)
n (x) satisfy a differential equation, and

many recurrence properties, see Andrews [1] as a reference. When these polyno-

mials are evaluated for certain choices of x the value L
(k)
n (x) has a combinatorial

description.

A sequence of integers from 1 to n is said to have increasing support if it con-

tains 1, 2, . . . , n as a (not necessarily consecutive) subsequence. Thus, 1213 has

increasing support while 1312 does not. Goulden and Jackson [36] observed

that the number Iλ(n) of sequences a1, a2, a3, . . . with increasing support whose

elements form the multiset {a1, a2, a3, . . .} = {1λ1+12λ2+1 · · ·nλn+1} can be ex-

pressed as a scalar product,

Iλ(n) =

〈
hλ, (1 − p1)

−(n+1) exp

(
∑

k

(−1)k
pk

k(1 − p1)k

)〉
. (7.8)

Gessel deduces from the expression (7.8) that Iλ(n) = n!L
(k)
n (1) when λ = 1k.

That is, he counts the number of sequences with increasing support of the multi-

set

{12, . . . , k2, (k + 1), . . . , n}.

Chapter 7. Coefficient extraction and generating functions 135

It is possible to describe the generating function of L
(k)
n (1) using generating

functions of this expression.

Proposition 7.3. The generating function of the associated Laguerre poly-

nomials evaluated at 1, L(s, t) :=
∑

n,k L
(k)
n (1)sktn is D-finite in the s and t

variables.

Proof. The generating series can be expressed as a scalar product:

L(s, t) =

〈
∑

n

hn1s
n/n!,

∑

n

tn(1 − p1)
−(n+1) exp

(
∑

k

(−1)k
pk

k(1 − p1)k

)〉

=

〈
exp(p1s), exp

(−p1x

1 − p1

)
1

1 − p1 − t

〉
.

Remark that both input functions are clearly D-finite and involve only p1, thus

by Theorem 2.7, the function L(s, t) is D-finite with respect to t and s. ✪

This calculation is an ideal candidate for scalar de2. We can also calculate

results for other sequences as well. Consider λ = 1r2s. The generating function

for this is given by:

I1r2s(n) =

〈
exp (t(h1 + h2)) , (1 − p1)

−(n+1) exp

(−p1

1 − p1
+

p2

2(1 − p1)2

)〉
.

(7.9)

This is also D-finite, however, more computationally complex.

We can take a different approach to determine some other interesting facts. We

calculate the diagonal of L(s, t) which is also D-finite. This calculation can profit

from an explicit description of L
(n)
n . Set

l(n) := L(n)
n =

n∑

j=0

1

j!

(
2n

n− j

)
(−x)j .

The coefficient of the diagonal
∑

n l(n)sntn, be determined using the summation

methods described in the Ore Algebra chapter. We determine automatically a

recurrence satisfied by the l(n) is

nl(n+ 2) + (−n3 − 7n2 − 9n− 2)l(n + 1) + 2(2n + 1)(n + 1)3l(n) = 0

136 A Holonomic Systems Approach to Algebraic Combinatorics

The initial terms of the sequence are:

1, 1, 5, 47, 641, 11389, 248749, 6439075.

7.4 Applications of MacMahon symmetric functions

This section details some combinatorial problems that can be expressed as a

scalar product of two MacMahon symmetric functions, as described in Sec-

tion 2.8. These examples all use D-finite MacMahon symmetric functions, and

hence the algorithms of the previous part apply.

7.4.1 Latin rectangles

Latin squares, and their cousin, Latin rectangles, are classic combinatorial ob-

jects, originally introduced by Euler. MacMahon symmetric functions can be

used to formulate generating functions of Latin rectangles, and to determine

enumerative and asymptotic results.

Definition 7.4 Latin rectangle. A k × n Latin rectangle is a k × n array of

integers such that each row is a permutation of [n] but no element appears twice

in the same column.

For example, a 2 × n Latin rectangle is a derangement. Gessel sets up different

combinatorial models of Latin rectangles in [31, 32, 33]. Here, we present the

2 × n case to illustrate the general argument.

One can show that the number of 2 × n Latin rectangles, r2(n), is equal to

r2(n) = [x1, · · · , xn, y1, · · · , yn]



∑

i6=j

xiyj



n

.

In general [31] we have that k × n are counted by
〈
hn

(1k)
, en

(1k)

〉
. We have that

en(1,1) =
(∑

i6=j xiyj

)n
and extracting x1, · · · , xn, y1, · · · , yn is thus equivalent

to the scalar product
〈
hn(1,1), e

n
(1,1)

〉
. Gessel [33] illustrates how to develop an

asymptotic expression for r2(n) as n goes towards infinity using the largest terms

Chapter 7. Coefficient extraction and generating functions 137

in the development of the power. However, this problem is also well suited to a

holonomic systems approach using generating series. We convert the expressions

to the power bases, with the aid of the conversion formulas from the appendices

of [25]. More specifically, using µ(0̂, σ), the Möbius functions for generalization

of Young’s lattice to bipartite partitions we convert h(1k) and e(1k) to the power

basis with the following formulas:

hπ =
∑

π≤λ

∣∣µ(0̂, σ)
∣∣ pσ and eπ =

∑

σ≤π

µ(0̂, σ)pσ . (7.10)

The generating series of 2 × n Latin squares is the generating series

R2(t) =
∑

n

rn(n)tn

=

〈
∑

n

(
p(1,0)(0,1) + p(1,1)

)n
tn,
∑

n

(
p(1,0)(0,1) − p(1,1)

)n
〉

=

〈
1

1 −
(
p(1,0)(0,1) + p(1,1)

)
t
,

1

1 −
(
p(1,0)(0,1) + p(1,1)

)
t

〉
.

This calculation is well suited for Algorithm 4 modified for the scalar product

of MacMahon symmetric functions.

7.4.2 Equivalence classes of words

A second example using MacMahon symmetric functions, which is amenable to

these techniques is the determination of equivalence classes of words that satisfy

some commutation relations. Let m be monoid freely generated by a1, a2, . . . , an,

b1, b2, . . . , bn subject to the commutation relation aibi = biai. Classic theory of

Cartier-Foata implies that the number of equivalence classes of words in the

monoid with αi occurrences of ai and βi occurrences of bi is equal to the coeffi-

cient:

[uαvβ] (1 − x1 − x2 − . . . − xn − y1 − y2 − . . .− yn + x1y1 + . . . xnyn)
−1 .

Since 1− x1 − x2 − . . .− xn − y1 − y2 − . . .− yn + x1y1 + . . . xnyn = 1− p(0,1) −
p(1,0) + p(1,1), this is equivalent to determining the scalar product

〈
hπ,
(
1 − p(0,1) − p(1,0) + p(1,1)

)−1
〉
.

138 A Holonomic Systems Approach to Algebraic Combinatorics

Thus, for families of π we can determine generating functions of these words.

Consider for example the sequence of bi-partitions (πn)n = ((1, 1)n)n. In this

case we have
∑

n h
n
(1,1)t

n/n! = exp
(
p(1,0)(0,1) + p(1,1)

)
.

Conclusion

Many enumerative problems of combinatorics can be phrased as a scalar product

calculation. The main contribution of this thesis is the presentation of a gen-

eral framework from which we can derive a collection of new algorithms which

compute a differential system of equations satisfied by scalar products. Con-

ceptually these algorithms take their inspiration from effective integration of

D-finite functions, and they rely on properties of holonomic systems for their

proof of correctness and termination.

Equally important is the revelation that a number of diverse problems and fam-

ilies of problems have solutions which reduce to a scalar product calculation, all

amenable to the same algorithm, and an automatic solution. Our algorithms

can be tailored to different kinds of symmetric functions, such as the MacMahon

symmetric function or various q-parameterized problems. Thus, we can include

amongst our examples several classical problems dating to MacMahon, such as

latin rectangle enumeration.

We thus contribute to the growing body of automatic combinatorics, which lies

at the confluence of combinatorics and symbolic algebra, and whose purpose is

to yield automatic results, for example in enumeration, asymptotics, or identity

proving. Here we offer techniques to automatically calculate, directly from a

combinatorial description, differential operators for sub-families of objects sub-

ject to certain regularity constraints.

All of the algorithms described are implemented in Maple and are available for

public distribution. They manipulate differential equations using Gröbner basis

calculations in a Weyl Algebra setting.

Several directions for future work have become apparent in the course of this

study.

140 A Holonomic Systems Approach to Algebraic Combinatorics

Future applications

Several enumeration problems, untreated here, fall into our general setup:

Systems of differential equations

characterizing the parameters of

the problem

➠
A system of differential equations

characterizing the solution of the

problem

These span a large spectrum from the study of series arising in the enumeration

of bounded height tableaux, to examples coming from the study of free Lie

algebras.

Future research

The algorithms presented here determine generators for a D-finite sub-ideal of

the annihilators of a series in some operator ring. A solution determining gener-

ators for the whole annihilating ideal would have wide ranging implications in-

cluding the problem of effective integration and determination of solution spaces

of certain differential equations. The general problem is stated as follows.

For some left Ax,t-ideal I and some right Ax,t − ideal J determine

the generators of (I + J) ∩ Ax.

An approach consisting of a different filtration using the weighted bases of [69]

seems promising.

The asymptotic analysis of differential equations is yet another interesting direc-

tion to follow. In particular, a followup project could consist of meshing existing

asymptotic tools with the output of our algorithms here.

Our work on ∂-finite preserving q-specializations represents just a glimpse of a

potentially rich study. It should be possible to characterize symmetric series

which yield ∂-finite q-series for certain specializations.

Finally, we outline a potential definition of D-finite species which could be a

useful starting point for characterizing combinatorial structures with D-finite

generating series. In particular an analysis of combinatorial equations defining

Chapter 7. Coefficient extraction and generating functions 141

tree-like structures is in order. Such a study could also be useful for treating some

longstanding open problems, such as the D-finiteness of generating functions of

k-regular graphs with a specified set of forbidden subgraphs. Wormald [84]

determined that the generating function of 3-regular graphs without triangles

is D-finite. Gessel notes [34] that determining the D-finiteness of generating

functions for permutations with forbidden subsequences is a difficult problem.

142

Appendix A

Differential equations

The data in the section are presented in the following format. The differential

equation satisfied by the exponential generating series f(t) =
∑
fn

tn

n! of an

object parameterized by k is

φ0f(t) + φ1f
′(t) + φ2f

′′(t) = 0.

φ0 −t2

k = 2 φ1 −2t+ 2

φ2 0

φ0 t3(2t2 + t4 − 2)2

k = 3 φ1 −3(t10 + 6t8 + 3t6 − 6t4 − 26t2 + 8)

φ2 −9t3(2t2 + t4 − 2)

φ0 −t4(t5 + 2t4 + 2t2 + 8t− 4)2

k = 4 φ1 −4(t13 + 4t12 − 16t10 − 10t9 − 36t8 − 220t7 − 348t6

−48t5 + 200t4 − 336t3 − 240t2 + 416t− 96)

φ2 16t2(t− 1)2(t5 + 2t4 + 2t2 + 8t− 4)(t+ 2)2

Table A.1 Differential equations: k-regular (simple) graphs

k = 1 φ0 t

φ1 −1

k = 2 φ0

(
t2 − 2 t

)

φ1 (−2 t+ 2)

k = 3 φ0

(
t11 − 2 t9 + 44 t3 + 16 t5 − 24 t

)

φ1

(
−3 t10 − 3 t6 − 6 t8 − 54 t2 + 24

)

φ2

(
9 t7 − 18 t3

)

Table A.2 Differential equations: k-regular multi-graphs

144 A Holonomic Systems Approach to Algebraic Combinatorics

φ0 −(t− 1)

k = 1 φ1 1

φ2 0

φ0 t2(t− 2)

k = 2 φ1 −2(t− 1)2

φ2 0

φ0 (t11+t10−6t9−4t8+11t7−15t6+8t5−2t3+12t2−24t−24)

k = 3 φ1 −3t(t10 − 2t8 + 2t6 − 6t5 + 8t4 + 2t3 + 8t2 + 16t− 8)

φ2 9t3(−t2 − 2 + t+ t4)

φ0 δ(t)

k = 4 φ1 −4γ(t)

φ2 16t2(t− 2)(t+ 1)2β(t)

φ3 −64t4(t− 2)2(t+ 1)4α(t)

Table A.3 Differential equations: Tableaux of weight kn, k = 1..4

(note: α(t), β(t), γ(t), δ(t) are given in the next table)

α(t) t14 − t13 − 5t12 − 7t11 + 6t10 + 35t9 + 39t7 − 50t6 − 162t5 − 92t4

+228t3 + 424t2 + 248t + 48

β(t) t29 − 3t28 − 16t27 + 24t26 + 147t25 + 14t24 − 770t23 − 666t22 + 1416t21

+3567t20 − 916t19 − 16598t18 + 17766t17 + 40678t16 − 102556t15 − 53272t14

+390656t13 + 364080t12 − 707936t11 − 1406336t10 − 552544t9

+1397664t8 + 2020864t7 + 176256t6 − 916864t5 + 304896t4 + 1283328t3

+877056t2 + 253440t + 27648

γ(t) t28 − t27 − 14t26 − 20t25 + 111t24 + 278t23 − 196t22 − 1216t21 − 1384t20 + 2765t19

+3170t18 − 3400t17 + 12140t16 + 15588t15 − 70280t14 − 108946t13 + 121796t12

+349056t11 + 116992t10 − 481704t9 − 706320t8 + 3040t7 + 581184t6 + 158688t5

−297408t4 − 173952t3 + 22272t2 + 35712t + 6912

δ(t) 2t21 − 3t20 − 17t19 − 2t18 + 74t17 + 105t16 − 108t15 − 172t14 − 252t13 + 432t12

−667t11 + 1500t10 + 7336t9 − 3772t8 − 23056t7 − 20584t6 + 15504t5 + 38160t4

+17904t3 − 4512t2 − 5568t − 1152

Table A.4 Polynomials related to the differential equation satisfied by Y4(t)

Appendix B

Counting sequences

The sequences here were all generated using the differential equations in the

previous appendix. The EIS number accompanying the sequences refers to its

entry in the Sloane encyclopedia of integer sequences [72].

k EIS

2 A001205

1, 0, 0, 1, 3, 12, 70, 465, 3507, 30016, 286884, 3026655,

34944085, 438263364, 5933502822, 86248951243, 1339751921865,

22148051088480, 388246725873208, 7193423109763089

3 A002829 1, 0, 0, 0, 1, 0, 70, 19355, 0, 11188082, 0, 11555272575, 0

4 A005815
1, 0, 0, 0, 0, 1, 15, 465, 19355, 1024380, 66462606, 5188453830,

480413921130, 52113376310985, 6551246596501035

Table B.1 Counting sequence: k-regular graphs

k EIS

1 1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, 0, 10395, 0, 135135, 0

2 A002137
1, 0, 1, 1, 6, 22, 130, 822, 6202, 52552, 499194, 5238370, 60222844,

752587764, 10157945044, 147267180508

3
1, 0, 1, 0, 10, 0, 760, 0, 190050, 0, 103050570, 0, 102359800620, 0,

168076482974400,

4

1, 0, 1, 1, 15, 158, 3355, 93708, 3535448, 170816680,

10307577384 759439940230, 67095584693434, 7001532238614324,

851997581131397870, 119582892039683711842

Table B.2 Counting sequence: k-regular multi-graphs

146 A Holonomic Systems Approach to Algebraic Combinatorics

k EIS

1
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504,

2390480, 10349536

2
1, 0, 1, 4, 18, 112, 820, 6912, 66178, 708256, 8372754, 108306280,

1521077404, 23041655136, 374385141832, 6493515450688

3

1, 0, 0, 1, 10, 112, 1760, 35150, 848932, 24243520,

805036704, 30649435140, 1322299270600, 64008728200384,

3447361661136640, 205070807479444088

4

1, 0, 0, 0, 1, 26, 820, 35150, 1944530, 133948836, 11234051976,

1127512146540, 133475706272700, 18406586045919060,

2925154024273348296, 530686776655470875076

Table B.3 Counting sequence: k-covers by sets of cardinality one and two

k EIS

1 A000085 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504

2 A000985 1, 1, 3, 11, 56, 348, 2578, 22054, 213798, 2313638, 27627434

3 1, 1, 4, 23, 214, 2698, 44288, 902962, 22262244

4 1, 1, 5, 42, 641, 14751, 478711, 20758650, 1158207312

Table B.4 Counting sequence: Tableaux of weight kn

Appendix C

Some counting series of small species

Object Series Value Object Series Value

2-sets ΓE2
e2 = p2

1/2 − p2/2 2-multisets ZE2
h2 = p2

1/2 + p2/2

3-sets ΓE3
e3 3-multisets ZE3

h3

4-sets ΓE4
e4 4-multisets ZE4

h4

k-sets ΓEk
ek k-multisets ZEk

hk

3-cycles ZC3
p3
1/3 + p3/3 triples ZX3 p3

1

4-cycles ZC4
p4
1/4 + p2

2/12 + p4/12 4-arrays ZX4 p4
1

5-cycles ZC5
p5
1/5 + p5/30 5-arrays ZX5 p5

1

k-cycles ZCk

∑
cd=k φ(d)pc

d/k! k-arrays ZXk pk
i

Table C.1 Cycle index series of small species

148 A Holonomic Systems Approach to Algebraic Combinatorics

Appendix D

The ScalarProduct Maple Package

D.1 Introduction and help pages

This chapter is a quick guide to the Maple package which provides the functions
described in this thesis. It is available at http://algo.inria.fr/mishna.

Requirements

This package relies on a few other packages. The basic functionality does not
require SF of Stembridge, however, it is useful for describing functions. The
Ore Algebra and Groebner packages are required, however. Groebner is part of
Maple in versions 7 and higher. Both are part of the algolib library. Download
the code and save it, for example as SP.mpl. To use the file The file can then
be read into your Maple session, for Maple versions 7 and higher. To access the
commands, execute the following commands. > read ("SP.mpl"):

From here, you can either execute
> with(ScalarProduct):

and have access to all of the functions; Or access them individually, for example,
> ScalarProduct[itensor_de](exp(pn/n), exp(pn/n), f);

scalar de - Determines a differential equation satisfied by the scalar product of
two symmetric functions

Calling Sequence

scalar_de(F, G, vlist, fname, adj, adj_consts)

scalar_de(Fsys, Gsys, vlist, fname, adj, adj_conts)

Parameters

F,G - D-finite symmetric functions

150 A Holonomic Systems Approach to Algebraic Combinatorics

Fsys,Gsys- D-finite descriptions of functions

vlist - a list of variables that survive the scalar product. The end result is
a function in these variables,

fname - a name to be used for the output system. If this is set to ’TRUE’,
the function returns its result in operator notation.

adj - (optional) adjunction to the scalar product. The default is the sym-
metric adjoint which sends pn to n d

dpn
. Any named constants it contains

must be passed in adj consts.

Description

• scalar determines a system of differential equations satisfied by 〈F,G〉, the
scalar product (of symmetric functions) of F and G.

• Symbolic scalar products can be calculated by using the variables pn where
n is any symbol.

• For the time being, only G can be a function of the vlist variables. A
version of the algorithm in the case where both are functions of the vlist
variables is known, and is in the implementation phase.

Examples

the calculation for the 2-regular graph generating series

>scalar_de(exp(-1/2*p2+1/2*p1^2-1/4*p2^2),

exp((p2/2+p1^2)*t),[t],f(t));

[t2f(t) + (2t− 2)
d

dt
f(t)]

hammond - Determines a differential equation satisfied by the scalar product
of a function and

∑
(hnk t

n)

Calling Sequence

hammond(F, kmax, fname)

Parameters

F - A D-finite function using a finite number of pn variables

Appendix D. The ScalarProduct Maple Package 151

kmax - the largest n that F contains

fname - a name and variable for the output function.

Description

• hammond computes the differential equation satisfied by the Hammond
Series or Gamma series of F . [36, 37]. This is equivalent to the scalar
product 〈F,∑n h

n
k t
n〉.

• This procedure uses special properties of (
∑

n h
n
k t
n) to offer a potentially

more efficient algorithm.

Examples

A second way to calculate the differential equation satisfied

by the generating series of 2-regular graphs

#

>hammond(exp(-1/2*p2+1/2*p1^2-1/4*p2^2), 2, f(t));

[t2f(t) + (2t− 2)
d

dt
f(t)]

itensor de - Determines a differential equation satisfied by the Kronecker prod-
uct of two symmetric functions

Calling Sequence

itensor_de(F, G, fname, adj, adj_const)

itensor_de(F, Gsys, fname, adj, adj_const)

Parameters

F,G - D-finite symmetric functions

Gsys - D-finite descriptions of the function G

fname - a name to be used for the output system. If this is set to ’TRUE’,
the function returns its result in operator notation.

adj - (optional) adjunction to the scalar product. The default is the sym-
metric adjoint which sends pn to n d

pn
.

adj const - (optional) named constants which appear in adj.

152 A Holonomic Systems Approach to Algebraic Combinatorics

Description

• This function determines a differential equation satisfied by the Kronecker
product of symmetric functions. This product has many monikers, in-
cluding the cup product, the internal product and the tensor product of
symmetric functions.

• This product arises in the study of the tensor product of characters of
representations of the symmetric group.

• The result can be output as a differential operator if an optional TRUE
flag is added at the end of the input. The advantage of this is that the
output can then be directly used as input to itensor de or scalar de.

• For the time being, F must be given as a function, not as a system. This
should be corrected in a future version.

Examples

> itensor_de(exp(pn/n),exp(pn/n), f);dsolve([op(%),f(0)=1], f(pn));

[f(pn) − n
d

dpn
f(pn)]

f(pn) = exp(pn/n)

Auxiliary functions

• define_system(F, vars, fon) returns the D-finite description of F, a
function of the variables vars, that is a system of differential equations
that it satisfies, which contains sufficient information to prove that the
input function is D-finite. The output is expressed as a function using fon.

• truncate(f, k) sets pn = 0 in f for n > k.

• diffeq_to_op(sys, f) converts a differential system (a set or list) for
the function f to operator notation.

• seriesH(f, k) (requires SF) the symmetric function plethysm of the se-
ries H =

∑
hnt

n and f , (H[f]), truncated at k. (as in truncate above)

• seriesE(f, k) (requires SF) the symmetric function plethysm of the se-
ries E =

∑
ent

n and f , (E[f]), truncated at k.

• hammond_series(k) the series
∑
h[λ]t|λ| truncated at k.

Appendix D. The ScalarProduct Maple Package 153

D.2 Sample Session

Here we illstrate some of the problems that were encountered in the earlier
sections and how their solution can be determined using an implementaion of
the algorithms. First we read in the code.

read("maple/lib/src/SF.mpl"):

read("maple/lib/src/SP.mpl");

with(ScalarProduct):

Graph enumeration

Given a differential equation, we can either try to solve it, or do a series expansion
on the initial term. We can use tools in gfun to develop the first few terms of
different counting sequences.

detoseq:= proc(de, f, N)

local P;

P:=gfun[rectoproc](

gfun[diffeqtorec]({op(de), op(0,f)(0)=1}, f, a(n)),

a(n));

seq(P(i)*i!, i=0..N);

end:

> graph:=n->seriesE(e2, n):

> graph(3); # some examples

exp
(
−1/2p2 + 1/2p12 − 1/4p22 + 1/6p32

)

>graph3:=hammond(graph(3), 3, f(t));

(−t11 − 4t3 − 4t9 + 8t5)f(t)

+ (18t8 − 18t4 + 3t10 − 78t2 + 24 + 9t6)
d

dt
f(t)

+ (−18t3 + 18t5 + 9t7)
d2

dt2
f(t)

>detoseq(graph3,f(t), 15);

1, 0, 0, 0, 1, 0, 70, 0, 19355, 0, 11180820, 0, 11555272575, 0, 19506631814670, 0

The following example corresponds to the problem in Section 7.1.6.

154 A Holonomic Systems Approach to Algebraic Combinatorics

>sgraph:= n->seriesE(alpha*e2 + (1-alpha)*h2, n):

>sgraph3:=hammond(sgraph(3),3, f(t), {alpha});

(
60 t5α2 − 12 t7α2 + 20 t7α− 8 t9α− 8 t7α3 − 24 tα2 − 24 t− 20 t5 − 72 t3α

+ 4 t9 + 52 t3 − 24 t3α2 + 48 tα − t11 − 16 t5α− 16 t5α4 + 40 t3α3
)
f (t)

+
(
−18 t3 + 9 t7 + 18 t5α

) d2

dt2
f (t) +

(
− 54 t2 + 36 t6α2 − 12 t6α− 18 t4α+ 24 + 3 t10−

24 t2α+ 24 t8α− 15 t6 − 6 t8
) d
dt
f (t)

>detoseq(sgraph3, f(t), 5);

1, 0, 1 − 2α+ α2, 0, 30α2 − 16α3 − 24α + 8 + 3α4, 0

Kronecker product

This next example illustrates how to calculate
∑
sλ ∗

∑
sλ. See the discussion

in Section 6.3.3. First we calculate the even entries.
>itensor_de(exp(pn^2/2/n),exp(pn^2/2/n), f);

[−pn f (pn) +
(
1 − pn2

) d

dpn
f (pn)]

>dsolve([op(%), f(0)=1], f(pn));

f (pn) =
i√

pn − 1
√

pn + 1

The odd elements are calculated:
>itensor_de(exp(pn^2/2/n+pn/n),exp(pn^2/2/n+pn/n), f);

[
(
1 + pn n− pn2n+ pn

)
f (pn) +

(
−pn3n+ pn2n+ pn n− n

) d

dpn
f (pn)]

>simplify(dsolve([op(%),f(0)=1], f(pn)),exp);

ie
− pn

n(pn−1)
1√

pn + 1

1√
pn − 1

Together these give Proposition 6.2.

References

[1] Andrews, G. E., Askey, R., and Roy, R. Special functions, vol. 71 of
Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge, 1999.

[2] Auger, P., Labelle, G., and Leroux, P. Combinatorial addition for-
mulas and applications. Adv. in Appl. Math. 28, 3-4 (2002), 302–342.

[3] Barcucci, E., Del Lungo, A., Pergola, E., and Pinzani, R. ECO:
a methodology for the enumeration of combinatorial objects. J. Differ.
Equations Appl. 5, 4-5 (1999), 435–490.

[4] Bender, E. A. Partitions of multisets. Discrete Math. 9 (1974), 301–311.

[5] Bergeron, F. Une combinatoire du pléthysme. J. Combin. Theory Ser.
A 46, 2 (1987), 291–305.

[6] Bergeron, F. A combinatorial outlook on symmetric functions. J. Com-
bin. Theory Ser. A 50, 2 (1989), 226–234.

[7] Bergeron, F., Labelle, G., and Leroux, P. Combinatorial species
and tree-like structures. Cambridge University Press, Cambridge, 1998.

[8] Bernštĕın, J. N. Modules over a ring of differential operators. An investi-
gation of the fundamental solutions of equations with constant coefficients.
Funkcional. Anal. i Priložen. 5, 2 (1971), 1–16.

[9] Bernštĕın, J. N. Analytic continuation of generalized functions with
respect to a parameter. Funkcional. Anal. i Priložen. 6, 4 (1972), 26–40.

[10] Borel, A., Ed. Algebraic D-modules. Academic Press Inc., Boston, MA,
1987.

[11] Bourbaki, N. Éléments de mathématique. Algèbre. Chapitres 1 à 3. Her-
mann, Paris, 1970.

[12] Bousquet-Mélou, M., and Petkovšek, M. Walks confined in a quad-
rant are not always D-finite. Theoret. Comput. Sci. 307 (2003), 257–276.

[13] Chyzak, F. Fonctions holonomes en calcul formel. PhD thesis, École
polytechnique, 1998. INRIA, TU 0531. 227 pages.

156

[14] Chyzak, F., Mishna, M., and Salvy, B. Effective D-finite symmetric
functions. In FPSAC’02 (2002). extended abstract.

[15] Chyzak, F., Mishna, M., and Salvy, B. Effective scalar products of
D-finite symmetric series. submitted for publication. Available as preprint
math.CO/0310132, 2003.

[16] Chyzak, F., and Salvy, B. Non-commutative elimination in Ore algebras
proves multivariate identities. J. Symbolic Comput. 26, 2 (1998), 187–227.

[17] Chyzak, F., Salvy, B., and Zimmerman, P. The algolib library for
Maple, including gfun, mgfun, holonomy and ore algebra packages.
Available at: http://algo.inria.fr/software.

[18] Comtet, L. Birecouvrements et birevêtements d’un ensemble fini. Studia
Sci. Math. Hungar. 3 (1968), 137–152.

[19] Comtet, L. Advanced combinatorics, enlarged ed. D. Reidel Publishing
Co., Dordrecht, 1974. The art of finite and infinite expansions.

[20] Coutinho, S. C. A primer of algebraic D-modules. Cambridge University
Press, Cambridge, 1995.

[21] Cox, D., Little, J., and O’Shea, D. Ideals, varieties, and algorithms,
second ed. Undergraduate Texts in Mathematics. Springer-Verlag, New
York, 1997. An introduction to computational algebraic geometry and com-
mutative algebra.

[22] de Bruijn, N. G. Pólya’s theory of counting. In Applied Combinatorial
Mathematics, E. Beckenbach, Ed. John Wiley and Sons, New York, 1964,
pp. 144–184. Chapter 5.

[23] Delest, M. P., and Duchon, P. Exploration de paramètres inconnus
par des Q-grammaires. In SCFA’99, Barcelona (1999).

[24] Devitt, J. S., and Jackson, D. M. The enumeration of covers of a finite
set. J. London Math. Soc. (2) 25, 1 (1982), 1–6.

[25] Doubilet, P. On the foundations of combinatorial theory. VII. Symmet-
ric functions through the theory of distribution and occupancy. Studies in
Appl. Math. 51 (1972), 377–396. Reprinted in “Gian-Carlo Rota in Com-
binatorics”, J. P. Kung Ed., Birkhäuser, (1995), 403–422.

[26] Dutour, I., and Fédou, J.-M. Object grammars and random generation.
Discrete Mathematics and Theoretical Computer Science 2 (1998), 49–63.

[27] Flajolet, P., and Salvy, B. Computer algebra libraries for combinato-
rial structures. J. of Symbolic Computation 20 (1995), 653–671.

157

[28] Flajolet, P., Zimmerman, P., and Van Cutsem, B. A calculus for
the random generation of labelled combinatorial structures. Theoretical
Comput. Sci. 132, 1-2 (1994), 1–35.

[29] Galligo, A. Some algorithmic questions on ideals of differential operators.
In EUROCAL ’85, Vol. 2 (Linz, 1985), vol. 204 of Lecture Notes in Comput.
Sci. Springer, Berlin, 1985, pp. 413–421.

[30] Gessel, I. M. A q-analog of the exponential formula. Discrete Math. 40,
1 (1982), 69–80.

[31] Gessel, I. M. Counting three-line Latin rectangles. In Combinatoire
énumérative (Montreal, Que., 1985/Quebec, Que., 1985), vol. 1234 of Lec-
ture Notes in Math. Springer, Berlin, 1986, pp. 106–111.

[32] Gessel, I. M. Counting Latin rectangles. Bull. Amer. Math. Soc. (N.S.)
16, 1 (1987), 79–82.

[33] Gessel, I. M. Enumerative applications of symmetric functions. In
Proceedings of Séminaire Lotharingien de Combinatoire (1987), vol. B17a.
17pp.

[34] Gessel, I. M. Symmetric functions and P-recursiveness. J. Combin. The-
ory Ser. A 53, 2 (1990), 257–285.

[35] Gessel, I. M. Counting paths in Young’s lattice. J. Statist. Plann. Infer-
ence 34, 1 (1993), 125–134.

[36] Goulden, I. P., and Jackson, D. M. Combinatorial enumeration.
Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons Inc.,
New York, 1983.

[37] Goulden, I. P., Jackson, D. M., and Reilly, J. W. The Hammond
series of a symmetric function and its application to P -recursiveness. SIAM
J. Algebraic Discrete Methods 4, 2 (1983), 179–193.

[38] Goupil, A., and Schaeffer, G. Factoring n-cycles and counting maps
of given genus. European J. Combin. 19, 7 (1998), 819–834.

[39] Gupta, H. Enumeration of symmetric matrices. Duke Math. J. 35 (1968),
653–659.

[40] Hall, P. The algebra of partitions. In Proceedings of the 4th Canadian
Math. Congress (1959), pp. 147–159.

[41] Hammond, J. On the use of certain differtial operators in the theory of
equations. Proc. London Math. Soc. 14 (1883), 119–129.

158

[42] Harris, Jr., W. A., and Sibuya, Y. The reciprocals of solutions of
linear ordinary differential equations. Adv. in Math. 58, 2 (1985), 119–132.

[43] Jing, N. Vertex operators and generalized symmetric functions. In Pro-
ceedings of the Conference on Quantum Topology (Manhattan, KS, 1993)
(River Edge, NJ, 1994), World Sci. Publishing, pp. 111–126.

[44] Joyal, A. Une théorie combinatoire des séries formelles. Adv. in Math.
42, 1 (1981), 1–82.

[45] Klazar, M. Non-p-recursiveness of numbers of matchings or linear chord
diagrams with many crossings. Adv. Appl. Math 30, 1 (2003), 126–136.

[46] Lehrstuhl Mathematik II. SYMMETRICA–A collection of routines in c for
computations in representation theory.
Available at: http://www.mathe2.uni-bayreuth.de/axel/symneu engl.html.

[47] Leykin, A., and Tsai, H. D-Module package for Macaulay2.
Available at: http://www.math.uiuc.edu/Macaulay2.

[48] Lipshitz, L. The diagonal of a D-finite power series is D-finite. J. Algebra
113, 2 (1988), 373–378.

[49] Lipshitz, L. D-finite power series. J. Algebra 122, 2 (1989), 353–373.

[50] Littlewood, D. E. The kronecker product of symmetric group represen-
tations. J. London Math Soc. 31 (1956), 89–93.

[51] Macdonald, I. G. Schur functions: theme and variations. In Séminaire
Lotharingien de Combinatoire (Saint-Nabor, 1992), vol. 498 of Publ. Inst.
Rech. Math. Av. Univ. Louis Pasteur, Strasbourg, 1992, pp. 5–39.

[52] Macdonald, I. G. Symmetric functions and Hall polynomials, second ed.
The Clarendon Press Oxford University Press, New York, 1995.

[53] MacMahon, P. A. Combinatory analysis. Two volumes (bound as one).
Chelsea Publishing Co., New York, 1960.

[54] MacMahon, P. A. Collected papers. Vol. I. MIT Press, Cambridge,
Mass., 1978. Combinatorics, Mathematicians of Our Time, Edited and
with a preface by George E. Andrews.

[55] MacMahon, P. A. Collected papers. Vol. II, vol. 24 of Mathematicians of
Our Time. MIT Press, Cambridge, MA, 1986. Number theory, invariants
and applications, Edited and with a preface by George E. Andrews.

[56] Mallinger, C. Algortihmic manipulations and transformations of univari-
ate holonomic functions and sequences. Master’s thesis, RISC, Johannes
Kepler Universität Linz, Austria, Aug. 1996.

159

[57] Mishna, M. J. Attribute grammars and automatic complexity analysis.
Advances in Applied Mathematics 30, 1-2 (2003), 189–207.

[58] Mora, F. Gröbner bases for non-commutative polynomial rings. In Alge-
braic algorithms and error-correcting codes (Berlin, 1985), J. Calmet, Ed.,
vol. 229 of lncs, Springer Verlag, pp. 353–362. Conference proceedings of
AAECC-3, Grenoble, France.

[59] Mora, T. Seven variations on standard bases. Preprint 45, Università di
Genova, Dipartimento di Matematica, Mar. 1988.

[60] Mora, T. An introduction to commutative and noncommutative Gröbner
bases. Theoretical Comput. Sci. 134 (1994), 131–173.

[61] Paule, P., and Riese, A. Software for hypergeometric summation and
q-hypergeometric summation.
Available at: http://www.risc.uni-linz.ac.at/research/combinat/risc/.

[62] Read, R. C., and Wormald, N. C. Number of labeled 4-regular graphs.
J. Graph Theory 4, 2 (1980), 203–212.

[63] Rechnitzer, A. Haruspicy and anisotropic generating functions. Advances
in Applied Mathematics 30 (2003), 228–257.

[64] Redfield, J. H. The theory of group reduced distributions. American
Journal of Mathematics 49 (1927), 433–455.

[65] Rosas, M. H. The Kronecker product of Schur functions indexed by two-
row shapes or hook shapes. J. Algebraic Combin. 14, 2 (2001), 153–173.

[66] Rosas, M. H. MacMahon symmetric functions, the partition lattice, and
Young subgroups. J. Combin. Theory Ser. A 96, 2 (2001), 326–340.

[67] Rosas, M. H. Specializations of MacMahon symmetric functions and the
polynomial algebra. Discrete Math. 246, 1-3 (2002), 285–293. Formal power
series and algebraic combinatorics (Barcelona, 1999).

[68] Sagan, B. E. The symmetric group, second ed., vol. 203 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 2001.

[69] Saito, M., Sturmfels, B., and Takayama, N. Gröbner deformations of
hypergeometric differential equations, vol. 6 of Algorithms and Computation
in Mathematics. Springer-Verlag, Berlin, 2000.

[70] Salvy, B., and Zimmermann, P. Gfun: a Maple package for the ma-
nipulation of generating and holonomic functions in one variable. ACM
Transactions on Mathematical Software 20, 2 (1994), 163–177.

160

[71] Singer, M. F. Algebraic relations among solutions of linear differential
equations. Trans. Amer. Math. Soc. 295, 2 (1986), 753–763.

[72] Sloane, N. The on-line encyclopedia of integer sequence.
Available at: http://www.research.att.com/~njas/sequences/.

[73] Sperber, S. On solutions of differential equations which satisfy certain
algebraic relations. Pacific J. Math. 124, 1 (1986), 249–256.

[74] Stanley, R. P. Differentiably finite power series. European J. Combin. 1,
2 (1980), 175–188.

[75] Stanley, R. P. Enumerative combinatorics. Vol. 2. Cambridge University
Press, Cambridge, 1999.

[76] Stein, P. R., and Zemach, C. Symmetric function algebra on a com-
puter. Adv. in Appl. Math. 14, 4 (1993), 430–454.

[77] Stembridge, J. R. A Maple package for symmetric functions. J. Symbolic
Comput. 20, 5-6 (1995), 755–768.
Available at: http://www.math.lsa.umich.edu/~jrs/maple.html.

[78] Sundaram, S. Orthogonal tableaux and an insertion algorithm for SO(2n+
1). J. Combin. Theory Ser. A 53, 2 (1990), 239–256.

[79] Takayama, N. kan/sm1, a system for computation in algebraic analysis.
Available at: http://www.math.sci.kobe-u.ac.jp/KAN/index.html.

[80] Takayama, N. An algorithm of constructing the integral of a module– an
infinite dimensional analog of Gröbner basis. In Proceedings of ISSAC’90,
Kyoto (1990), ACM, pp. 206–211.

[81] Takayama, N. An approach to the zero recognition problem by Buchberger
algorithm. J. Symbolic Comput. 14, 2-3 (1992), 265–282.

[82] van der Poorten, A. A proof that Euler missed. . .Apéry’s proof of the
irrationality of ζ(3). Math. Intelligencer 1, 4 (1979), 195–203. An informal
report.

[83] Veigneau, S. ACE, an Algebraic Combinatorics Environment for the
computer algebra system MAPLE: User’s Reference Manual, Version 3.0.
Report 98–11, IGM, 1998.
Available at: http://phalanstere.univ-mlv.fr/~ace/ACE/3.0/index.html.

[84] Wormald, Nick, C. The number of labelled cubic graphs with no trian-
gles. In Twelfth Southeastern Conference on Combinatorics, Graph theory
and computing, Vol. II (1981), 33, pp. 359–378.

161

[85] Wybourne, B. G. SCHUR group theory software–An interactive program
for calculating properties of lie groups and symmetric functions.
Available at: http://smc.vnet.net/schur.html.

[86] Zeilberger, D. Ekhad and qekhad packages for Maple.
Available at: http://www.math.rutgers.edu/~zeilberg/programs.html.

[87] Zeilberger, D. A fast algorithm for proving terminating hypergeometric
identities. Discrete Math. 80, 2 (1990), 207–211.

[88] Zeilberger, D. A holonomic systems approach to special functions iden-
tities. J. Comput. Appl. Math. 32, 3 (1990), 321–368.

[89] Zeilberger, D. The method of creative telescoping. J. Symbolic Comput.
11, 3 (1991), 195–204.

162

Index

adjoint, see scalar product

algorithms

gen scalar de, 108

hammond, 89, 90, 130

implementation, 149

itensor de, 112

scalar de, 84, 103–106, 112, 136

scalar de2, 92, 105–106, 135

summary, 77

Bender, E., 130

Bergeron, F, 128

bipartite

number, 44

partition, 44, 137

Bousquet-Mélou, M., 10

Buchberger, B.

algorithm, 60

cap product, see Kronecker product

Chyzak, F., 10, 14, 71

component

homogeneous, 51

computer algebra packages

ACE, 9, 112

algolib, 65, 71

combstruct, 9, 14

Holonomy, 10

Mgfun, 10

SCHUR, 79, 112

SF, 79, 112

ScalarProduct, 149

SYMMETRICA, 79, 112

SYMPACK, 112

Comtet, P., 130

Coutinho, S. C., 49

creative telescoping, 20

cycle index series, 123

of small species, 147

D-finite, 9

function, 19

closure properties, 20–24

effective, 23

description, 24

function, 19–23

ideal, 50, 55

MacMahon symmetric function, 45

multivariate series, 23, 23–24

species, 125

symmetric series, 32

decomposable structures, 9

∂-finite

function, 67

ideal, 67

sequence, 67

differentiably finite, see D-finite

differential operators, see scalar product

adjoint

Doubilet, P., 43

ECO-systems, 9

E , 27, 32, 34, 38, 70

effective closure property, 23

filtration

algebra, 51

associated graded algebra, 51

Bernstein, 51, 54

by monomials, 53

good, 52

module, 52

function

∂-finite, 67

holonomic, 54

P-recursive, 23, 67

Galligo, A., 48, 65

Gamma series, see Hammond, series

gen scalar de, see algorithms

163

164

Gessel, I., 10, 14, 41, 43

Goulden, I., 11, 88, 134

Goupil, A., 29

Gröbner basis

for commutative rings, 59

non-commutative, 60

sample calculation, 61

graded

ring, 51

graphs

k-regular, 145

hypergraphs, 13

multigraphs, 145

H-series, see Hammond, series

Hadamard product, 24

hammond, see algorithms

Hammond

operator, 31, 88

series, 80, 88

Heisenberg Lie algebra, 31

H, 27, 32, 34, 38, 70, 85, 133

Hilbert

dimension, 53, 53

polynomial, 53

holonomic

ideal, 54

module, 53

closure properties, 55

ideal

annihilating, 50

∂-finite, 67

holonomic, 54

inequality

Bernstein, 53

internal product, see Kronecker product

itensor de, see algorithms

Jackson, D. M., 11, 88, 134

Klazar, M., 10

Kronecker product, see symmetric func-

tion

Latin rectangle, 136

leading monomial, 59

Lipshitz, L., 20

Littlewood, D. E., 28

Macdonald, I., 26, 30, 108

polynomials, 108

MacMahon, P., 7

symmetric functions, 43

applications of, 136–138

calculating the scalar product, 111

D-finiteness, 45

elementary, 44

monomial, 44

power, 44

scalar product, 110

Mallinger, C., 10

module

associated graded, 52

Fourier transform, 56

Hilbert dimension, 53

holonomic, 53

integral of, 98

multiplicity, 53

tensor product, 56

twisted, 55

monomial order, 58

DegLex, 58

DegRevLex, 83

elimination, 58

Lex, 58

number

bipartite, 44

obliterating operator, see scalar prod-

uct, adjoint

Ore, O.

algebra, 66, 66–67

elimination, 69

operator, 10, 66, 67

shift, Sn, 66

orthogonal polynomials

Laguerre Lk
n, 134

165

P-recursive function, 23, 67, 79

Pólya, G., 8

theory, 123

partition, 25

bipartite, 44, 137

conjugate, 25, 34

length, 25

Paule, P., 48

Petkovsek, M., 10

plane partition

enumeration, 72

plethysm, see symmetric function

polynomial

reduction, 58

q-analogue

binomial, 37

factorial, 37

pochhammer, 37

q-derivative, 67

q-specialization

∂-finite preserving, 70, 72

Rechnitzer, A., 10

rectangular system, 68

Redfield, J. H., 28, 29

Reilly, J., 11, 88

Riese, A., 48

ring

graded, 51

skew polynomial, 66

Rosas, M., 29, 43

Salvy, B., 10, 14

scalar de, see algorithms

scalar de2, see algorithms

scalar product, see symmetric function

adjoint, 30, 56, 107, 110

calculating, 107

MacMahon

adjoint, 111

sequence

P-recursive, see P-recursive function

with increasing support, 134

series

asymmetry index, 129

cycle index, 123

exponential generating, 127

ordinary generating, 127

set cover

k-cover

enumeration, 131, 145

restrictive, 130

Shaeffer, G., 29

specialization

exponential, 35, 71

q-analogue, 36

principal, 38

reduction, 36

stable principal, 38

species, 9, 122

D-finite, 125

derivative, 125

polynomial, 125

Stanley, R., 9, 20

Stembridge, J. R., 112

symmetric function, see also specializa-

tion

complete homogeneous, hλ, 27

generating series, 38

elementary, eλ, 27

generating series, 38

Hall, 108

introduction, 25–28

involution, ω, 34

Kronecker product, 28, 40

calculating, 111

Macdonald polynomials, 108

MacMahon, see MacMahon symmetric

function, 111

monomial, mλ, 26

plethysm, 30

power, pλ, 27

scalar product, 29, 40

to compute, see algorithms

Schur function, sλ, 27

generating series, 32

skew, 27

symmetric group

166

irreducible representations, 28

symmetric series, 27

D-finite, 32

closure properties, 33–42

ring of, 27

syzygy, 60, 61

Takayama, N., 48

Weyl algebra, 47

Young

diagram, 25

tableaux, 132

k-uniform, 133

Zeilberger, D., 20, 48

Zimmerman, P., 10

Publications du Laboratoire de Combinatoire
et d’Informatique Mathématique

. suite de la page couverture 2

18 Hyperbinomiales: doubles suites satisfaisant à des équations aux différences partielles de dimension et d’ordre

deux de la forme H(n, k) = p(n, k)H(n− 1, k) + q(n, k)H(n− 1, k − 1), P. Théoret, 1994

19 Théorie des espèces et combinatoire des structures arborescentes, F. Bergeron, G. Labelle, P. Leroux, 1994

20 Axel Thue’s papers on repetitions in words: a translation, J. Berstel, 1995

21 Une généralisation des séries indicatrices d’espèces de structures, K. Pineau, 1996

22 Fonctions symétriques, ensembles de descentes et classes de conjugaison dans les produits en couronne, S. Poirier,

1996

23 Combinatoire des systèmes d’équations différentielles et aux dérivées partielles, B. Randrianirina, 1998

24 Espèces de structures et applications au dénombrement de cartes et de cactus planaires, M. Bousquet, 1998

25 Contribution à l’étude des mots sturmiens, B. Parvaix, 1998

26 Analyse d’équations combinatoires en théorie des espèces, P. Auger, 1999

27 Colloque LaCIM 2000 — Combinatoire, Informatique et Applications, P. Leroux (éd.), Septembre 2000, Actes,

2000

28 Fonctions de Bessel et combinatoire, F. Gascon, 2001

29 The Saga of Reduced Factorizations of Elements of the Symmetric Group, A. Garsia, 2002

30 Variétés de carquois et homologie d’intersection, R. Schiffler, 2003

31 Algorithmes vectoriels et bioinformatique, S. Hamel, 2003

32 Conjecture n! et généralisations, J.­C. Aval, 2004

33 Spécification de classes de structures arborescentes, C. Lamathe, 2004

34 A Holonomic Systems Approach to Algebraic Combinatorics, M. Mishna, 2005

A HOLONOMIC SYSTEMS APPROACH TO

ALGEBRAIC COMBINATORICS

The theory of holonomic systems has proven a valuable tool for automatic proofs of combi­
natorial identities. The scalar product of symmetric functions provides a useful way to phrase
many problems in algebraic combinatorics. This work brings together these two ideas to describe
algorithms for computing the scalar product of two symmetric series under certain conditions,
using some techniques from holonomic systems.

The algorithms here operate under more general conditions than previous work. The correct­
ness and termination of the algorithms is proven. Small modifications of the algorithms yield
techniques for calculating generalizations of scalar product, for example from MacMahon sym­
metric functions and a q­analog arising in the study of Macdonald polynomials, additionally, a
general algorithm, parameterized by the adjoint of the scalar product, is given.

The algorithms use Gröbner bases in Weyl algebras, and exploit conditions similar to those
involved in effective integration algorithms for D­finite functions.

The work is divided into three parts: the first provides the required background on symmetric
functions and holonomy; The second defines and proves several algorithms for computing
the symmetric scalar product as well as a generalization; the final part provides some typical
combinatorial examples.

TABLE OF CONTENTS

1. D­finite functions . 19

2. Symmetric functions . 25

3. An introduction to holonomy . 47

4. Non­commutative algebras of linear operators . 65

5. An effective scalar product . 79

6. Related algorithms . 107

7. Coefficient extraction and generating functions . 121

Laboratoire de combinatoire et d’informatique mathématique

Université du Québec à Montréal

C.P. 8888, Succ. Centre­Ville

Montréal (Québec) Canada

H3C 3P8

L

A C
I

M

A
QU

isbn 2-89276-349-5

