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de Médicis, 1993
14 A theory of noncommutative determinants and characteristic functions of graphs I, I. M. Gelfand and V. S.

Rethak; Matroids on chamber systems, I. M. Gelfand and A. V. Borovik, 1993
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. . . . . . . . . . . . . . . . . . . . . . . . . . suite en fin de volume



Publications du Laboratoire de
Combinatoire et d’
Informatique
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Introduction

In 1982 R. Stanley initiated the study of reduced decompositions of elements
of Sn. Central to his work was the introduction of a family of symmetric functions
indexed by permutations. He conjectured these functions to be Schur positive and
proved a number of their interesting properties including the enumeration of certain
classes of reduced decompositions. Over the years that followed several works have
appeared with different proofs of the Stanley conjecture by various methods which
range from the purely combinatorial to the purely algebraic. Circa 1982 in a completely
independent development Lascoux and Schützenberger founded the Theory of Schu-
bert polynomials. Central to their study were some combinatorial consequences of a
Pieri-like result for Schubert polynomials which they called “Monk’s rule”. This led
to the definition of a tree associated to every permutation σ ∈ Sn. Unbeknown to
them at the time and to many even at the present time, the LS tree of a permutation
is, in a sense that can be made precise, a purely combinatorial version of the Stanley
symmetric function. Using this tree and several combinatorial properties of reduced
decompositions, the Schur positivity of the Stanley symmetric function follows in a
remarkably illuminating manner. In these notes we present the contents of a series of
lectures in a Topics in Algebraic Combinatorics Course given at UCSD in Winter 2001.
The material by no means covers all the aspects of the fascinating subject of reduced
decompositions that have been developed over the last two decades. The choice of
topics, limited by the time available, follows the taste of the author and what appeared
to be a natural path through a luscious forest of remarkable combinatorial discoveries.
We strived throughout to make our presentation as self-contained as possible. Some of
the later proofs that appeared in the literature after the original papers are so elegant
and simple that we were forced to reproduce them here almost verbatim. Our main
effort has been concentrated into providing a novel and illuminating way to develop
the material. Our original stimulus for choosing this topic came from several exciting
exchanges with Kevin Kadel a visitor at UCSD for the academic year 2000-2001. We
also benefitted immensely from some of the insights he provided us in the study and
developments connecting reduced decompositions to balanced tabloids.

Unquestionably the most rewarding byproduct of our efforts is the discovery by
David Little of a new and remarkably simple bijective way of deriving the Schur posi-
tivity of the Stanley symmetric function. Indeed, our close study of the combinatorial
properties of the Lascoux-Schützenberger tree suggested a way to avoid the Theory of
Schubert polynomials by a purely elementary path that refines the information yielded
by the Theory. A description by David Little of his work is included as an Appendix
to these notes.





A Historical Note

The following picture displays a letter of Richard Stanley announcing his break-
through in the summer 1982. The statement that he was unable to prove that

“. . . the multiset M(π) cannot contain elements with negative multiplicity. . .”
refers to his conjectured positivity of the Stanley symmetric function.

Mathematics has a fascinating way of providing us with unexpected develop-
ments. It is indeed quite remarkable that, after so many years and so many researchers
roaming in the area of reduced decompositions, and the deep machinery that was in-
troduced in their study, anything could be added that uses only “bare hands”. Yet,
after David Little’s work, as a final comment to Stanley’s letter, we may add that

“There is now an elementary proof of Schur positivity that uses
. . . no Schensted, no representation theory, no Schubert polynomials and

. . . no symmetric functions! ”





1. Reduced Factorizations

1.1 Notation

It is customary to interpret a permutation σ ∈ Sn as a bijection of {1, 2, . . . , n}
onto itself and we often write it in the form

σ =
(

1 2 3 . . . n
σ1 σ2 σ3 . . . σn

)
,

meaning that σi is the image of i under σ. In this vein to compute the product θ× σ we
proceed from right to left and obtain(

1 2 3 . . . n
θσ1 θσ2 θσ3 . . . θσn

)
=
(

1 2 3 . . . n
θ1 θ2 θ3 . . . θn

)
×
(

1 2 3 . . . n
σ1 σ2 σ3 . . . σn

)

Keeping this in mind, it will be convenient and economical with space to omit the first
line and simply write

σ = σ1σ2σ3 · · ·σn

viewing σ as a word in the letters 1, 2, 3, . . . , n. Here and after we let si (for 1 ≤ i ≤ n−1)
represent the simple transposition

si = (i, i + 1) =
(

1 2 · · · i i + 1 · · · n
1 2 · · · i + 1 i · · · n

)
1.1.1

Note that multiplication of σ on the right by si results in the interchange of the elements
σi, σi+1. Thus in our shorthand we may write

σ1σ2 · · ·σi+1σi · · ·σn = σ1σ2 · · ·σiσi+1 · · ·σn × si .

Let us recall that the number of inversions of σ is given by the sum

inv(sig) =
∑

1≤i<j≤n

χ(σi > σj) .

It is clear that right multiplication of σ by any simple transposition increases the number
of inversions by one if σi < σi+1 and decreases it by one if σi > σi+1. Let us recall that
an index i such that σi > σi+1 is called a “descent” of σ and correspondingly

D(σ) = {1 ≤ i ≤ n− 1 : σi > σi+1 }

is usually referred to as the “descent set” of σ. This given, if we want to express an
element σ as a product of simple reflections the number of factors required should be
at the very least inv(σ). For this reason, inv(σ) is often referred to as the “length” and
briefly also denoted by l(σ). Note that it is always possible (in fact in many ways) to
express σ as a product of l(σ) simple transpositions. To do this we simply start with
σ = σ(o) and construct a sequence of permutations

· · · ← σ(r+1) ← σ(r) ← · · · ← σ(2) ← σ(1) ← σ(o)
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with σ(r+1) = σ(r) × si and where i is only chosen by the requirement
3 5 6 2 1 7 8 4
3 5 6 2 1 7 4 8
3 5 2 6 1 7 4 8
3 5 2 6 1 4 7 8
3 5 2 1 6 4 7 8
3 2 5 1 6 4 7 8
2 3 5 1 6 4 7 8
2 3 5 1 4 6 7 8
2 3 1 5 4 6 7 8
2 1 3 5 4 6 7 8
2 1 3 4 5 6 7 8
1 2 3 4 5 6 7 8
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1

that i be in the descent set of σ(r), that is σ
(r)
i > σ

(r)
i+1 . Since this

requirement assures that l(σ(r+1)) = l(σ(r))− 1 the sequence will stop
after exactly l(σ) steps with σ(l(σ)) = 123 · · ·n , (the identity permu-
tation). In the display on the right we illustrate such a sequence for
the permutation σ = 35621784. Here the labels on the right of the
dividing line give the indices i for which the correspondind si was
chosen. It should be apparent from this example that each time we
have a variety of choices, (one for each element of the descent set of
the current permutation).

Factorizations of a permutation σ as a product of l(σ) reflections are called “re-
duced” and the word in the letters 1, 2, . . . , n − 1 giving the successive indices of the
factors is called the “reduced word ” corresponding to the factorization. Thus for the
factorization above

35621784 = s1s4s2s3s5s1s2s4s6s3s7 1.1.2

the corresponding reduced word is 14235124637. Factorizations into simple reflections
whether reduced or not are best studied by means of a line diagram which exhibits
the trajectories of each of the labels 1, 2, . . . , n as we proceed in our construction of the
target permutation. In the display below we illustrate the diagram corresponding to
the factorization illustrated above.
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1.1.3

A close examination of this display reveals one fundamental property of diagrams
corresponding to reduced factorizations:

for any pair of indices 1 ≤ i < j ≤ n : the i-line and j-line cross at most once.

The reason for this is quite simple: once we interchange i and j, doing it again would
decrease the number of inversions, and we never do that to get a reduced factorization.

We should mention that there is a systematic way of getting a reduced factor-
ization for any permutation σ = σ1σ2 · · ·σn. Starting from the identity permutation,
we make first the interchanges that bring σ1 to first position, then those that bring σ2

to second position, then those that bring σ3 to third position and so on until we reach
σ. This is best understood by an example. In the next display we have illustrated this
process applied to σ = 452163.
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1.1.4

We thus obtain the factorization 452163 = s3s2s1s4s3s2s3s5. It is easily seen that, in
general, the resulting factorization will be of the form

σ =
n−1∏
i=1

(
saisai−1sai−2 · · · si+1si

)
1.1.5

with ai ≥ i − 1 (note that ai = i − 1 must be included for the cases when the the
corresponding factor should be taken equal to 1 (i.e. missing). Here and after these
factorizations will be called “canonical”. A moment’s reflection should reveal that these
observations yield the following basic identity

Theorem 1.1.1∑
σ∈Sn

σ =
n−1∏
i=1

(
1 + si + si+1si + si+2si+1si + · · ·+ sn−1 · · · si+2si+1si

)
1.1.6

Proof
It should be understood that the factors in the right hand side of 1.1.6 are to be

taken from left to right as i goes from 1 to n− 1. This given, interpreting the left hand
side as an element of the group algebra of Sn, then the identity simply asserts that each
σ ∈ Sn has a factorization of the form given in 1.1.5.

The following basic identities will play a fundamental role in the sequel, they are
usually referred to as the “Coxeter Relations”.

Proposition 1.1.1
1) s2

i = id ∀ 1 ≤ i ≤ n− 1 ,
2) si si+1 si = si+1 si si+1 ∀ 1 ≤ i ≤ n− 1 ,
3) si sj = sj si if |i− j| ≥ 2 .

1.1.7

Proof
The first and last follow immediately from the definitions of the si. The middle

one just expresses the fact that the permutation

θi =
(

1 2 · · · i i + 1 i + 2 · · · n
1 2 · · · i + 2 i + 1 i · · · n

)

has two reduced decompositions. We should also point out that the right hand side
of 1.1.7 2) is in fact the canonical decomposition of θi. A visual understanding of this
relation may also be provided by the following display
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a

a

a a

b

b b

b

c c

c

c a a

a

a

b

b b

b

c

c

c c

=

This is but an instance of the more general result which may be stated as follows

Theorem 1.1.2
We may pass from any reduced factorization to any other of a given permutation σ by a

sequence of applications of identities 1.1.7 2) & 3). The inclusion of 1.1.7 1) is only necessary
to pass from a non-reduced factorization of σ to a reduced one.

Proof
It is sufficient to show that we can pass from any factorization of σ to a canonical

one. To this end our first step is to show that we may pass from any factorization which
does not contain s1, s2, . . . , si−1 to one which contains at most one occurrence of si. We
can prove this by descent induction on i. Clearly the assertion is trivial for i = n−1. So
let us assume that it is true for i + 1, i + 2, . . . , n− 1 and let W be a factorization which
contains no occurrences of s1, s2, . . . , si−1. Suppose W contains two occurrences of si

and let us write it in the form

W = W1siW2siW3 1.1.8

with no occurrences of s1, s2, . . . , si in W2. So by induction we change W2 to a expression
W ′

2 which contains no occurrences of si+1 or one of the form

W ′
2 = W21 si+1W22

with W21 and W22 not containing any occurrences of s1, s2, . . . , si+1. In the first case,
by successive uses of the Coxeter relations we can carry out the three transitions

W = W1siW2siW3 −→ W1siW
′
2siW3 −→ W1sisiW

′
2W3 −→ W1W

′
2W3 .

In fact, the second transition only needs successive uses of 1.1.7 3). Clearly, this case
only occurs when W is not reduced.

In the other case, using the Coxeter relations we first carry out the transition

W = W1siW2siW3 −→ W1 si W21 si+1 W22 si W3 .

Since W21 and W22 have only occurrences of sj with j > i + 1, by successive uses of
1.1.7 3) we can then carry out the transition

W1 si W21 si+1 W22 si W3 −→ W1 W21 si si+1 si W22 W3

and finally a use of 1.1.7 2) completes the sequence

W = W1siW2siW3 −→ W1 si W21 si+1 W22 si W3 −→
−→ W1 W21 si si+1 si W22 W3 −→

−→ W1 W21 si+1 si si+1 W22 W3
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reducing by one the number of occurrence of si in W . Proceeding in this manner we
can arrive at a point where either there is only one si left or none at all. This completes
our induction. This given, starting from any factorization W , by means of the Coxeter
relations we can eliminate altogether all the occurrences of s1 or carry out the transition

W −→ W1 s1 W2

with W1 and W2 containing no occurrences of s1. By a further sequence of steps we
can carry out one of the two transitions

W1 s1 W2 −→ W11 s2 W12 s1 W2 or W1 s1 W2 −→ W ′
1 s1 W2

with no occurrences of s1 or s2 in W12 or W ′
1. In each case successive uses of 1.1.7 3)

will complete the succession of transitions

W −→ W1 s1 W2 −→ W11 s2 W12 s1 W2 −→ W11 s2 s1 W12W2

or
W −→ W1 s1 W2 −→ W ′

1 s1 W2 −→ s1W
′
1 W2 .

Since there are no other occurrences of s1 in either case and no ocurrences of s1 or
s2 in W11 in the first case, we see that the pattern typical of a canonical factorization
is beginning to emerge. Indeed the next step is to work on W11 and obtain one of
the transitions W11 −→ W111 s3W112 or W11 −→ s3W112 with no occurrennces of
s1, s2, s3 in W112. This gives the transitions

W −→ W11 s2 s1 W12W2 −→ W111 s3W112 s2 s1 W12W2 −→
−→ W111W112 s3 s2 s1 W12W2

or

W −→ W11 s2 s1 W12W2 −→ s3W112 s2 s1 W12W2 −→ s3s2 s1 W112 W12W2 .

We need not say any more here. The reader should have no difficulty understanding
how this process can be continued to yield in the end a canonical decomposition of
the permutation σ corresponding to the factorization W . To clear up any remaining
uncertainties it may be appropriate to carry out the all the steps necessary in a particular
instance. A good case in point is the factorization in 1.1.2. In the display below the
labels on the right of the vertical line indicate which of the Coxeter relations are used in
that particular transition the boxes appear as soon as one of the descent strings typical
of canonical factorizations is formed.

1 24 4 62 13 5 3 7
3

3

3

3

2

2

2

4 2 4 61 2 1 53 3 7
4 2 4 62 21 3 5 3 7
2 24 4 61 2 3 5 73
2 24 4 62 53 731
2 24 4 63 5 7331
2 24 4 63 5 73 31

42 24 4 63 5 731
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The main goal of these notes is to present some of the main results obtained in the
description and enumeration of all reduced decompositions of any given permutation.
Nevertheless, we should note at this point that, at least for small n, these reduced words
can be constructed by computer in a relatively simple manner. This construction is
based on the following identity.

Theorem 1.1.3
If for a given σ ∈ Sn, we denote by “RED(σ)” the collection of all words corresponding

to reduced factorizations of σ then

∑
w∈RED(σ)

w =
∑

i∈D(σ)

∑
w′∈RED(σsi)

w′i 1.1.9

Proof
It might be good to start by explaining the notation used in 1.1.9. To begin with

the left hand side should be interpreted as the formal sum of all the elements of R(σ).
Thus to prove 1.1.9 we only have to show that each summand occurring in the left hand
side occurs once and only once on the right hand side. Finally, we should note that the
symbol “w′i ” simply means the word obtained by appending the letter i to the word
w′. Now note that if W = W ′si is a reduced factorization of σ then we must necessarily
have σi > σi+1 and W ′ will necessarily be a reduced factorization of σ′ = σsi . This is
because W ′ is a factorization of σ′ and the number of its factors is l(σ)−1 = l(σ′). Now
if w is the word corresponding to W and w′ is the word corresponding to W ′ we have
w = w′i. This given we see that all w ∈ RED(σ) do occur in the right hand side and
they occur only once for the simple reason that each sum

∑
w′∈RED(σsi)

w′i consists
of distinct words and different values of “i ” yield different sums of words.

It will be instructive at this point to show how this identity can be translated
into a MAPLE program. However, before implementing 1.1 we need a three auxiliary
procedures “sigact”, “preds”, “cocat”. The first has 2 input variables, an index i

and a permutation σ . Then sigact returns the permutation σ′ = σsi. The procedure
preds takes a permutation σ as input and returns all the “predecessors” of σ, that is the
collection

PRED(σ) = {σ′ : σ′ = σsi & σi > σi+1 } 1.1.10

Finally, cocat takes two input variables, an index s and a list of words L. Its output is
the list of all words obtained by appending the index s to each word of L. These three
procedures are given below

cocat:=proc(s,L)
  local out,i,w;
  out:=NULL;
 for w in L do        
out:=out,[op(w),s];
    od;
  out;
 end:

preds:=proc(sig)
  local n,out,i;
  n:=nops(sig);
  out:=NULL;
  for i from 1 to n-1 do
   if sig[i]>sig[i+1] then
   out:=out,[i,sigact(i,sig)];
     fi;
  od;
 [out];
  end

sigact:=proc(i,sig)
  local j,out;
 out:=[seq(sig[j],j=1..i-1), 
         sig[i+1],sig[i],seq(sig[j],
              j=i+2..nops(sig))];
 end:
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This given, the following procedure with input a permutation σ returns all the words
corresponding to reduced factorizations of σ. It can be easily checked that it simply
expresses in MAPLE almost verbatim the identity in 1.1.10.

REDS:=proc(sig)
local prevs,out,i,s,m,tau,te,med;
 prevs:=preds(sig);
 if prevs=[] then 
    out:=[[]];
   else
 te:=NULL;
  m:=nops(prevs);
   for i from 1 to m do
     s:=prevs[i][1];
     tau:=prevs[i][2];
    med:=cocat(s,REDS(tau));
 te:=te,med;
  od;
 out:=[te];
 fi;
 out;
 end;

Now a call of REDS([4,3,2,1]) yielded 16 reduced words as listed below.

123121
121321
212321
231231

213231
123212
312312
132312

312132
132132
321232
231213

213213
232123
323123
321323

1.1.11

We need to introduce a combinatorial structure which will play a crucial role in our
further developments. Given a permutation σ = σ1σ2σ3 · · ·σn we associate to it an
n × n diagram with entries “ ©”, “X” or “•“, as follows. In column j and row σj

we place an X . This done, in all the positions west or below this X we place an “•“.
Finally when all the X ’s and the • ’s have been placed we fill the remaining positions
with© ’s. The resulting figure will be referred to here and after as the “Circle Diagram”
of the permutation σ. The display below gives the circle diagram of the permutation
σ = 48652371.

6

6

7

7

8

8

1

1

2

2

5

5

3

3

4

4

1.1.12

Remark 1.1.1
We should note that each of the circles correspond to an inversion of σ. Indeed,

from our construction of circle diagrams we will have a “©” in position (i, j) if and
only if the “X” in column j occurs below (i, j) and the “X” in row i occurs to the right
of (i, j). This is equivalent to saying that σj > i and j′ = σ−1

i > j, Thus this “©”
corresponds to the inversion σj > σj′ .
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1.2 The matrix approach

Note that the rearrangement

X = (x1, x2, x3, x4, x5, x6, x7, x8) −→ X ′ = (x4, x8, x6, x5, x2, x3, x7, x1)

may simply be obtained by matrix multiplication. In fact, if we must have X ′ = XM

(interpreting X and X ′ as row vectors), then we are forced to take

M =




0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0




1.2.1

We clearly see that the positions of the ones in this matrix corresponds precisely to the
positions of the X ′s in the circle diagram of 48652371. More generally, the transition

X = (x1, x2, x3, . . . , xn) −→ X ′ = (xσ1 , xσ2 , xσ3 , . . . , xσn)

can obtained be obtained by right multiplication of X by the matrix

M(σ) =
∥∥χ(i = σj)

∥∥n

i,j=1

We usually refer to M(σ) as the “permutation matrix” corresponding to σ. Note then
that the permutation matrix corresponding to the simple transposition si = (i, i + 1)
of Sn may be schematically depicted as the n× n matrix

1
1

1
1

1
1

1
1

1

0
1

1
0

0

0

M s
i

i

i( ) =

In other words, M(si) has entries equal to one in positions (i, i + 1), (i + 1, i) and (j, j)
for j = 1, . . . , i− 1 and j = i + 1, . . . , n, and all the remaining entries equal to zero.

This enables us to view the line diagrams in 1.1.3 and 1.1.4 in a completely
different light. Indeed, note that we may write the i, j-entry of the multiplication of
k + 1 matrices A(r) = ‖a(r)

ij ‖ni,j=1, (r = 1, . . . , k + 1) in the form

(A(1)A(2)A(3) · · ·A(k+1))ij =
n∑

i1=1

n∑
i2=1

n∑
i3=1

· · ·
n∑

ik=1

a
(1)
i,i1

a
(2)
i1,i2

a
(3)
i2,i3
· · · a(k+1)

ik,j . 1.2.2

This expression has a very useful visualization. We depict a sequence of k + 2 equally
spaced columns, with nodes labelled 1, 2, . . . , n and view the sequence of indices
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i→i1→i2→· · ·→ik→j as a path successively hitting the labels i, i1, i2, . . . , ik, j as indi-
cated below for the case n = 6, k = 4 and the sequence 3, 5, 2, 1, 4, 2. We also assign to
the edge joining label i of column r to label j of column r + 1 the “weight” a

(r)
i,j and,

correspondingly assign to any path a weight equal to the product of the weights of its
edges. This given, we can then interpret the right hand side of 1.2.2 as the sum of the
weights of all the paths joining label i of column 1 to label j of column k + 2.

a
35

(1)

a
52

(2)

a
21

(3)

a
14

(4)

a
42

(5)

5

2

4

1

6

3

2

4

1

6

3

5

4

1

6

3

5

2

4

6

3

5

2

1

6

3

5

2

4

1

6

4

1

2

5

3

We shall here and after briefly refer to these displays as “multiplication diagrams”.
Clearly, the sum on the right hand side of 1.2.2 need only be carried out over the paths
of weight 	= 0. This given, to further simplify these diagrams, we shall only depict edges
i→j of weight aij 	= 0. In this manner the multiplication diagram of M(s1)M(s2)M(s1)
reduces to

2

1

3

2

1

3

1

3

2

1

2

3

We can thus visualize the identity

M(s1)M(s2)M(s1) =


 0 0 1

0 1 0
1 0 0


 1.2.3

by computing each of the 9 i, j-entries in the product as a sum of weights of paths. Zero
i, j-entries corresponding to the cases when there is no path joining i to j. Of course
in this extremely simple case for any pair i, j either there is no path or there is only
one of weight 1. This accounts for the right hand side of 1.2.3. Although we may not
see it from this example, we will soon appreciate how powerful this imagery can be in
understanding certain matrix identities. At any rate, we can now visualize the displays
in 1.1.3 and 1.1.4 as instances of multiplication diagrams. In this manner we can use
the display in 1.1.3 to obtain a visual understanding of the identity

M(s1)M(s4)M(s2)M(s3)M(s5)
M(s1)M(s2)M(s4)M(s6)M(s3)M(s7)

=




0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0




.
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It develops that Kassel, Lascoux and Reutenauer [6] discovered that by adding a single
non-zero entry in each of the matrices M(si) we can have the resulting product retain
full information as to each of its factors and the order in which they occur. To be precise
these authors let Pi(x) (for a fixed n) be the n× n matrix

1
1

1
1

1
1

1
1

1

x
1

1
0

0

0

P x
i

i

i ( ) =

This given, it is easy to see that in the 3 × 3 case the product P1(x)P2(y)P1(z) may be
represented by the multiplication diagram

x

y

z

2

1

3

2

1

3

1

3

2

1

2

3

from which we derive that

P1(x)P2(y)P1(z) =


 y + xz x 1

z 1 0
1 0 0


 1.2.4

Here the y + xz entry accounts for the fact that there are two paths joining 1 to 1.
Namely, 1→1→1→1 and 1→2→2→1 of weights “xz” and “y” respectively.

Likewise from the diagram

x

y

z2

1

3

2

1

3

1

3

2

1

2

3

we derive that

P2(x)P1(y)P2(z) =


 y z 1

x 1 0
1 0 0


 1.2.5

At this point it will be useful to note, for future reference, that combining 1.2.5 and 1.2.4
we obtain the following beautiful relation first noted in [5]:

P1(x)P2(y)P1(z) = P2(z)P1(y + xz)P2(x)

Similarly, in the n× n case, we derive that

Pi(x)Pi+1(y)Pi(z) = Pi+1(z)Pi(y + xz)Pi+1(x) (for i = 1, 2, . . . , n− 1) 1.2.6

More generally, for a given reduced word w = a1a2a3 · · ·al Kassel et al. do set in [6]

Pw(x1, x2, x3, . . . , xl) = Pa1(x1)Pa2 (x2)Pa3(x3) · · ·Pal
(xl) . 1.2.7
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Our goal here is to fully understand the structure of this matrix. We shall begin
by showing that in some cases its entries can be written down without any calculation.
To be precise we have the following remarkable fact.

Theorem 1.2.1 (Kassell, et al.)
If w is the word of the canonical factorization of a permutation σ, then the matrix

Pw(x1, x2, x3, . . . , xl) is simply obtained from the circle diagram of σ by replacing every “X”
by a 1, every “•” by 0 and the “© ’s” by the variables x1, x2, x3, . . . , xl successively up the
columns starting from the left most column and proceeding to the right.

Proof
It will be good to start with a particular case. For instance, for the canonical

factorization of σ = 452163, illustrated in 1.1.4, this construction yields

6

6

1

1

2

2

5

5

3

3

4

4

−→ P32143235(x1, x2, . . . , x8) =




x3 x6 x7 1 0 0
x2 x5 1 0 0 0
x1 x4 0 0 x8 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0


 1.2.8

To visualize the mechanism that produces this result we resort to the multiplica-
tion diagram corresponding to the product that yields P32143235(x1, x2, . . . , x8). Now it
is not difficult to see that this diagram can be simply obtained by adding edges with
weights x1, x2, x3, x4, x5, x6, x7, x8 to the display in 1.1.4, as indicated below

3

1

2

5

4

6

x2

x3

x4

x5

x6

x7

x8

x13

5

2 2

4

1 1

1

6

3 3 3

35

4

6

2 2

5

4

6

1

5

5

5

5

4

6

1

2

2

4

6

3

1

1

1

4

6

2

2

3

4

6

5

3

3

4

1

2

5

4

6

6

To calculate the 3, 2-entry in P32143235(x1, x2, . . . , xn) using this diagram we locate all
the paths that join 3 to 2. We see that there is only one such path. This is obtained
by following the 3-line until it meets the edge labled x4 then traverse this edge and
then follow the 5-line untill the end. This gives that the 3, 2-entry is x4. Now we
should clearly see why the entries in positions (3, 1), (2, 1) and (1, 1) turn out to be
x1, x2, x3 respectively. This is simply because as we bring 4 to first position by the
transpositions s3, s2, s1, in the product diagram corresponding to P3(x1)P2(x2)P1(x3)
the horizontal edges with weights x1, x2, x3 open up three paths respectively joining
3 to 1, 2 to 1 and 1 to 1. Similarly in the portion of the diagram corresponding to the
factors P4(x4)P3(x5)P2(x6) the horizontal edges with weights x4, x5, x6 open up three
paths respectively joining 3 to 2, 2 to 2 and 1 to 2. That accounts for x4, x5, x6 landing
in positions (3, 2), (2, 2), (1, 2), of the resulting matrix. Similar reasoning accounts for
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the positions of x7 and x8. To establish the result in the general case, we have three
crucial observations:

First, we note that because in a canonical factorization, we bring the elements
σ1,σ2, σ3 . . . to their positions successively one at the time, as we bring σj to the jth in
steps k, k + 1, k + 2, . . . , k + r the edges with weights xk, xk+1, xk+2, . . . , xk+r are all
above the σj -line. This given, when a path in the multiplication diagram traverses one
of these edges it will then be forced to follow the σj -line to its end and therefore it will
never be able to traverse any other x-weighted edge. This shows that for any pair (i, j)
there is no path joining i to j, or a single path. In the latter case the path starts with
the i-line and either it never traverses one of the x-weighted edges thereby following
the i-line all the way to the end (here i = σj and the i, j-entry is “1” ) or it traverses an
x-weighted edge and then it must continue along the i′ = σ−1

j -line all the way to the
end (see figure at the end of the proof). If the crossing occurs at step k then the weight
of the edge is xk and the i, j-entry will be xk.

Second, we note that in the latter case, σj′ = i (see figure below) with j′ > j and
σj = i′ > i imply that the i, j-position is precisely a “©”-position in the circle diagram
of σ.

Finally, if the weights of horizontal x-labelled edges that touch the σj -line are
successively xi, xi+1, . . . , xi+r then these weights will necessarily land in the “©”-
positions of the jth column of the resulting matrix. This completes our proof.

i

i i i

i

i

ii

i

i

i'

i'

i'i'i'

i'

i'

i' i' i'

xk

ij' �

i'j �

Remark 1.2.1
We have shown above that if the kth transposition in our reduced expression

interchanges i with i′ = σj then the variable xk will appear in the i, j-entry of the
resulting matrix. If we review the argument we can easily see that this particular
conclusion did not use the fact that there we were dealing with a canonical factorization.
However, in the general case, as we shall see, there will also be other paths joining i to j

and they will contribute further terms to the i, j-entry of the resulting matrix. Keeping
in mind this fact we can prove the following remarkable property of the matrices
Pw(x1, x2, . . . , xl).

Theorem 1.2.2 (Kassel, et al.)
Let σ be a permutation of length l and let J = (xixj : 1 ≤ i < j ≤ l) be the ideal in the

polynomial ring Q[x1, x2, . . . , xl] generated by the products xixj . Then for any w ∈ RED(σ)
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the matrix Pw(x1, x2, . . . , xl) modulo J may be obtained from the circle diagram of σ by
replacing every “X” by a 1, every “•” by 0 and the “© ′s” by a permutation of the variables
x1, x2, x3, . . . , xl. More precisely, if w = a1, a2, . . . , al then the “©” in position (i, j) is to be
replaced by xk if the transposition sak

interchanges i with σj .

Proof
Recall that we can pass from w to the canonical factorization wo of σ by a suc-

cession of applications of the relations 2) and 3) of 1.1.7. Now from 1.2.6 we deduce
that

Pi(x)Pi+1(y)Pi(z) ∼= Pi(z)Pi+1(y)Pi(x) (mod J ) for i = 1, . . . , l 1.2.9

and we clearly have

Pi(x)Pj(y) = Pj(y)Pi(x) for |j − i| ≥ 2 . 1.2.10

Thus if we use the same relations that bring us from w to wo to the product

Pw(x1, x2, . . . , xl) = Pa1(x1)Pa2(x2)Pa3(x3) · · ·Pal
(xl) ,

we see that the relations in 1.2.9 and 1.2.10 will yield us an identity of the form

Pw(x1, x2, . . . , xl) ∼= Pwo(xθ1 , xθ2 , . . . , xθl
) (mod J )

with θ1, θ2, . . . , θl a permutation of 1, 2, . . . , n. This given, our assertions follow from
Theorem 1.2.1 and Remark 1.1.1.

It will be worthwhile to illustrate this argument by working on a specific exam-
ple. For this we take σ = 615243 and the word w = 453243251 ∈ RED(σ). In the
display below we give the sequence of steps that transform 453243251 into the canoni-
cal factorization 543215435 of σ. On the right of the vertical line we have indicated the
transformation we carried out from one step to the next.

P x( )
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P x( )
25

P x( )
33
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42
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63

P x( )
72

P x( )
85

P x( )
91
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1.2.11

This shows that modulo the ideal J =
(
xixj : 1 ≤ i < j ≤ 9

)
we have

P453243251(x1, x2, x3, x4, x5,x6, x7, x8, x9) ∼=
P543215435(x7, x2, x5, x6, x9, x1, x3, x4, x8, )

1.2.12
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Since s5s4s3s2s1s5s4s3s5 is the canonical factorization of σ = 615243 we can follow the
recipe given by Theorem 1.2.1 and obtain

P453243251(x1, x2, x3, x4, x5, x6, x7, x8, x9) ∼=




x9 1 0 0 0 0
x6 0 x4 0 0 0
x5 0 x3 0 x8 1
x2 0 x1 0 1 0
x7 0 1 0 0 0
1 0 0 0 0 0


 1.2.13

Remark 1.2.2

x8

3

1

2

5

4

6

x8

x7

x6

x5

x4

x3

x2

x1

3

5

2 2

4

1 1 1

6

3 3

3 35

4

6

2 2

5

4

6

1

5

5 5 5

4

6

1

2 2

4

6 3

1 1 1

4

6 2 2

3

4

6 5

3

34

1

1

2 2

5 5

4

3

4

6 6

6
We should note that the effect of working

in the quotient ring Q[x1, x2, . . . , xl]/J is to kill
all contributions to the matrix Pw(x1, x2, . . . , xl)
coming from paths that traverse more than one
of the x-weighted edges. In fact we can easily
see from the adjoining product diagram that the
if we do not kill all monomials of degree 2 the
resulting matrix is

P453243251(x1, x2, . . . , x9) =




x9 1 0 0 0 0
x6 + x4x7 0 x4 0 0 0
x5 + x3x7 0 x3 0 x8 1
x2 + x1x7 0 x1 0 1 0

x7 0 1 0 0 0
1 0 0 0 0 0




Our next goal is to show that we can produce equivalences such as in 1.2.12
by working directly with the final matrices, rather than by acting on the factors. To
state and prove this result we need to make some definitions and establish some
auxiliary propositions. To begin let us denote by PJ

w (x1, x2, . . . , xl) the matrix we
obtain when we compute the entries of Pw(x1, x2, . . . , xl) mod J . We shall also refer to
PJ

w (x1, x2, . . . , xl) as the “linear part” of Pw(x1, x2, . . . , xl). For given indices j1 < j2 <

· · · < jk , let us denote by PJ
w [j1, j2, . . . , jk] the k × k submatrix of PJ

w (x1, x2, . . . , xl)
contained in columns j1, j2, . . . , jk and rows σj1 , σj2 , . . . , σjk

. Note that if k = 3 and
σj1 > σj2 > σj3 then the submatrix PJ

w [j1, j2, j3] will be of the form

PJ
w [j1, j2, j3] =


 y z 1

x 1 0
1 0 0




This given, we shall call a “3-Coxeter transition for k” in PJ
w (x1, x2, . . . , xl) a replacement

of the form 
 xk+1 xk+2 1

xk 1 0
1 0 0


 ←→


xk+1 xk 1

xk+2 1 0
1 0 0


 1.2.14

More precisely, such a transition consists in locating three indices j1 < j2 < j3 such
that the submatrix PJ

w [j1, j2, j3] is of one of the forms given in 1.2.14. This done, the 3-
Coxeter transition consists in replacing one form by the other form in PJ

w (x1, x2, . . . , xl).
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In the same vein, a “2-Coxeter transition on k” is the exchange of xk and xk+1

when
xk and xk+1 are not in the same row or column.

Thus this Coxeter transition carries out one of the following 4 possible exchanges in
the matrix PJ

w (x1, x2, . . . , xl):

xk

xk+1 xk

xk+1

xk

xk+1 xk

xk+1

Proposition 1.2.1
Let w = a1, a2, · · · al be a reduced word and let

ak = i , ak+1 = i + 1 , ak+2 = i .

Let w′ = a′
1, a

′
2, · · ·a′

l be the same as w except in positions k, k + 1, k + 2 where we have

a′
k = i + 1 , a′

k+1 = i , a′
k+2 = i + 1

Then the matrix PJ
w′(x1, x2, . . . , xl) is simply obtained from PJ

w (x1, x2, . . . , xl) by making a
3-Coxeter transition on k.

Proof
We have

Pw(x1, x2, . . . , xl) = Pa1(x1) · · ·Pi(xk)Pi+1(xk+1)Pi(xk+2) · · ·Pal
(xl) .

Under this assumption, the portion of the diagram that contains the edges of weights
xk, xk+1 and xk+2 will necessarily be of the form given below with the xk , xk+1 and
xk+2 edges at heights i, i + 1 and i respectively.

xk+2xk

xk+1

i1

i1

i1

i1 i1 i1

j1

i2 i2

i2 i2

i2 i2

i3 i3 i3

i3

i3

i3

j2

j3

1.2.15

Indeed, if it is i1-line and the i2-line that cross at thew kth step, and if it is the i3-line
that the i1-line crosses at the k + 1st step then the i2 and i3 lines will necessarily cross
at the k + 2nd step. Since, in the line diagram of a reduced decomposition, any two
labelled lines cross only once, we will have i1 < i2 < i3 and the i3, i2 and i1 lines must
respectively end up at levels j1 < j2 < j3 as indicated in the figure. Of course this
means that σj1 = i3, σj2 = i2 and σj3 = i1
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Using this diagram and the recipe given by Theorem 1.2.3, we can easily derive
that the submatrix PJ

w [j1, j2, j3] must be precisely as given below

PJ
w [j1, j2, j3] =


xk+1 xk 1

xk+2 1 0
1 0 0


 . 1.2.16

Note next that if the portion of the product diagram of Pa1(x1)Pa2(x2) · · ·Pal
(xl) given

above, is replaced by the portion given below

xk+2xk

xk+1

i1

i1 i1

i1

i1 i1

j1

i2 i2

i2i2

i2 i2

i3 i3

i3

i3 i3

i3

j2

j3

what we get is precisely the multiplication diagram we can use to compute the matrix

Pw′(x1, x2, . . . , xl) = Pa′
1
(x1) · · ·Pi+1(xk)Pi(xk+1)Pi+1(xk+2) · · ·Pa′

l
(xl) .

On the other hand, the relation in 1.2.7 (modulo J ) gives

Pi+1(xk)Pi(xk+1)Pi+1(xk+2) ∼= Pi(xk+2)Pi+1(xk+1)Pi(xk) (mod J )

This means that we also have

PJ
w′(x1, x2, . . . , xl) ∼= Pa1(x1) · · ·Pi(xk+2)Pi+1(xk+1)Pi(xk) · · ·Pal

(xl)
∼= PJ

w (x1, · · · , xk+2, xk+1, xk, . . . , xl)

In other words PJ
w′(x1, x2, . . . , xl) is obtained from PJ

w (x1, x2, . . . , xl) by interchanging
xk with xk+2. However, in view of 1.2.16 this is precisely a 3-Coxeter transition on k.

It is important to know at this point how the matrix PJ
w (x1, x2, . . . , xl) changes

as we increase or decrease the number of factors. It develops that these changes can be
carried out by a very simple recipe. More precisely we have

Proposition 1.2.2
Let w = a1a2 · · ·ak ∈ RED(σ), and let σj < σj+1 so that w′ = a1a2 · · ·akj ∈

RED(σ × sj), then the transition

PJ
w (x1, x2, . . . , xk) −→ PJ

w′(x1, x2, . . . , xk+1)

is simply obtained by interchanging columns j and j + 1 of PJ
w (x1, x2, . . . , xk) and then

changing the (σj , j)-entry of the resulting matrix to “xk+1”.



1.2 The matrix approach 21

Proof
For convenience letMw andMw′ denote the multiplications diagrams

x
k+1

i

ii'

i'

j+1 �

j+2 �

3 �

4 �

5 �

2 �

1 �

n �

j �

corresponding to w and w′ and let Mw′/w denote the the last two
columns we have to add to Mw to get Mw′ . Since by our assump-
tions we have

Pw′(x1, x2, . . . , xk+1) = Pw(x1, x2, . . . , xk)× Pj(xk+1) ,

the diagram Mw′/w will necessarily be as depicted in the the adja-
cent figure. We have also set there i = σj and i′ = σj+1. Now note
that, when s 	= j or s 	= j + 1, to compute an r, s entry in the matrix
Pw′(x1, x2, . . . , xk+1) we simply follow the same paths as for the com-
putation of the r, s entry of Pw(x1, x2, . . . , xk) up to the first column
of Mw′/w and then proceed to the second column of Mw′/w travers-
ing the horizontal edge at level s. This yields that the sth columns of
Pw′(x1, x2, . . . , xk) and Pw(x1, x2, . . . , xk) are identical. Similarly we see
that, to compute an r, j+1-entry of Pw′(x1, x2, . . . , xk), we must follow a
path ofMw that goes from r to level j and then drop down to level j +1
by following the last step of the i-line inMw′/w. This causes the j + 1st

column of PJ
w′(x1, x2, . . . , xk+1) to be identical with the jth column of

PJ
w (x1, x2, . . . , xk). To compute the r, j-entry of PJ

w′(x1, x2, . . . , xk+1)
we have two sets of paths. Those which inMw go from r to level j and
continue inMw′/w horizontally by traversing the xk+1-weighted edge
(see figure), and those which inMw go from r to level j + 1 and then
climb up to level j by following the last step of the i′-line inMw′/w.

However from the first set of paths only the i-line survives in computation mod
J . The reason for this is,except for the i-line, all the other paths have contributed an
x-entry in PJ

w (x1, x2, . . . , xk) and the continuation across the the xk+1-weighted edge
will make their weight a product of x′s and therefore equal to zero mod J . On the
other hand the i-line in Mw followed by the xk+1-weighted edge will contribute an
xk+1 to the i, j-entry of PJ

w′(x1, x2, . . . , xk+1). Now a path inMw from second set that
goes from an r 	= i to level j + 1, yields the r, j + 1-entry in PJ

w (x1, x2, . . . , xk) and will
cause this entry to move to the r, j position in PJ

w′(x1, x2, . . . , xk+1) as it climbs to level
j inMw′/w .

We have now accounted for all but the i, j-entry in PJ
w′(x1, x2, . . . , xk+1). The

possibility remains that xk+1 may not be the only term there because of some path
from second set that went from i to level j + 1 inMw. However note that since σj = i

there is no “©” or “X” in position i, j + 1 in the circle diagram of σ so the i, j-entry in
Pw(x1, x2, . . . , xk) is necessarily zero and therefore there is no path inMw that joins i

to j + 1. Thus the i, j-entry of PJ
w′(x1, x2, . . . , xk+1) must be xk+1 precisely as asserted.

In the display below we illustrate the sequence of transitions corresponding to
the reduced word w = 24534231 ∈ RED(516324).


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


− 2→




1 0 0 0 0 0
0 x1 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


− 4→




1 0 0 0 0 0
0 x1 1 0 0 0
0 1 0 0 0 0
0 0 0 x2 1 0
0 0 0 1 0 0
0 0 0 0 0 1



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− 5→




1 0 0 0 0 0
0 x1 1 0 0 0
0 1 0 0 0 0
0 0 0 x2 x3 1
0 0 0 1 0 0
0 0 0 0 1 0


− 3→




1 0 0 0 0 0
0 x1 x4 1 0 0
0 1 0 0 0 0
0 0 x2 0 x3 1
0 0 1 0 0 0
0 0 0 0 1 0




− 4→




1 0 0 0 0 0
0 x1 x4 x5 1 0
0 1 0 0 0 0
0 0 x2 x3 0 1
0 0 1 0 0 0
0 0 0 1 0 0


− 2→




1 0 0 0 0 0
0 x4 x1 x5 1 0
0 x6 1 0 0 0
0 x2 0 x3 0 1
0 1 0 0 0 0
0 0 0 1 0 0


 1.2.17

− 3→




1 0 0 0 0 0
0 x4 x5 x1 1 0
0 x6 x7 1 0 0
0 x2 x3 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0


− 1→




x8 1 0 0 0 0
x4 0 x5 x1 1 0
x6 0 x7 1 0 0
x2 0 x3 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0




Since each of these matrix transitions can be reversed, an immediate corollary of
Proposition 1.2.3 is that the word w can be reconstructed from PJ

w (x1, x2, . . . , xl). To
do this we simply carry out the illustrated process in reverse. In particular we obtain
thus a proof that the matrix Pw(x1, x2, . . . , xl) is completely determined by its linear
part. Now it develops that there is an even simpler way, in fact a recipe, for recovering
w from PJ

w (x1, x2, . . . , xl). This result can be stated as follows.

Theorem 1.2.3 (S. Fomin et Al [3])
Let w = a1a2 · · ·al, and for each k ∈ [1, l] let ck denote the number of xs with s > k

that are directly NORTH or SOUTH of xk in PJ
w (x1, x2, . . . , xl) and let rk be the number of

xs with s > k that are directly WEST. This given, if xk is in column jk of PJ
w (x1, x2, . . . , xl)

we necessarily have
ak = jk + ck − rk 1.2.18

Proof
It follows from Proposition 1.2.2 and it is easy to see from the process in 1.2.17 that

if ak = j then xk lands in column j at the moment it is inserted. However, as the process
of construction of PJ

w (x1, x2, . . . , xl) continues, its column changes. Nevertheless we
can easily keep track of what happens. To begin we see that every time an xs with
s > k gets inserted in the column of xk the column number of xk decreases by one.
On the other hand note that if an xs with s > k gets inserted in the row of xs this will
necessarily take place EAST of xk, because to the right of xs we place a 1 and there is
nothing but zeros in PJ

w (x1, x2, . . . , xl) to the right of any 1 ’s. Now the only time when
such an xs passes to the WEST of xk is when xs is immediately to the right of xk and
their columns are interchanged. This causes the column number of xk to increase by
one at that time. Putting all this together we derive that when the transition process
terminates we will find xk in column jk with

jk = ak + rk − ck .

This proves 1.2.18.
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Proposition 1.2.3
Let w = a1, a2, · · · al be a reduced word and let

ak = r and ak+1 = s with |r − s| ≥ 2 . 1.2.19

Let w′ = a′
1, a

′
2, · · ·a′

l be the same as w except in positions k, k + 1 where we have

a′
k = s and a′

k+1 = r 1.2.20

Then the matrix PJ
w′(x1, x2, . . . , xl) is simply obtained from PJ

w (x1, x2, . . . , xl) by making a
2-Coxeter transition on k.

Proof
Let M

(h)
w for a moment denote the matrix obtained after h steps in the construction

process that yields PJ
w (x1, x2, . . . , xl). Likewise let M

(h
w′ be the matrix obtained after

h steps in the construction process that yields PJ
w′(x1, x2, . . . , xl). This given, from

Proposition 1.2.2 and 1.2.19 it follows that xk and xk+1 will respectively be in columns
r and s of M

(k+1)
w . It is also clear that xk+1 is not inserted in the same row as xk because

immediately to the right of xk in M
(k)
w there is a 1.

Now note that since the two columns involved in the insertion of xk do not
overlap with the two columns involved in the insertion of xk+1 we can easily see that
M

(k+1)
w′ will necessarily be identical with M

(k+1)
w except that the positions of xk and xk+1

are interchanged. Consequently, during the remaining part of the insertion processes
yielding PJ

w (x1, x2, . . . , xl) and PJ
w′(x1, x2, . . . , xl) we shall have that M

(h)
w and M

(h)
w′

will remain related by a 2-Coxeter transition and it will be so the end as well proving
our assertion.

We are now finally in a position to establish the following basic result.

Theorem 1.2.4
For any two reduced words w1 and w2 of a permutation σ of length l we can find a

sequence of Coxeter transitions that transform PJ
w1

(x1, x2, . . . , xl) into PJ
w2

(x1, x2, . . . , xl).

Proof
By Theorem 1.1.2 we can pass from w1 to w2 by a sequence of applications of

identities 1.1.17 2) and 3). But now from Propositions 1.1.2 and 1.1.3 we derive that
1.1.17 2) will cause a 3-Coxeter transition on the corresponding matrix and 1.1.17 3)
will cause a 2-Coxeter transition. Thus the theorem is an immediate consequence of
Theorem 1.1.2 and Propositions 1.1.2 and 1.1.3.





2. Balanced Labeled Circle Diagrams

2.1 From matrices to tabloids

The matrix approach of Kassel et. al. has naturally brought us to the general
notion of Balanced Labeled Circle Diagram introduced in [2] and [3]. Although it will
be good to keep in mind the mechanisms that produce the matrices PJ

w (x1, x2, . . . , xl)
it will be more convenient to carry out all our combinatorial constructions and manip-
ulations directly on these tabloids. Roughly speaking, these tabloids are obtained by
filling the circles in the diagram of σ with the labels 1, 2, . . . , l so that “k” is in the same
position as “xk” is in PJ

w (x1, x2, . . . , xl).

To be precise, in view of Theorem 1.2.2, we have the following

Definition 2.1.1
Given a permutation σ of length l, here and after we associate to each word w =

a1a2 · · · al ∈ RED(σ) the tabloid T (w) obtained by placing “k” in the “©” that is in position
(i, j) if and only if the transposition sak

interchanges i with σj .

Now it develops that these tabloids have a very curious characterization. To
state it we need some notation and further definitions. To begin, it will be convenient
to let “CD(σ)” denote the circle diagram of a permutation σ. If σ has length l then
CD(σ) has l circles and a filling of these circles with the labels 1, 2, . . . , l will be called an
“injective” labeling of CD(σ) or briefly an “injective tabloid”. The label in position (i, j)
in the resulting tabloid T will be denoted Tij . We shall of course use matrix convention
to denote location and thus i increases as we go SOUTH and j increases as we go
EAST. As we did for matrices, if T is an injective labeling of CD(σ), we shall denote
by T (j1, j2, . . . , jk) the subdiagram of T that is contained in columns j1, j2, . . . , jk and
rows σj1 , σj2 , . . . , σjk

. We shall also denote by Trs(j1, j2, . . . , jk) the entry that is in the
rth row and sth column of T (j1, j2, . . . , jk).

For a given cell (i, j) ∈ CD(σ) the collection of cells that are directly EAST of
(i, j) is called the “arm” of (i, j). Likewise the collection of cells that are directly SOUTH
of (i, j) is called the “leg” of (i, j). The collection consisting of the cell (i, j) together
with its arm and leg is usually referred to as the “hook” of (i, j), it will be denoted by
“Hij”. A hook Hij of an injective tableau T is said to be “balanced” if and only if the
number of labels in the arm of (i, j) that are smaller than Tij is equal to the number of
labels in the leg that are bigger than Tij . In particular we see that if the labels in Hij

are sorted in increasing order then placed back in Hij starting from the bottom of the
leg then NORTH up to (i, j) then finally EAST along the arm, Tij will necessarily land
right back in its cell. We say that T itself is “balanced” if all its hooks are balanced.

The notions of “arm”, ‘leg”, “hook” and “balanced hook” and “balanced tabloid”
are easily extended to subdiagrams T (j1, j2, . . . , jk). For instance we let the arm
of Tr,s(j1, j2, . . . , jk) be the collection of cells of T (j1, j2, . . . , jk) that are EAST of
Tr,s(j1, j2, . . . , jk). The remaining notions are analogously defined. In particular, we let
Hrs(j1, j2, . . . , jk) denote the hook of Tr,s(j1, j2, . . . , jk). To be precise, Hrs(j1, j2, . . . , jk)
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consists of Tr,s(j1, j2, . . . , jk) together with its arm and leg in T (j1, j2, . . . , jk). Likewise
we say that T (j1, j2, . . . , jk) is balanced if all the hooks Hrs(j1, j2, . . . , jk) are balanced.

It goes without saying that all the results we have established for the matrices
PJ (x1, x2, . . . , xl) can be transfered to the tabloids T (w). We shall use this fact here
and after without necessarily spelling out in detail how this transfer should be carried
out, since it only amounts to making the replacements

“xk” −→ “ k ” , “0” −→ “ • ” , “1” −→ “X” ,

In particular the 3-Coxeter and 2-Coxeter transitions of section 1.2 now become as
indicated below. Namely, 3-Coxeter transitions are simply interchanges in T of 3 × 3-
subdiagrams T (j1, j2, j3) of the form:

k+1

k

k+2 k+1 k

k+2 2.1.1

while 2-Coxeter transitions are substitutions of the form
k

k+1 k

k+1

k

k+1 k

k+1

2.1.2

In the same vein Theorem 1.2.3 may now be stated as

Theorem 2.1.1
For any two reduced words w1, w2 ∈ RED(σ) we can find a sequence of Coxeter

transitions which transform T (w1) into T (w2).

The notion of balanced tabloid arised quite early [2] in the study of reduced
words. The work of Kassel et. al. shows that it has a natural algebraic setting which
beautifully explains its origin. We derive it here as a corollary of Theorem 2.1.1.

Proposition 2.1.1
The tabloids T (w) are all balanced.

Proof
A view of the displays in 2.1.1 and 2.1.2 should make it clear that applying a 2

or 3-Coxeter transition on a balanced tabloid does not destroy balance. At any rate,
note that in the case of the 3-Coxeter transition which goes from left to right in 2.1.1
we see that we are increasing by one the number of entries in the arm of k + 1 that are
less than k + 1 but at the same time we are increasing by one the number of entries in
the leg of k + 1 that are larger than k + 1. Going from right to left in 2.1.1 reverses this
process and cannot affect balance of the hook of k + 1. All the other hooks Hij contain
only k, k + 1 or k + 1, k + 2 and their balance is trivially not affected by either of the
two changes in 2.1.1. Likewise, the balance of a hook is not affected by any of the two
transition in the first part of 2.1.2, for in this case no hook contains both k and k + 1.
As for the transitions in the second part of 2.1.2, note that if Tij 	= k, k + 1 then Tij > k

if and only if Tij > k + 1 and the balance of Hij cannot be affected by this transition.
Similarly, if Tij = k or Tij = k + 1 then replacing k by k + 1 or viceversa cannot affect
the balance of Hij .
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To conclude, note that the tabloid T (wo) of any canonical factorization wo is
necessarily balanced since, by the way T (wo) is constructed (cf. Theorem 1.2.1), all
the labels in the arm of a hook Hi,j are larger than Tij and all the labels in the leg are
smaller. Now when w and wo are reduced words of the same permutation, by Theorem
2.1.1, we can pass from T (wo) to T (w) by a sequence of Coxeter transitions. Since when
wo is canonical T (wo) is balanced, T (w) must be balanced as well since, as we have
seen, all these transitions preserve balance.

We should note that Proposition 1.2.2 yields us an algorithm for constructing our
tabloids T (w) without resorting to multiplication diagrams. In fact, Proposition 1.2.2,
converted to tabloids, may be restated as

Proposition 2.1.2
Let w = a1a2 · · · ak ∈ RED(σ), and let σj < σj+1 so that w′ = a1a2 · · ·ak j ∈

RED(σ × sj), then the transition

T (w) −→ T (w′)

is simply obtained by interchanging columns j and j + 1 of T (w) and then changing the
(σj , j)-entry of the resulting tabloid to “k + 1”.

This result as an immediate converse which may be stated as follows

Proposition 2.1.3
Let w = a1a2 · · · ak j ∈ RED(σ), and let σj > σj+1 so that w′ = a1a2 · · · ak ∈

RED(σ × sj), then the transition

T (w) −→ T (w′)

is simply obtained by interchanging columns j and j+1 of T (w) and then changing the “k+1”
to a “•”.

At this point it is good to have a visual image of these two transformations. For
convenience let “construct” and “deconstruct” denote the transformations described
in Propositions 1.1.2 and 2.1.3. More precisely when w ∈ RED(σ) and σj < σj+1 then

construct
[
T (w), j

]
= T (w j)

and when w = a1a2 · · · ak+1 ∈ RED(σ) then

deconstruct
[
T (a1a2 · · · ak+1)

]
=
(
T (a1a2 · · · ak), j) .

This given we can schematically represent Propositions 2.1.2 and 2.1.3 by the following
displays.

u v

w

j+1j

uv

w

j+1j

construct = k+1
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u v

w

j+1j

deconstruct =

uv

w

j+1j

k+1

Remark 2.1.1
We should note that to apply construct we need to give j and then k is the

largest entry in T (w). To apply deconstruct we locate the largest entry, say it is k + 1
and it lies in the jth column. This given we operate as indicated in the figure and return
the resulting tabloid along with the index “j” .

Now we see that to construct a tabloid T (a1a2 · · · al) we only need to carry l

applications of construct. More precisely, we recursively set

T(a1a2 · · ·ak+1) = construct
[
T(a1a2 · · ·ak), ak+1

]
(for k = 1, 2, . . . , l − 1)

with the initial step
T(a1) = construct

[
To

]
where To is the tabloid that corresponds to the identity permutation. In the following
display we have carried out this algorithm for w = 42132.

1 1

2

1

2

3

1

2 4

3

1

2 4

53

For a moment let us say that a injective labeling T of the circle diagram CD(σ) is
“constructible” if and only if T = T (a1a2 · · ·al) for some a1a2 · · ·al ∈ RED(σ).

We have the following remarkable fact.

Theorem 2.1.2
An injective labeling of the circle diagram of a permutation is constructible if and only if

it is balanced.

Proof (from Kassel et al. [6])
In view of Proposition 2.1.1, we need only prove that every balanced tabloid is

constructible. Let then T be a balanced labelling of the circle diagram of σ and let N be
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the largest label in T . Suppose further that N = Tij . We claim that in position (i, j + 1)
there necessarily is an X . To see this, note that if this were not so then the jth and j +1st

columns of T would have one of the following forms:

j+1

i �

j

or

a

N

j+1

i �

j

bN

Indeed, if the X in column j + 1 were above the ith row then immediately to the left of
it there would have to be a circle because there is no “X” to kill that cell from the left or
above. Now the label in that circle is necessarily a number a < N but that would cause
the hook of a to be unbalanced since there is a label bigger than a SOUTH of a and no
label less than a EAST. In fact no label at all EAST of a because of that adjacent X . This
eliminates the first alternative. In case the X in column j + 1 is below the ith row then
there would have to be a circle in column j + 1 immediately to the right of N because
there is no “X” to kill that cell from the left or from above. Now again in that circle
there would have be a label b < N , but then the hook of N is unbalanced be cause there
is a label smaller than N EAST and no label bigger than N SOUTH. This eliminates the
second possibility. This forces the jth and j + 1st columns to be of the following form

j+1

i �

j

a

N

b

2.1.3

where we claim that every label b above N , in the jth column, has necessarily an
adjacent label a < b in the j +1st column. Clearly, there must be a circle adjacent to b in
the j + 1st column because there is no “X” to kill that cell from the left or from above.
To show that in that circle there is a label a less than b we proceed by contraddiction.
Suppose that the situation is as indicated in 2.1.3 with a > b, and that pair is the lowest
we can find. Let then p be the number of labels, SOUTH of b, that are larger than b. We
have p ≥ 1 because N > b. But then, since T is balanced, there must also be p labels
b1, b2, . . . , bp all less than b in the arm of b.

Now, since a > b all these labels are less than a as well. But then again, since T

is balanced, there must be at least p labels u1, u2, . . . , up larger than a in the leg of a.
However all these labels must fall in circles of column j + 1 that are between the a and
the X . Moreover, the presence of these circles in column j + 1 forces circles adjacent to
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them in column j. Let w1, w2, . . . , wp be the labels that fall in these circles, (indexed so
that wr is to the left of ur). Since we chose b and a to form the lowest pair b < a, we
must have wr > ur > a > b (for r = 1, 2, . . . , p).

In summary, these two columns would the be as depicted in the




j
·
·
·
b
·
·

w1

·
w2

·
·
·

wp

·
·
N
·
·
·
·
·

<

>

>

>

j + 1
·
·
·
a
·
·

u1

·
u2

·
·
·

up

·
·
X
•
•
•
•
•




adjacent figure. But this cannot be since we now see p + 1 labels greater
than b in the leg of b, contrary to our initial choice of p. We have now
proved that T is the form given in 2.1.3 where every pair of adjacent
circles above the pair N, X contain labels b, a with b > a. We claim that
if we apply deconstruct to T the resulting tabloid T ′ will be again a
balanced injective labelling of CD(σ). Indeed a look at the picture below
should make it clear that the only hooks whose collections of labels have
been affected in a significant way are those of a and b. Now a only gains
a label greater than it to the right, this does not affect its rank among the
labels in his hook, so its hook remains balanced. As for b we see that it
loses N > b in its leg but at the same time it loses a < b in its arm. These
losses compensate each other and thus leave the hook of b still balanced.

j+1

=i �

j

a

N

b

j+1

i �

j

a b

deconstruct

We can see now how the proof can be completed. To begin the result is trivially
true for the circle diagram of the identity since there are no circles at all to fill. So we
assume by induction on the number of circles, that all balanced labelings of CD(σ) that
have less circles than T are constructible. Now we see from the figure above that T ′ is, in
fact, a labelling of the circle diagram of the permutation σ×sj . The inductive hypothesis
gives that T ′ is constructible. This given, we must have that T ′ = T (a1, a2, · · ·al−1)
with a1, a2, · · ·al−1 ∈ RED(σ × sj) and a fortiori a1, a2, · · ·al−1 j ∈ RED(σ). Since

construct (T ′, j) = T

We deduce that
T = T (a1, a2, · · · al) (with al = j)

This shows that T is constructible, completing the induction and the proof.

It develops that constructibility, (and now in particular balance) forces a whole
family of restrictions on the labeling.

Definition 2.1.2
Let T be an injective labelling of the circle diagram of a permutation. We shall say that

T is “k-balanced” if and only if all of its k × k-subtabloids are balanced.

Now we have the following remarkable result.
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Proposition 2.1.4
Every constructible tabloid is 3-balanced. In other words each of its 3 × 3 subtabloids

must have one of the following forms with a < b < c:

a a

a

b

a

b

a

cb

a

c

b

2.1.4

Proof
Let T = T (w) with w = a1a2 · · ·al ∈ RED(σ) and let M(a1a2 · · ·al) be the

multiplication diagram for the matrix

Pw(x1, x2, . . . , xl) = Pa1(x1)Pa2(x2) · · ·Pal
(xl) .

Let 1 ≤ i < j < k ≤ l be given indices and let

r = σi , s = σj , t = σk .

Now there are 6 possibilities.

r < s < t , s < r < t , r < t < s , t < r < s , s < t < r , t < s < r ,

In the first case the r, s and t-lines do not cross in M(a1a2 · · · al). In the second case
the s-line and r-line cross and in the third case it is the the t-line and s-line that cross.
Assuming that these crossings occur at time a, we have schematically represented
below, what these conditions imply onM(a1a2 · · · al) and the subdiagram T (i, j, k):

a

ai

j

k

r

s

t

a

i

j

k

r

s

t

i

j

k

r

s

t a

In the fourth and fifth case there are two crossings. Assuming that the first crossing
occurs at time a and the second at time b > a, the fact that any two lines cross only once
forces the line diagrams and implications depicted below:

a bi

j

k

r

s

t a
b a

bi

j

kr

s

t
b

a

In fact, for instance, when when t < r < s we clearly see from the figure that the s and
r lines must cross an even number of times and thus in a line diagram they can only
cross 0 times. This given the t and r lines will necessarily be the first pair to cross.
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Finally, when t < s < r, the t and r lines must cross, and if the time they cross
is b, there still remains two possibilities. Indeed the geometry of these line diagrams
requires the s line to go either over or under the b-crossing (see figure below). In the
first case the t and s line crossing occurs first and the s and r lines cross last. In the
second case the order is reversed. This accounts for the diagrams and implications
depicted below.

i

j

kr

s

t a c
b

a

cba

c

b i

j

kr

s

t

a c
b

This establishes our result.

Now it develops that Proposition 2.1.4 can be reversed.

Proposition 2.1.5
Every 3-balanced injective tabloid is balanced, therefore constructible.

Proof
Let T be given and 3-balanced injective labeling of CD(σ) and let b = Tti. To show

that the hook Hti is balanced we need to show that there is a one to one correspondence
between the labels “a” EAST of b that are less than b and the labels“c”, SOUTH of b ,
that are larger than b. Now, this correspondence is simply obtained from the highest
pattern in 2.1.4. To be precise, let a < b be in position (t, j), with j > i and let the
“X” in row t be in column k > j. This given, from the list in 2.1.4 we deduce that the
subdiagram T (i, j, k) can only be of the form

iii j k

r

s

t a

c

b

with t = σk , s = σj and r = σi. This shows that if b = Tti then the label c > b in the leg
of b that corresponds to a label a < b in position (t, j) will be found in position (σj , i).
This completes the argument.

What now follows by putting together all the results of this section is truly
remarkable.

Theorem 2.1.3
For an injective labeling T of the circle diagram of a permutation σ of length l the

following conditions are equivelent
(i) T is balanced,

(ii) T is constructible,
(iii) T is 3-balanced,
(iv) T is k-balanced for some k = 4, 5, . . . , l,
(v) For some k = 4, 5, . . . , l all the k × k subtabloids of T are constructible.

Proof
We have the following sequence of implications

(i) −→ (ii) −→ (iii) −→ (iv) −→ (v) −→ (iii) −→ (i)
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Indeed if T is balanced then it is constructible by Theorem 2.1.2. If it is constructible
it is 3-balanced by Proposition 2.1.4. If it is 3-balanced all the k × k subtabloids are
necessarily also balanced by Proposition 2.1.5 and so they are salso constructible by
Theorem 2.1.2. But then all the 3 × 3 subtabloids will be balance by Proposition 2.1.4
and then Proposition 2.1.5 yields that T must be balanced.

Remark 2.1.2
We should note that saying “all the k × k subtabloids of T are constructible” is an

abuse of terminology. What we really should say that if we take a k × k subtabloid
T (j1, j2, . . . , jk) with labels a1 < a2 < · · · < am and respectively, replace these labels
by 1, 2, . . . , m the resulting tabloid T ′(j1, j2, . . . , jk) is constructible. For later purposes
it will be good to formalize this operation, refering to it as “downscaling” and set

T ′(j1, j2, . . . , jk) = downscale
(
T (j1, j2, . . . , jk)

)
. 2.1.5

It follows then from Theorem 2.1.3 that if we want to have the list of all possible tabloids
T ′ that may be obtained by downscaling a subtabloid T (j1, j2, . . . , jk) we simply list all
tabloids Tw corresponding to reduced decompositions of permutations in Sk.

We should also keep in mind that we denote by M(a1, a2, · · · , al) the diagram
corresponding to the product

Pa1(x1)Pa2(x2) · · ·Pal
(xl)

We will also informally refer toM(a1, a2, · · · , al) as the “line diagram for w”.

2.2 Descents and Kevin Kadell’s ZIGZAGs

We define the “Descent Set” of a word w = a1a2 · · · al and denote it “D(w)” the
set

D(w) =
{
1 ≤ k < l : ak > ak+1

}
2.2.1

Kevin Kadell discovered a remarkably beautiful way to recover D(w) directly from the
tabloid T (w). To state it we need some notation. Note first that, if the labels k and k +1
are not in the same row or column of the tabloid T (w), then the 2 × 2 subtabloid of
T (w) containing the labels k, k + 1 may have one of the following forms.

a

bk+1 k+1k+1

k k k

bk+1

ka

2.2.2

or
b k+1

k

b k+1

k

b k+1

k a
2.2.3

and, of course, also those that are be obtained from them by interchanging k and k + 1.
Kadell (personal communication) associates to each of these subtabloids a “ZIGZAG”
path, whose midcorners are labelled by k, k + 1, oriented so that k comes before k + 1.
The following display depicts the ZIGZAGs associated to the tabloids in 2.2.2 and 2.2.3.
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a

bk+1 k+1k+1

k k k

bk+1

ka

b k+1

k

b k+1

k

b k+1

k a

2.2.4

The display below shows the ZIGZAGs obtained when we interchange k and k + 1 in
2.2.2 and 2.2.3.

a

k+1

k+1

k

k

b k+1

k aa

k+1

k

k+1

k

bk+1

ka

b k+1

k

a

2.2.5

This given, Kadell’s result may be stated as follows

Theorem 2.2.1
Let σ be of length l and w = a1a2 · · ·al ∈ RED(σ), then a given k is in the descent set

D(w) if and only if one of the following three conditions are satified
(1) k and k + 1 are in the same column of T (w).
(2) k and k + 1 are not in the same row or column of T (w), k is in a lower row than

k + 1 and the corners of their ZIZAG contain no other labels.
(3) k and k +1 are not in the same row or column of T (w) and the labels encountered

in their ZIGZAG are in increasing order.

Proof
We should note that (3) simply means that the ZIGZAG of k and k+1 is given by

one of the patterns in in 2.2.4 and 2.2.5 with a < k and b > k +1. We shall first establish
the result under the assumption that k + 1 is the largest label. More precisely we work
with σ→σ(k+1) = sa1sa2 · · · sak+1 and w→a1a2 · · · ak+1. This given, letting r = ak and
s = ak+1, the last two columns of the line diagram M(w(k+1) can be schematically
represented by one of the four cases depicted in Figure 2.2.6.

Cases A and B occur when |r−s| > 1, cases C and D when |r−s| = 1. Moreover
(ac) Cases A and C occur when k is not a descent, that is we have ak < ak+1

(i.e. r < s).
(bc) Cases B and D occur when k is a descent, that is we have ak > ak+1

(i.e. r > s).
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k+1

k

A

k+1

i1

j1

i2

i3

i4

j2

j3

j4

k+1

B

k

i1

j1

i2

i3

i4

j2

j3

j4

k

C
k+1

i1

j1

i2

i3

j2

j3

k
D

i1

j1

i2

i3

j2

j3

Fig 2.2.6

The indices i1, i2, i3, i4 and j1, j2, j3, j4 are determined as follows

(1) In cases A:
i1 = σ

(k+1)
j2

, i2 = σ
(k+1)
j1

, i3 = σ
(k+1)
j4

, i4 = σ
(k+1)
j3

,

j1 = r , j2 = r + 1 , j3 = s , j4 = s + 1
2.2.7

(2) In cases B:
i1 = σ

(k+1)
j2

, i2 = σ
(k+1)
j1

, i3 = σ
(k+1)
j4

, i4 = σ
(k+1)
j3

,

j1 = s , j2 = s + 1 , j3 = r , j4 = r + 1
2.2.8

(3) In case C we have s = r + 2 and
i1 = σ

(k+1)
j3

, i2 = σ
(k+1)
j1

, i3 = σ
(k+1)
j2

,

j1 = r , j2 = r + 1 , j3 = r + 2 .
2.2.9

(4) In case D we have
i1 = σ

(k+1)
j2

, i2 = σ
(k+1)
j3

, i3 = σ
(k+1)
j1

,

j1 = r , j2 = r + 1 , j3 = s .
2.2.10

It develops that, in case C the labels k and k + 1 are in the same row of the tabloid
T (a1a2 · · · ak+1) and in case D they are in the same column. This is in complete
agreement with with assertion (1) of the Theorem.

To prove this note first that, in case C, if w continue the i1, i2 and i3 lines all the
way to the beginning of the diagramM(a1a2 · · · ak+1) the i1-line cannot intersect either
of the i2 and i3 lines but the i2 and i3 lines can intersect. Now using the assignments in
2.2.9 we can schematically represent these two possibilities by the following diagrams

k+1

ki1 i1

i2

i2i3

i3

j1

j2

j3

j1

j2

j3

a k+1
k

form which we derive the following two possibile forms for the the subtabloid
Tw(k+1)(j1, j2, j3) in case C:
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i1

i2

i3

j1 j2 j3

i1

i2

i3

j1 j2 j3

k k+1 k+1k

a

Likewise from the assignments in 2.2.10 we derive that in case D the portion of
M(a1a2 · · · ak+1) consisting of the i1, i2 and i3 lines can be schematically represented
by one of the following two diagrams

k+1

k
i1

i1i2

i2

i3 i3

j1

j2

j3

j1

j2

j3

a k+1

k

consequently, in this case we get the following two possibile forms for the the subtabloid
Tw(k+1)(j1, j2, j3):

j1 j2 j3 j1 j2 j3

i1

i2

i3

i1

i2

i3

k

k+1

k+1

k a

We show next that in the Cases A and B the labels k and k + 1 are at the corners
of a rectangle with the cooresponding ZIGZAG meeting its labels in increasing order
in Case B and in disorder in Case A. Note that since the word corresponding to Case
A can be obtained from the word corresponding to Case B by interchanging the last
two letters, we derive that the tabloid T (a1a2 · · · ak+1) corresponding to case A can be
obtained from that corresponding to Case B by a 2-Coxeter transition. This implies
that the ZIGZAGs occurring in case A can be obtained from those occurring in case B

by interchanging k and k + 1. Therefore it will be sufficient to show that, in Case B the
ZIGZAGs meet their labels in increasing order. It will then follow that, in Case B, the
ZIGZAGs meet their labels in disorder as asserted.

We can deal with case B as we did for Cases C and D. We start by noting
that, as we follow the i1, i2, i3 and i4 lines from the last three columns of the diagram
M(a1a2 · · · ak+1), all the way back to the beginning, there cannot be any further inter-
sections between the i1 and i2 lines nor between the i3 and i4 lines. This implies that
the indices i1, i2, i3, i4 may be governed only by the following six sets of inequalities:

1) i1 < i2 < i3 < i4 2) i1 < i3 < i2 < i4 3) i1 < i3 < i4 < i2

4) i3 < i1 < i2 < i4 5) i3 < i1 < i4 < i2 6) i3 < i4 < i1 < i2

In Figures 2.2.11 and 2.2.12 we have schematically represented each ensuing diagram
and the corresponding form of the subtabloid Tw(k+1(j1, j2, j3, j4). Here we have omit-
ted filling the circles that are not corners of the ZIGZAG of k and k + 1. We should
note that the label “a”, of course, will always be less that k since the corresponding
intersection occurs before time k.

We have thus established the result in the case that k + 1 is the highest label. To
complete the proof we need only check what happens as we continue the diagram



2.3 Special Circle Diagrams 37

i1

i2

i3

i4

j1 j2 j3 j4

i1

i2

i3

i4

j1 j2 j3 j4

i1

i2

i3

i4

j1 j2 j3 j4

k

k+1

aa
k

k+1
i1

i2

i3

i4

k

k+1
i1

i2

i3

i4

a k

k+1

k

k+1
i1

i2

i3

i4

j1

j2

j3

j4

j1

j2

j3

j4

j1

j2

j3

j4

a k

k+1

Fig 2.2.11

i1

i2

i3

i4

j1 j2 j3 j4

i1

i2

i3

i4

j1 j2 j3 j4

i1

i2

i3

i4

j1 j2 j3 j4

a

k

k+1

i1

i2

i3

i4

a k

k+1

a
k

k+1

i1

j1

i2

i3

i4

j2

j3

j4

j1

j2

j3

j4

j1

j2

j3

j4

a k

k+1

a
k

k+1

i1

i2

i3

i4

a k

k+1

Fig 2.2.12

T (a1a2 · · · ak+1) so as to obtain the final diagram T (a1a2 · · · ak+1ak+2 · · · al). To begin
with we note that in applying “construct“ a “•” can never be changed to a labelled
“O” if it lies below an “X”. This means that the first subtabloid Tw(k+1)(j1, j2, j3, j4) in
2.2.11 namely

i1

j1

i2

i3

i4

j2 j3 j4

k

k+1

will never acquire a labelled circle below k + 1 in the row of k. Moreover if it acquires
a circle in the row of k + 1 above k it will necessarily be with a label b > k + 1
yielding a ZIGZAG with increasing labels. Likewise, in all remaining cases of Figures
2.2.11 and 2.2.12, any labelled circle added to a further corner of the ZIGZAG will
also come with a label b > k + 1. Finally it is easily seen that the transformations
which Tw(m)(j1, j2, j3, j4) undergoes as m increases to l under successive applications
of “construct” cannot change an ordered ZIGZAG to a disordered one for the simple
reason that the label a < k will always remain before k and the label b > k + 1 will
always remain after k + 1 in the ZIGZAG ordering. This completes our argument.
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2.3 Special Circle Diagrams

In this section we introduce several important classes of permutations and derive
some useful properties of their circle diagrams. Before we can proceed we need to make
a few definitions. To begin, for a given σ ∈ Sn we set for 1 ≤ i ≤ n− 1

Ci(σ) =
{

j > i : σj < σi

}
. 2.3.1

The sequence of subsets

C(σ) = [C1(σ), C2(σ), . . . , Cn−1(σ)] , 2.3.2

will be referred to as the “code sequence” of σ. Setting

ci(σ) = #
{

j > i : σj < σi

}
= |Ci(σ)| , 2.3.3

the vector
c(σ) =

(
c1(σ), c2(σ), . . . , cn−1(σ)

)
will be called the “code” of the permutation σ.

Note that we have

ci(σ) ≤ n− i
(
for i = 1, . . . , n

)
, 2.3.4

this is because there are i “X” ’s in the first i columns of CD(σ) that leaves at most n− i

cells in the ith column where we can put a circle. It is also easily seen that every vector
c = (c1, c2, . . . , cn) with non-negative integer components satisfying the inequalities
in 2.3.4 is the code of a permutation σ ∈ Sn. Indeed, the circle diagram CD(σ), and
therefore σ itself are easily reconstructed form c(σ). We start by placing an “O” ’ in each
of the first c1 cells of the first column of CD(σ) followed by an “X” in the c1 + 1st cell.
Then, having placed all the “X” ’s, the “O” ’s and the “•” ’s in the first i− 1 columns,
we fill the ith column by first placing the “•” ’s in each cell that is killed by an “X” to
its WEST, then place the “O” ’s in the first ci available cells followed by an “X” in the
next available cell. Of course here “available cell” means a cell that has not been killed
by a previous “X”. Note that after we filled the n − 1st column, the nth column will
automatically get an “X” in the only remaining available cell. In the display below we
illustrate this construction process when the given code is c = (2, 4, 3, 0, 1, 0) yielding
the permutation σ = 365142.

Let γ be a two-line array

γ =
[

j1 j2 j3 · · · jk

a1 a2 a3 · · · ak

]
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with j1 < j2 < j3 · · · < jk and a1, a2, a3, . . . , ak distinct integers. For a given i =
1, 2, . . . , k let ri(γ) denote the “rank” of ai in the set {a1, a2, a3, . . . , ak}. That is we set
ri(γ) = m + 1 if and only if precisely m of a1, a2, a3, . . . , ak are less than ai. This given,
we shall say that ”γ downscales” to the permutation

r(γ) =
[

1 2 3 · · · k
r1(γ) r2(γ) r3(γ) · · · rk(γ)

]
. 2.3.5

Let σ ∈ Sn and let θ ∈ Sk for some 2 ≤ k ≤ n, we shall say that σ is “θ-avoiding”
if we cannot find indices 1 ≤ j1 < j2 < · · · < jk ≤ n such that the two-line array

γ =
[

j1 j2 j3 · · · jk

σj1 σj2 σj3 · · · σjk

]

downscales to θ.

Remark 2.3.1
It is not difficult to see that a permutation σ is θ-avoiding if and only if there are

no subdiagrams of the circle diagram of σ which are identical to the circle diagram of
θ.

We now have the following remarkable result

Theorem 2.3.1
If a permutation σ is 321-avoiding then

(i) When we remove from CD(σ) all the rows and columns that contain no circles, the
circles in the resulting diagram fill the cells of a French skew Ferrers diagram D.

(ii) For every w ∈ RED(σ) the balanced filling Tw of CD(σ) can be obtained from a
corresponding standard filling τw of D.

(iii) The descent sets of w and τw are identical.

Proof
A French skew diagram D is characterized by the following property

(i1, j1), (i2, j2) ∈ D with i1 ≤ i2 & j1 ≤ j2 −→ (i1, j2), (i2, j1) ∈ D

Thus to prove the first assertion we need only show that no 2×2 subdiagram of CD(σ)
can have any of the following forms

where a shade in a cell signifies absence of a circle. To begin with, it is easily seen
that the first two cases can never occur for a 2 × 2 subdiagram of a circle diagram. To
eliminate the third case let it be possible that the 2× 2 subdiagram of CD(σ) contained
in rows i1, i2 and columns j1, j2 has any of the two forms below

2.3.6

Now in the first case the “•” must be due to an “X” either to the left or above.
However, this “X” together with the “X”’s in column j1 and row i1 yield us one of the
two configurations below
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which yield a 321-pattern that σ is supposed to avoid. Likewise for the second case in
2.3.6 the “X”’s in column j1 and row i1 yield us again a 321 pattern. In either case we
reach a contraddiction. This proves (i).

As for (ii) note that, since σ is 321-avoiding, the two tabloids below

a

cba

c

b

cannot occur as 3× 3 subtabloids of Tw. Thus from Propostion 2.1.4 we derive that the
only remaining possibilities for a 3× 3 subtabloid of Tw are

a a

a

b

a

b

with a < b. This means that for any pair of labels appearing in the same row of Tw the
one to the left is smaller that the one to the right and for any pair of labels that are in the
same column the one below is smaller than the one above. This shows that this filling
can be obtained from (or gives rise to) a standard filling τw of D.

To prove (iii) recall that k is called a “descent” of a french standard tableau if and
only if k +1 is NORTH-WEST of k. This given, we see that if k and k +1 are in the same
row in Tw then k + 1 is to the right k and therefore k is not in the descent set of τw. If k

and k + 1 are in the same column of Tw then k + 1 is above k and therefore k is in the
descent set of τw. Finally, if k and k +1 are not in the same row or column and there are
no other labels in the in the ZIGZAG of k and k + 1 then from (2) of Theorem 2.2.1 we
get that we have a descent at k for w if and only if k +1 is NORTHWEST of k in Tw. This
makes k also a descent of τw. Likewise, if the ZIGZAG of k and k + 1 as some other
labels then from (3) of Theorem 2.2.1 we get that k is a descent of w if and only if the
labels in the ZIGZAG of k and k + 1 are in increasing order. But that again can happen
if and only if k + 1 is NORTHWEST of k in Tw. In any case we see that the assertion in
(iii) is an immediate consequence of Kadell’s Theorem 2.2.1. This completes our proof.

Definition 2.3.1
The decreasing rearrangement of the code of a permutation σ (with all the zero’s omitted)

will be here and after called the “shape of σ” and will be denoted λ(σ).

The following is an important property of the shape.

Proposition 2.3.1
For any permutation σ we have

λ(σ) ≤ λ′(σ−1) 2.3.7

where “≤” represents the dominance partial order. Moreover, equality here holds if and only if
the code sequence C(σ) is totally ordered by set inclusion.



2.3 Special Circle Diagrams 41

Proof
Let σ = σ1σ2 · · ·σn and let M = ‖mi,j‖ni,j=1 with

mi,j =
{

1 if there is a circle in CD(σ) in position (i, j)
0 otherwise

It is easily derived from the definition in 2.3.3 that the column sums of M are c1(σ),
c2(σ),. . . , cn(σ) and the row sums are c1(σ−1), c2(σ−1), . . . , cn(σ−1). Let j1, j2, . . . , jn

be a permutation that rearranges c1(σ), c2(σ), . . . , cn(σ) in decreasing order so that

cj1(σ), cj2 (σ), . . . , cjn(σ)

except for some terminal zeros gives λ(σ). Clearly, the matrix

M ′ =




m1,j1 m1,j2 . . . , m1,jn

m2,j1 m2,j2 . . . , m2,jn)
...

...
...

...
mn,j1 mn,j2 . . . , mn,jn




has the same row sums as M and moreover, for every k = 1, 2, . . . , n , the number of
1’s in the first k columns of M ′ is given by

cj1(σ) + cj2(σ) + · · ·+ cjk
(σ)

Note next that if, in each row of M ′, we push all the 1’s to the left until they are “bumper
to bumper” and likewise push all the zeros to the right, then the number of 1’s in the
first k column of the resulting matrix will be given by the expression

c1(σ−1) ∧ k + c2(σ−1) ∧ k + · · ·+ cn(σ−1) ∧ k

where for convenience we set a ∧ b = min(a, b). This is simply due to the fact that in
row i of M ′ there are ci(σ−1) 1’s altogether and we can’t fit more than k in the first k

columns of any row. Consequently we must have

cj1(σ) + cj2(σ) + · · ·+ cjk
(σ) ≤ c1(σ−1) ∧ k + c2(σ−1) ∧ k + · · ·+ cn(σ−1) ∧ k 2.3.8

Note further that if µ = (µ1, µ2, . . . , µm) is any partition and µ′ = (µ′
1, µ

′
2, . . . , µ

′
m′) is its

conjugate we necessarily have for any k ≤ m′

µ1 ∧ k + µ2 ∧ k + · · ·+ µm ∧ k = µ′
1 + µ′

2 + · · ·+ µ′
k

Thus if k is less than the number of parts in both λ(σ) and λ′(σ−1) we may rewrite 2.3.8
as

λ1(σ) + λ2(σ) + · · ·+ λk(σ) ≤ λ′
1(σ

−1) + λ′
2(σ

−1) + · · ·+ λ′
k(σ−1) .

This shows that λ(σ) is dominated by λ′(σ−1). To prove the last assertion, note that
equality in 2.3.8 for all k can only hold true if and only if none of the 1’s have moved.
Let us take a moment to find out when can this happen. Note first that the way we
constructed M ′, it follows that the 1’s in the rth column of M ′ are in the rows indexed
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by the elements of Cjr (σ) (†). This given, we claim that no motion of 1’s forces the set
inclusions

Cj1(σ) ⊇ Cj2(σ) ⊇ · · · ⊇ Cjn(σ) . 2.3.9

Indeed if any of these containements did not hold then there would be a 1 to the right
of a 0 in M ′ and that 1 would move. This show that equality in 2.3.7 implies that the
components of the code sequence C(σ) are totally ordered by inclusion. Conversely,
if this holds true, then the permutation j1j2 · · · jn that yields cj1(σ) ≥ cj2(σ) ≥ · · · ≥
cjn(σ) ≥will necessarily produce 2.39 as well, and under these conditions there would
be no possible movement of 1’s, forcing equality in 2.38 for all k and equality in 2.3.7
as well. This completes our proof.

Remark 2.3.2
We should point out that the sets Cj(σ) are not totally ordered by inclusion if and

only if there are a pair of indices r < s for which both containements Cr(σ) ⊆ Cs(σ)
and Cs(σ) ⊆ Cr(σ) simultaneously fail. However this will happen if and only if in the
columns r and s the circle diagram CD(σ) contains a 2× 2 subdiagram of the form

2.3.10

note further that locating the two “X”’s that cause these “•” and the “X”’s to the right
and below the second “O” we will necessarily find in CD(σ) a 4× 4 subdiagram of the
form

2.3.11

This given, we arrive at the conclusion that equality holds in 2.3.7 if and only if CD(σ)
contains no such 4×4 subdiagrams. Finally we should add that what we did with C(σ)
we could just as well have done with C(σ−1). Thus we see that the esclusion of 4 × 4
subdiagrams of the form in 2.3.11 is also equivalent to C(σ−1) being totally ordered
by inclusion. Adding the notion of pattern avoidance to all this we may schematically
represent the contents of this remark by the following diagram of equivalences.

σ 2143-avoiding

λ(σ) = λ'(σ−1)−1

C(σ−1)−1C(σ) 2.3.12

This brings us to another remarkable class of permutations:

(†) see definition 2.3.1
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Definition 2.3.2
We say that σ is “Vexillary” if and only if it satisfies any of the equivalent conditions

displayed in 2.3.12.

We should note that this terminology is due to Lascoux-Schützenberger who
apparently used the prefix “Vexill” to express the presence of the “flag” of subsets we
see in 2.3.9.

Remark 2.3.3
Note that if a permutation σ has a 2143 subpattern then it has also a 132 subpat-

tern. Moreover between the “2” and the “1” σ will necessary have a have a descent and
likewise between the “4” and the “3” it will have another descent. This brings us two
important subclasses of Vexillary permutations that play a crucial role in the study of
reduced decompositions.

Definition 2.3.3
A 132-avoiding permutation will be called “Dominant ”.

Definition 2.3.4
A permutation with only one descent will be called “Grassmanian”

These two classes of permutations have further useful characterizations.

Proposition 2.3.2
For a permutation σ ∈ Sn the following conditions are equivalent

(i) σ is dominant
(ii) The circles in CD(σ) fill an english Ferrers diagram.

(iii) The code sequence C(σ) is decreasing.
(iv) The code of σ is weakly decreasing.

Proof
Note that from the definitions in 2.3.1 and 2.3.3 we derive that (ii) is equivalent

to the condition

Ci(σ) = {1, 2, · · · , ci(σ)} with ci(σ) ≥ ci+1(σ) for i = 1, 2, . . . , n− 1 2.3.13

Thus (ii) implies
C1(σ) ⊇ C2(σ) ⊇ C3(σ) ⊇ · · · ⊇ Cn−1(σ) .

Consequently (ii)→(iii)→(iv). We next prove (iv)→(ii) by showing that the condition

ci(σ) ≥ ci+1(σ) for i = 1, 2, . . . , n− 1 2.3.14

implies 2.3.13. We proceed by induction on “i”. Clearly, in any case we have

C1(σ) = {1, 2, · · · , c1(σ)} .

Now note that if Ci(σ) = {1, 2, · · · , ci(σ)} then all the “X” ’s in the first ci(σ) rows of
CD(σ) must be in columns i + 1, i + 2, · · · , n. Thus Ci+1(σ) = {1, 2, · · · , k} if the “X”
in column i + 1 is in a row k ≤ ci(σ). But then |Ci+1(σ)| = ci+1(σ) ≤ ci(σ) forces
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k = ci+1(σ) and completes the induction. Thus (ii), (iii) and (iv) are equivalent. To
complete the argument we show that 132-avoiding is equivalent to (ii). To this end
note that an english Ferrers diagram λ is characterized by the property that all cells
NORTH or WEST of a cell of λ are in λ. Now if one of these conditions fails for CD(σ)
it necessarily follows that CD(σ) must contain one of the subpatterns below

However, if we add the “X” that causes the “•” and add the “X” ’s that are in the
column and row of the “O” we see that CD(σ would necessarily contain one of the
patterns below

forcing σ to have a 132 subpattern. Conversely, we easily see that the presence of a
“132” in σ would prevent the circles of CD((σ) to form a Ferrers’ diagram. In summary
we see that “not (i)” is equivalent to “not (ii)′′. This proves that (i),(ii),(iii) and (iv)
are equivalent as asserted.

Proposition 2.3.3
For a permutation σ ∈ Sn the following conditions are equivalent

(i) σ is Grassmanian with descent at r

(ii) c1(σ) ≤ c2(σ) ≤ · · · ≤ cr(σ) > 0 and ci(σ) = 0 for all i > r.

Proof
Note that for any permutation σ we have

a) ci(σ) > ci+1(σ) ⇐⇒ σi > σi+1

b) ci(σ) ≤ ci+1(σ) ⇐⇒ σi < σi+1

2.3.15

The reason for this is simple. If σi > σi+1, then all the σj less than σi+1 to the right
of σi+1 are also less than σi. Accounting for σi+1 itself, this gives ci(σ) ≥ 1 + ci+1(σ).
Conversely, if σi < σi+1, then all the σj less than σi that are to the right of σi must also
be to the right of σi+1. Thus, in this case, we must have ci+1(σ) ≥ ci(σ) . This given,
we see that the condition

σ1 < σ2 < · · · < σr > σr+1 and σr+1 < σr+2 < · · · < σn

is equivalent to

c1(σ) ≤ c2(σ) ≤ · · · ≤ cr(σ) > 0 and cr+1(σ) = cr+2(σ) = · · · = cn(σ) = 0 .

This proves the proposition.

Remark 2.3.4
Note that if a permutation σ has a 321-subpattern, then it must have at least 2

descents. Indeed, σ will necessarily have descents between the “3” and the “2” and
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between the “2” and the “1”. Thus we see that Grassmanian permutations are also
321-avoiding.

This observation yields us a beautiful corollary of Theorem 2.3.1. It may be stated
as follows.

Theorem 2.3.2
If σ is Grassmanian of shape λ then

(i) For every w ∈ RED(σ) the balanced filling Tw of CD(σ) can be obtained from a
corresponding standard filling τw of the Ferrers diagram of λ′.

(ii) Under this correspondence the descent sets D(w) and D(τw) are reversed. That
is we have D(w) = n−D(τw).

Proof
From Remark 2.3.4 and (i) of Theorem 2.3.1 it follows that the circles of C(σ)

fill the cells of a French skew diagram D. However, since σ is also vexillary from
(ii) of Proposition 2.3.3 we derive that its code sequence is an increasing sequence
of subsets. This forces D to be a “reversed” Ferrers diagram. More precisely, if
λ(σ) = (λ1, λ2, . . . , λk) then the columns of D will have lengths λk, λk−1, . . . , λ1, and
its rows will have lengths λ′

1, λ
′
2, . . . , λ

′
h with λ′ = (λ′

1, λ
′
2, . . . , λ

′
h) the conjugate of

λ(σ). This means that if we rotate D 180 degrees, we will obtain precisely the Ferrers
diagram of the partition λ′. In particular, this rotation gives a correspondence between
the standard fillings of D and the standard fillings of the Ferrers diagram of λ′. To do
this we only need to replace, after rotation, each label k by its complement n + 1 − k.
This given, for w ∈ RED(σ), let Tw be the corresponding standard labeling of CD(σ),
τw be the induced standard labeling of D and finally let τ ′

w be the standard labeling of
the Ferrers diagram of λ′ that we obtain by rotating and complementing τw. It is easily
seen that under the mapping τw −→ τ ′

w an element i of D(τw) is sent onto the element
n − i of D(τ ′

w). Thus Part (ii) of this theorem follows from (ii) and (iii) of Theorem
2.3.1.

From Theorems 2.3.1 and 2.3.4 we may derive two remarkable identities which
essentially go back to R. Stanley’s original paper. To state them we need to introduce
some notation. To begin with, it will be convenient to use compositions to represent
descent sets. More precisely, given a subset

S = {1 ≤ i1 < i2 < · · · < ik < n} ⊆ [1, n]

we set
p(S, n) = [i1 , i2 − i1 , i3 − i2 , . . . , ik − ik−1 , n− ik] 2.3.16

Note that from this notation not only we can recover S but also the interval [1, n] we
are considering S a subset of. This given, for any word w = a1a2 · · · al we shall here
and after set

p(w) = p
(
D(w), l

)
2.3.17

For instance for
w = 23453624 ∈ RED([1, 5, 3, 6, 4, 7, 2])
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we have
D(w) = {4, 6} ⊆ [1, 8]

Thus
p(w) = [4, 2, 2] .

In the same vein for a standard labeling τ of a french or english skew or straight Ferrers
diagram on 1, 2, . . . , n we set

p(τ) = p
(
D(τ), n

)
. 2.3.18

For instance for the french standard tableau

τ =
4 8
3 5 7
1 2 6

the underlined elements are its “descents” thus

p(τ) = [2, 1, 3, 1, 1]

Using this notation we can represent collections of “descent” sets by formal sums of
variables indexed by compositions. More precisely we set for a given σ ∈ Sn

Ξ(σ) =
∑

w ∈RED(σ)

xp(w) 2.3.19

For example we have

RED([3, 4, 2, 1) =
{
[1, 2, 3, 1, 2] , [1, 2, 1, 3, 2] , [2, 1, 2, 3, 2] , [2, 3, 1, 2, 3] , [2, 1, 3, 2, 3]

}
from which we deduce that

Ξ([4, 3, 1, 2]) = x32 + x221 + x131 + x23 + x122 2.3.20

In the same vein, for a french or english straight or skew Ferrers diagram D we set

Σ(D) =
∑

τ∈ST (D)

xp(τ) 2.3.21

where this summation is over all standard labelings of D.
For instance, the standard tableaux of shape (3, 2) with descents underlined are

2 4
1 3 5 ,

2 5
1 3 4 ,

3 4
1 2 5 ,

3 5
1 2 4 ,

4 5
1 2 3 .

and this gives
Σ([3, 2]) = x122 + x131 + x23 + x221 + x32 .

The fact that we get the same expression here as in in 2.3.20 is not an accident. Indeed,
it is a particular case of the main result proved by Stanley in [15]. We can show now
that it is a consequence of Theorem 2.3.2.
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In fact, Theorems 2.3.1 and 2.3.2 yield us the following two general results.

Theorem 2.3.3
(1) If σ is 321-avoiding with associated french skew diagram D then

Ξ(σ) = Σ(D) , 2.3.22

(2) If σ is Grassmanian of shape λ and we let λ also denote the Ferrers diagram of
shape λ then

Ξ(σ) = Σ(λ′) . 2.3.23

Proof
The identity in 2.3.22 is simply another way of stating part (iii) of Theorem 2.3.1.

Now from part (ii) of Theorem 2.3.2 we derive that if σ is Grassmanian then

Ξ(σ) =
∑

τ∈ST (λ)

xp∗(τ)

where, for a composition p = (p1, p2, . . . , pr) we set p∗ denotes the reversed composition
p∗ = (pr, . . . , p2, p1). But then 2.3.23 follows from the fact that for any Ferrers diagram
we have ∑

τ∈ST (λ)

xp∗(τ) =
∑

τ∈ST (λ)

xp(τ) .

It turns out that Grassmanian permutations are also closely related to dominant
permutations. More precisely we have

Proposition 2.3.4
Let σ = σ1σ2 · · ·σn be Grassmanian with descent at r, and shape λ = (λ1, λ2, . . . , λr)

then
σ′ = σrσr−1 · · ·σ1σr+1σr+2 · · ·σn 2.3.24

is dominant of shape

µ = (λ1 + r − 1, λ2 + r − 2, . . . , λr + r − r) 2.3.25

Proof
If

σ1 < σ2 < · · · < σr > σr+1 and σr+1 < σr+2 < · · · < σn

then the code of σ is

c(σ) = (σ1 − 1, σ2 − 2, . . . , σr − r, 0, 0, . . . , 0)

and
λ(σ) = (σr − r, . . . , σ2 − 2, σ1 − 1) . 2.3.26

On the other hand, we derive from 2.3.24 that

λ(σ′) = (σr − 1, . . . , σ2 − 1, σ1 − 1) 2.3.27
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and (iv) of Proposition 2.3.2 gives that σ′ is dominant. The final assertion in 2.3.25
follows by comparing 2.3.26 and 2.3.27.

Now it develops that collections of Grassmanian permutations and in particular
also collections of vexillary permutations can be used to encode certain characteristics
of general permutations. This remarkable discovery of Lascoux and Schützenberger
will be the main topic of the next section.

2.4 The Lascoux-Schützenberger tree of a general permutation.

Before we can proceed with the construction of this tree we need to review a few
basic facts about the so called “Bruhat” partial orders. To begin, let us use the symbol
tij to denote the transposition (i, j). Here and after we shall use the symbol “t” to
refer to a generic such transposition and reserve the letter s to refer to a generic simple
transposition si = (i, i + 1). We also set

T = Tn =
{
tij : 1 ≤ i < j ≤ n

}
and S = Sn =

{
si ; i = 1, 2, . . . , n− 1 } 2.4.1

Note that if
σ′ = σ × t with t ∈ T 2.4.2

then
σ′ = t′ × σ with t ′ ∈ T 2.4.3

Indeed from 2.4.2 we derive that

t′ = σ × t× σ−1

In other words, if 2.4.3 holds with t = tij then 2.4.3 holds with t′ = tσi,σj . Keeping this
observation in mind we set

σ−B→σ′ ⇐⇒




a) σ′ = σ × t with t ∈ T

b) l(σ′) > l(σ)
2.4.4

Note that if t = tij we see that b) simply says that σi < σj . Note further that when
σi < σj we have

l(σ′) = l(σ) + 1 if and only if
{
σi+1, σi+2, . . . , σj−1

}
∩ [σi, σj ] = ∅ 2.4.5

This is simply due to the fact that for any i < k < j such that σk is in the interval [σi, σj ]
the number of inversions of σ increases by 2 as we transpose σi with σj . We shall refer
to “σ −B→ σ′” as a “Bruhat transition ” and as a “simple Bruhat transition ” when 2.4.5
holds true. This given, the transitive closure of the relation “σ −B→ σ′ ”, denoted
“<B” is usually referred to as “Bruhat partial order of Sn”.

Remark 2.4.1
We should note that the “weak Bruhat order”, denoted “<W ” is similarly obtained.

We call “weak Bruhat” transitions interchanges of the form

σ−W→σ′ ⇐⇒




a) σ′ = σ × s with s ∈ S

b) l(σ′) > l(σ) ,
2.4.6
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and then define “<W ” be the transitive closure of weak Bruhat transitions. With this
terminology the reduced decompositions of a permutation σ ∈ Sn may be viewed as
the maximal (unrefinable) chains joining the identity of Sn to σ. The following display
illustrates the difference betwee the weak and strong Bruhat orders of S3.
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s1

s1s2

s2

s2

s2 s2

s2

s1

s1 s1
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s1s2

s2

s2

s2

t13

s2

s2

s1

s1 s1

123

321

132

312

213

231

The following is an important tool for working with Bruhat order.

Proposition 2.4.1 (Exchange Property)
Let σ a permutation of length l and suppose that

w = a1a2 · · · al ∈ RED(σ′) 2.4.7

let
l(σ′) < l(σ) with σ′ = σtrs (r < s) . 2.4.8

Then for some i = 1, 2, . . . , l we have

a) σ′ = sa1sa2 · · · sai−1sai+1 · · · sal
and b) σ = sa1sa2 · · · sai−1sai+1 · · · sal

trs

2.4.9
In particular if l(σ′) = l(σ)− 1 then we also have

w′ = a1a2 · · · ai−1ai+1 · · · al ∈ RED(σ′) 2.4.10

Proof
The assumption in 2.4.8 says that σr > σs. This together with 2.47 yields that in

the line diagramM(a1a2 · · · al) the σr and σs lines cross precisely once. Assuming that
this crossing occurs at time i by the action of sai , then removing sai and trs from the
factorization

σ′ = sa1sa2 · · · sai · · · sal
trs 2.4.11

we simply obtain the factorization in 2.4.9 a) which will then achieve the same end
result. Schematically we may represent the passing from 2.4.11 to 2.4.9 a) as replacing
the line diagram on the left by the one on the right in the following display.
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σs σs
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σr σr σr σr
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50 Chapter 2. Balanced Labeled Circle Diagrams

Clearly 2.4.9 b) follows from 2.4.9 a) and 2.4.8. Finally, since the factorization in 2.4.9
a) has l− 1 factors, the assertion in 2.4.10 will necessarily hold true when l(σ′) = l− 1.
This completes our proof.

Remark 2.4.2
We should note that removing sai from a factorization

σ = sa1sa2 · · · sai · · · sam

may be simply obtained upon multiplication of σ on the right by the transposition

t = samsam−1 · · · sai+1saisai+1 · · · sam−1sam

It will be convenient here and after to denote the omission of a factor by sourrounding
it by square brackets. That is we shall write

σ = sa1sa2 · · · [sai ] · · · sam

for
σ = sa1sa2 · · · sai−1sai+1 · · · sam

As a corollary of Proposition 2.4.1 we obtain.

Proposition 2.4.2
If the permutation σ has the factorization

σ = sa1sa2 · · · sam 2.4.12

Then indices 1 ≤ i1 < i2 < · · · < ik ≤ m can be selected so that

σ = sai1
sai2
· · · saik

2.4.13

gives a reduced factorization of σ.

Proof
If l(σ) = m then 2.4.12 is reduced and there is nothing to prove. If l(σ) < m then

as we compute the successive products

sa1 → sa1sa2 → sa1sa2sa3 → · · ·

sooner or later we will have a drop in length. Letting j +1 be the first time this happens
we will have

l(sa1sa2sa3 · · · saj ) = j and l(sa1sa2sa3 · · · saj+1) = j − 1 .

From the exchange property we then deduce that for some 1 ≤ i ≤ j we will have the
reduced factorization

sa1sa2sa3 · · · saj+1 = sa1sa2 · · · [sai ] · · · saj
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Continuing the successive multiplications

sa1sa2 · · · [sai ] · · · saj → sa1sa2 · · · [sai ] · · · saj saj+2 →
→ sa1sa2 · · · [sai ] · · · saj saj+2saj+3 →· · ·

We may run into another drop in length. If this occurs at time k+1, another application
of the exchange property will yield a reduced factorization of the form

sa1sa2 · · · sak+1 = sa1sa2 · · · [sai ] · · · [saj+1 ] · · · [sar ] · · · sak

We can easily see that if we carry out this process to completion we will end up obtaining
a reduced factorization for σ from an appropriate subword of a1a2 · · · am precisely as
asserted.

The construction of the Lascoux-Schützenberger trees, here and after briefly
referred to as “LS-trees”, depends on performing certain “down-up” transitions of the
form

σ −→ u −→ σ′ 2.4.14

where for some i < r < s we have

a)

{u = σ × trs

l(u) = l(σ)− 1
and b)




σ′ = u× tir

l(σ′) = l(u) + 1
2.4.15

This given, for a fixed u ∈ Sn and 1 ≤ r < n we set

Ψ(u, r) =
{

α ∈ Sn : α = u× trs & l(α) = l(u) + 1 with s > r
}

,

Φ(u, r) =
{

β ∈ Sn : β = u× tir & l(β) = l(u) + 1 with i < r
}

.
2.4.16

Now we have the following truly remarkable identity

Theorem 2.4.1
For every 1 < r < n for which both Ψ(u, r) and Φ(u, r) are not empty we have

∑
α∈Ψ(u,r)

Ξ(α) =
∑

β∈Φ(u,r)

Ξ(β) 2.4.17

The proof of this result will be given in section 3.3 (Theorem 3.3.8). In this section
we shall start by showing that it naturally leads to LS trees and then derive a number of
its important consequences. To this end note that 2.4.17 takes a most interesting form
when Ψ(u, r) or Φ(u, r) contains a single element. The case when |Ψ(u, r)| = 1 can be
stated as follows.

Theorem 2.4.2
Let σ = σ1σ2 · · ·σn ∈ Sn and suppose that for a pair 1 < r < s ≤ n the permutation

u = σtrs satisfies

(1) l(u) = l(σ)− 1.
(2) Ψ(u, r) = {σ}
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(3) Φ(u, r) 	= ∅
Then

Ξ(σ) =
∑

σ′∈Φ(u,r)

Ξ(σ′) 2.4.18

This identity suggests an algorithm for computing the polynomials Ξ(σ). The
idea is that recursive applications of 2.4.18 should enable us to reduce Ξ(σ) to a sum
of Ξ(σ′) which we already know. In view of Theorem 2.3.3, we might hope that we
can force all the σ′’s occurring in the final sum to be Grassmanian or even only 321-
avoiding. It develops that Lascoux and Schützenberger in [11] devised precisely such
an algorithm for the computation of Littlewood-Richardson coefficients. Curiously,
their algorithm (in spite of their claims to the contrary) is hopelessly inefficient as
compared with well known methods. Nevertheless, unbeknown to them at that time,
and unbeknown to many even at this time, the “tree” resulting from their algorithm is
precisely what is needed for an efficient way to compute the polynomials Ξ(σ) as well
as proving some of the fundamental properties of the Stanley symmetric functions.

We shall see that conditions (1) and (2) of Theorem 2.4.2 are easily assured. The
only thing that is needed is a device for assuring condition (3). This is obtained by
means of the following “shift” operation introduced by Lascoux and Schützenberger.
Using Macdonald’s notation this operation may be defined by setting for each σ =
σ1σ2 · · ·σn ∈ Sn and and integer m > 0:

1m ⊗ σ =
[

1 2 3 · · · m 1 + m 2 + m · · · n + m
1 2 3 · · · m σ1 + m σ2 + m · · · σn + m

]
. 2.4.19

The relevancy of this operation for our purposes derives from the following simple
fact:

Proposition 2.4.3
For all σ ∈ Sn and m ≥ 1 we have

Ξ(1m ⊗ σ) = Ξ(σ) 2.4.20

Proof
Note that from 2.4.19 we deduce that

a1a2 · · · al ∈ RED(σ) ⇐⇒ (a1 + m) (a2 + m) · · · (al + m) ∈ RED(1m ⊗ σ) . 2.4.21

Since shifting by a constant each letter of a word does not change its descent set, the
identity in 2.4.20 follows then immediately from the definition in 2.3.19.

The following result is basic in assuring that conditions (1) and (2) of Theorem
2.4.2. are satisfied.

Proposition 2.4.4
Let σ = σ1σ2 · · ·σn and for a triplet 1 ≤ i < r < s ≤ n suppose that σi < σs < σr.

Set u = σ × trs and σ′ = u × tir. Decompose the circle diagrams of σ, u and σ′ as indicated
below
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CD(σ)

σi

σs

σr

i r s

A B C

E F

G

L

H

D

CD(u) CD(σ')

σi

σs

σr

i r s

A B C

E F

G

L

H

D
σi

σs

σr

i r s

A B C

E F

G

L

H

D

2.4.22

where a letter in a square represents the collection of “X” ’s in that open region. Then
(a) Ψ(u, r) = {σ} and (b) σ′ ∈ Φ(u, r) hold true if and only if D = ∅, G = ∅, H = ∅, L = ∅.

Proof
To assure that σ ∈ Ψ(u, r) we must have 2.4.15 a). This requires that σs < σr and

{
σr+1, σr+2, . . . , σs−1

}
∩ [σr, σs] = ∅ , 2.4.23

because any element common to these two sets would produce two additional inver-
sions in the transition u→σ, violating the second part of 2.4.15 a). Now it is easily seen
that 2.4.23 simply means that there are no “X” ’s in the open region denoted by G in
CD(σ), CD(u) and CD(σ′). Similarly, to assure that σ′ ∈ Φ(u, r) we need to have

{
σi+1, σi+2, . . . , σr−1

}
∩ [σi, σs] = ∅ . 2.4.24

and this means that there are no “X” ’s in the open region denoted by D.
Note further that if we had some s′ > s with σs < σs′ < σr then by taking the

one with s′ minimal the permutation u× trs′ would yield us another element of Ψ(u, r).
So to satisfy the uniqueness part of condition (a) we must also require that there be no
“X“ ’s in the open regions denoted by H . Likewise if we had an s′ with r < s′ < s and
σs′ > σr then by taking the one with s′ smallest the permutation u× trs′ would yield us
another element of Ψ(u, r). This accounts for the requirement L = ∅ in CD(σ), CD(u)
and CD(σ′). This completes our argument.

To complete the picture we need to find out for which permutations σ =
σ1σ2 · · ·σn we can find at least one triplet of indices 1 ≤ i < r < s ≤ n for which
the conditions of Proposition 2.4.4 are satisfied. Lascoux and Schützenberger noted the
following very simple solution to this problem.

Theorem 2.4.3
If we choose r to be the last descent of σ = σ1, σ2 · · ·σn and let s > r be the largest index

such that σs < σr, then setting u = σ × trs we shall have Ψ(u, r) = {σ} and there will be at
least one index i < r for which σ′ = u× tir ∈ Φ(u, r) provided

min {σj : j < r } < σs 2.4.25

Proof
To help visualizing these choices of r and s, in the figure below, we have schemat-

ically depicted the behaviour of σ after its last descent.
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σ1 σ2 σi σr• • •

σr+1

σr+2

σs−1

σs

•
•
•

σs+1

σn

•
•
•

• • •

In other words we have assured the inequalities

σr+1 < σr+2 < · · · < σs−1 < σs < σr < σs+1 < σs+2 < · · · < σn 2.4.26

In the same vein the permutation u = σ × trs which here and after is denoted “u(σ)”,
may be depicted as indicated below

σ1 σ2 σi σs• • •

σr+1

σr+2

σs−1

•
•
•

σr
σs+1

σn

•
•
•

• • • 2.4.27

Now it is not difficult to see that the inequalities in 2.4.26 guarantee the conditions
G = H = L = ∅ for CD(σ) and CD(u(σ)) assuring that Ψ(u(σ), r) = {σ}. Now, if the
condition in 2.4.25 is satisfied then by chosing the largest i < r for which σi < σs we
will have

{σi+1, σi+2, . . . , σr−1} ∩ [σi, σs] = ∅

assuring that σ′ = u(σ)× tir ∈ Φ(u(σ), r). This completes our argument.

This result shows that when condition 2.4.25 is satisfied we are able to express
Ξ(σ) as in 2.4.18 with u = u(σ). But what are we to do if

σ1, σ2, . . . , σr−1 > σs 2.4.28

Lascoux and Schützenberger have a simple answer also in this case: They simply
replace σ by

1⊗ σ =
[

1 2 3 · · · n + 1
1 1 + σ1 1 + σ2 · · · 1 + σn

]

Indeed, since the last descent of 1⊗ σ is now at r + 1 and

u(1⊗ σ) = 1⊗ u(σ)

we can easily see that we have

l(u(1⊗ σ)) = l(1⊗ σ)− 1

as well as
Ψ
(
u(1⊗ σ), r + 1

)
=
{
1⊗ σ

}
Now the inequalities in 2.4.28 can also be rewritten as

1 + σ1, 1 + σ2, . . . , 1 + σr−1 > 1 + σs
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and these yield that the permutation

σ′ = u(1⊗ σ)× t1,r+1 2.4.29

belongs to the set
Φ(u(1⊗ σ), r + 1) .

Moreover, it is easy to see that σ′ is the only element of this set. Thus we can apply
Theorem 2.4.2 to this case and derive from 2.4.18 that

Ξ(σ) = Ξ(u(1⊗ σ)× t1,r+1) 2.4.30

We now have all the ingredients we need for the construction of the LS trees.

The Branching Process for σ = σ1σ2 · · ·σn:

Step 1: Locate the last descent of σ. If this occurs at r then let s be the largest index such
that s > r and σs < σr .

Step 2: Let u = σ × trs = σ1, σ2 . . . σr−1 σs σr+1 · · ·σs−1 σr σs+1 · · ·σn.
Step 3: Case a) If Φ(u, r) 	= ∅ then the children of σ are the permutations σ′ ∈ Φ(u, r) .

Case b) If Φ(u, r) = ∅ then σ has only one child, namely σ′ = u(1⊗σ)× t1.r+1.

Definition 2.4.1
The LS tree of a permutation σ is the tree obtained by recursive calls of the branching

process described above starting with σ and stopping the recursion at every child that is
Grassmanian.

To show that this construction always yields a finite tree, Lascoux and Schützen-
berger produce the following beautiful estimate for the length of any downward path
in the LS tree of a permutation.

Proposition 2.4.5
Let σ be a permutation of length l and let do(σ) and d1(σ) denote the first and last

descents of σ. Assume that for the following chain of permutations

σ = σ(1)→σ(2)→· · ·→σ(N)

we have
(a) Each is a child of the previous one,
(b) None of them is Grassmanian,

then
N ≤ l ×

(
d1(σ)− do(σ)

)
2.4.31

Before we prove this result it will be good to experiment with the construction
of a number of LS trees and understand how simple the process really is.

To begin let us make more explicit our construction of the children of σ. To this
end note that in Case a) the children of σ are the permutations σ′ = u × tir for each
i < r such that

σi < σs &
{
σi+1, σi+2, . . . , σr−1

}
∩ [ σi , σs ] = ∅ ,
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and when this holds

σ′ = σ1, σ2 · · ·σi−1 σs σi+1 · · ·σr−1 σi σr+1 · · ·σs−1 σr σs+1 · · ·σn. 2.4.32

In Case b), the unique child σ′ = u(1⊗ σ)× t1,r+1 is none other than the permutation

σ′ =
[

1 2 3 ··· r r+1 r+2 ··· s s+1 s+2 ··· n+1

σs σ1 σ2 ··· σr−1 1 σr+1 ··· σs−1 σr σs+1 ··· σn

]
2.4.33

with the understanding that x = x + 1 .

For our first example we take the permutation σ = 2671536, which has a simple
but not entirely trivial LS tree. In the figure below we depict this tree with a circle
diagrams appended at each leaf.

2 6 7 1 5 3 4

4 6 7 1 2 3 52 6 7 4 1 3 5

3 6 7 2 1 4 5

2 4 7 8 1 3 5 6

Note then that multiple applications of the identities in 2.4.18 and 2.4.30 give us the
relations

Ξ(2671534) = Ξ(2674135) + Ξ(4671235)

Ξ(2674135) = Ξ(3672145)

Ξ(3672145) = Ξ(24781356)

On the other hand since 24781346 and 4671235 are Grassmanian of shapes [4421] and
[443], from Theorem 2.3.3 we derive that

Ξ(24781356) = Σ([4322]) , Ξ(4671235) = Σ([3332])

Combining all these identities we derive that

Ξ(2671534) = Σ([4322]) + Σ([3332])

Thus, in particular it follows that the number of reduced decompositions of 2671534 is
equal to the number of standard tableaux of shapes [4421] and [443].

We can easily see from this example that the relations in 2.4.18 and 2.4.30 com-
bined with Theorem 2.3.3 yield us the following general result



2.4 The Lascoux-Schützenberger tree of a general permutation. 57

Theorem 2.4.4
On the validity of Theorem 2.4.1 and Proposition 2.4.5, for any permutation σ, we have

the expansion
Ξ(σ) =

∑
σ′∈LeavesLS(σ)

Σ
(
λ′(σ′)

)
2.4.34

where the symbol “σ′ ∈ LeavesLS(σ)” is to indicate that the summation is over the leaves of
the LS tree of σ.

We shall take as our next example the permutation σ = 24156837. To follow step
by step the operations that yield the LS tree of this permutation, in the display below
we have placed under each σ the permutation u(σ) or u(1⊗ σ) as the case may be, and
right below we display the offspring. The circled indices are those that get transposed
as we pass from a σ to its corresponding u(σ). Finally under each Grassmanian leaf σ′

we draw the Ferrers diagram of the partition λ′(σ′).

2 4 1 5 6 38 7

2 4 1 5 6 37 8

2 4 1 5 7

7

86 3

2 4 1 5 83 6

3 4 1 5 8

8

27 6

3 4 1 5 26 7
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Thus from Theorem 2.4.4 we derive that

Ξ(34156837) = Σ([5, 2]) + Σ([5, 1, 1]) + Σ([4, 3]) + Σ([4, 2, 1]) 2.4.35

This example is particularly interesting since the permutation 34156837 is 321-avoiding
with corresponding diagram the French skew partition [5, 5, 2]/[4, 1]. Now it develops
that the skew Schur function S[5,5,2]/[4,1] has the Schur function expansion

S[5,5,2]/[4,1] = S[5,2] + S[5,1,1] + S[4,3] + S[4,2,1] 2.4.36

The fact that the right hand sides of 2.4.35 and 2.4.36 are essentially identical is not
an accident. In fact it is only an instance of the general fact discovered by Lascoux
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and Schützenberger that the LS tree can be used to compute Littlewood-Richardson
coefficients.

For the final example we have chosen σ = 4321. Here, to save space, we have de-
picted the LS tree horizontally. In particular the permutations must be read from top to
bottom. We have depicted the circle diagrams of the starting and ending permutations.

3 3

4 4

5 5

2 2

1 1

3 4

1 2

2 1
4 3

5 5

3 3

4 4

1 2

2
6

1

2

5

3

4

1

We should notice two important facts. First we see here a case when each parent has a
single child. This not an accident. As we shall soon see this is always true for vexillary
permutations. Secondly we might guess that for the general reversing permutation

σ(n) =
[

1 2 · · · n− 1 n
n n− 1 · · · 2 1

]
,

which is dominant of shape [n−1, n−2, . . . , 2, 1], the Grassmanian permutation which
is the single leaf of its tree has always an associated French skew diagram obtained as
180o rotation of of the diagram of [n − 1, n− 2, . . . , 2, 1]. We leave the proof of this to
the reader and derive from Theorem 2.3.3 the following result which essentially goes
back to Richard Stanley.

Theorem 2.4.5
For the top permutation σ(n) ∈ Sn we have

Ξ(σ(n)) = Σ([n− 1, n− 2, . . . , 2, 1])

In particular the number of reduced decomposition of σ(n) is equal to the number of standard
tableaux of “staircase” shape [n− 1, n− 2, . . . , 2, 1].

Our next task is the proof of Proposition 2.4.5. However before we do this
we need some preliminary observations and an auxiliary result. To begin, given a
permutation σ, it will be good to distinguish children σ′ resulting from Case a) of the
branching process from those resulting from Case b). We shall call the former “regular”
children and the latter “lateral” children.

It will be good to order regular children σ′ = u(σ) × tir according to increasing
i. More generally, under the hypotheses of Proposition 2.4.4 let

Φ(u, r) =
{
u× ti1,r , u× ti2,r , · · · , u× tim,r

}
with i1 < i2 < · · · < im. Then it is easy to see that we must also have

σi1 > σi2 > · · · > σim 2.4.37

for otherwise the condition in 2.4.24

{σi+1, σi+2, . . . , σr−1} ∩ [σi, σs] = ∅
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assuring that σ′ = u× tir ∈ Φ(u, r) would be violated. This given we see that im must
be the last index i < r such that σi < σs. Following Lascoux and Schützenberger we
shall call u× tim,r the “leader” of Φ(u, r).

Remark 2.4.3
For our later purposes it will be good to note that σ′ = u × ti,r is the leader of

Φ(u, r) if and only if σi < σs and

σi+1, σi+1, . . . , σr−1 > σs 2.4.38

The following two auxiliary results will provide us with the necessary ingredients
for the proof of Proposition 2.4.5.

Lemma 2.4.1
Let σ = σ1σ2 · · ·σn and suppose that for a triplet 1 ≤ i < r < s ≤ n we have

σi < σs < σr . Suppose that for u = σ × trs and σ′ = u× tir we have

Ψ(u, r) = {σ} , σ′ ∈ Φ(u, r) . 2.4.39

Then
Ψ(u−1, σs) = {σ−1} , σ′−1 ∈ Φ(u−1, σs) 2.4.40

and
a) λ(σ) ≤ λ(σ′) b) λ′(σ′−1) ≤ λ′(σ−1) 2.4.41

with equality in a) if and only if σ′ is the leader of Φ(u, r) and equality in b) if and only if σ′−1

is the leader of Φ(u−1, σs).

Proof
From Proposition 2.4.4 we derive that the conditions in 2.4.39 hold if and only if

the circle diagrams of σ, u and σ′ are of the form given below.

CD(σ)

σi

σs

σr

i r s

A B C

E F

CD(u) CD(σ')

σi

σs

σr

i r s

A B C

E F
σi

σs

σr

i r s

A B C

E F

2.4.42

Since the empty sets are symmetrically located with respect to the main diagonal of
these diagrams we derive from Proposition 2.4.4 that the conditions in 2.4.39 and 2.4.40
are equivalent. Thus we only need to prove the inequalities in 2.4.41. Letting a, b, c, e, f

denote the cardinalty of the sets A, B, C, E, F we immediately deduce, by counting the
number of circles in columns i, r and s of CD(σ) that

ci(σ) = a + b + c , cr(σ) = b + c + e + f + 1 , cs(σ) = c + f . 2.4.43
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Doing the same for CD(σ′) we obtain

ci(σ′) = a + b + c + 1 + e + f , cr(σ′) = b + c , cs(σ′) = c + f . 2.4.44

Since the changes needed to get CD(σ′) from CD(σ) involve only columns i, r and s

we see that we have
cj(σ) = cj(σ′) for j 	= r, s

Now we need to distinguish two cases according as

a) a > e + f + 1 or b) a ≤ e + f + 1 .

In the first case ci(σ) > cr(σ) and 2.4.44 shows that to obtain the Ferrers diagram of
λ(σ′) from the Ferrers diagram of λ(σ) we simply transfer 1+ e+ f cells from a smaller
row to a larger row. In the second case ci(σ) ≤ cr(σ) and to obtain the transition
λ(σ)→λ(σ′) we need to transfer a cells again from a smaller row to a larger row. So in
either case the transfer will cause λ(σ′) to be larger than λ(σ) in the dominance order.
This proves a) of 2.4.41. Now because of 2.4.2, we can apply this very same inequality
to the triplet σ−1, u−1, σ′−1 and obtain

λ(σ−1) ≤ λ(σ′−1) . 2.4.45

This proves 2.4.41 b), since passing to conjugates reverses dominance.
Finally, from 2.4.43 and 2.4.44 we see that in any case we have

cr(σ) > cr(σ′) . 2.4.46

Thus equality in 2.4.41 a) can only occur if and only if cr(σ) = ci(σ′) and ci(σ) = cr(σ′).
This shows that equality holds if and only if a = 0. Now a look at the diagrams in
2.4.42 reveals that a = 0 occurs if and only if

σj > σs ∀ i < j < r

But this is 2.4.38 which, from Remark 2.4.3, is precisely the condition that characterizes
a leader of a collection Φ(u, r). This given, note that since equality in in 2.4.41 b) holds
if and only if we have equality in 2.4.45, we see that the finall assertion simply follows
by applyng what we have just shown to the triplet σ−1, u−1, σ′−1. This completes the
proof.

Lemma 2.4.2
If σ′ is a child of a non-Grassmanian σ then

d1(σ′)− do(σ′) ≤ d1(σ)− do(σ) , 2.4.47

and, in case of equality we then have

cd1(σ′)(σ′) < cd1(σ)(σ) . 2.4.48
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Proof
Since a lateral child of a permutation σ is a regular child of 1⊗σ, and we trivially

have
a) d1(1⊗ σ) = d1(σ) + 1

b) do(1⊗ σ) = do(σ) + 1

c) cd1(1⊗σ)(1 ⊗ σ) = cd1(σ)(σ)

we can easily see that we need only prove 2.4.47 and 2.4.48 for regular children. This
given, let us assume that σ′ is a regular child of σ. Now under this hypothesis we will
actually show that

a) do(σ) ≤ do(σ′) and b) d1(σ′) ≤ d1(σ) . 2.4.49

To this end, recall that in this case we have u = u(σ) = σ × trs, σ′ = u(σ) × tir with
r = d1(σ) (the last descent) and again 1 ≤ i < r < s ≤ n with σi < σs < σr. In
summary

σ = σ1 · · ·σi−1σiσi+1 · · ·σr−1σrσr+1 · · ·σs−1σsσs+1 · · ·σn

and
σ′ = σ1 · · ·σi−1σsσi+1 · · ·σr−1σiσr+1 · · ·σs−1σrσs+1 · · ·σn

In particular
σj = σ′

j for j 	= i, r, s .

Thus if do(σ) < i − 1 then do(σ′) = do(σ) and similarly we will have do(σ) = do(σ′) if
i < do(σ) < r−1. If do(σ) = i−1 we may have destroyed the descent at i−1 by placing
σs > σi in position i, giving do(σ′) > do(σ). Otherwise we again have do(σ′) = do(σ).
If do(σ) = i then the inequalities

σ′
i = σs > σi > σi+1 = σ′

i+1

give do(σ′) = i as well. But what if do(σ) > i (that is σi < σi+1) and σi+1 < σs. Now
this cannot happen for otherwise the condition

{σi+1, σi+2, . . . , σr−1} ∩ [σi, σs] = ∅

assuring that σ′ = u × tir ∈ Φ(u, r) would be violated. Since by assumption σ is not
Grassmanian we must have do(σ) < r, thus we are only left to check what happens
when do(σ) = r − 1. That is if σr−1 > σr. However in this case the inequalities
σr > σs > σi guarantee that r− 1 remains a descent as we pass from σ to σ′ completing
the proof of 2.4.49 a). To prove 2.4.49 b) note that the picture in 2.4.27 clearly shows
that neither u(σ) nor σ′ have a descent after position r. So we only need to check what
happens at r itself. To this end note that since σ′

r = σi and σ′
r+1 = σr+1 we see that we

have d1(σ′) = d1(σ) only if the picture is as in 2.4.27 and σi > σr+1. For if σi < σr+1

or worse yet if σ has no elements between positions r and s, (that is if s = r + 1) then
σ′

r+1 = σr > σs > σi > σ′
r destroys the descent at r and we will have d1(σ′) < d1(σ).
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Finally since the computations in the proof of Lemma 2.4.1 apply to the present
case as well we see that the inequality in 2.4.46 holds true here with r = d1(σ). In other
words we have in any case

cd1(σ)(σ′) < cd1(σ)(σ) .

However, this inequality reduces to 2.4.48 when d1(σ) = d1(σ′) and this certainly
happens when 2.4.47 reduces to an equality. In fact from 2.4.49 a) and b) we can see
that 2.4.47 can be an equality only if we have both d1(σ′) = d1(σ) and do(σ′) = do(σ).
This completes our proof.

We now have all the ingredients we need to carry out the final step in the definition
of the LS tree.

Proof of Proposition 2.4.5
Let us associate to the member σ(i) of the chain

σ = σ(1)→σ(2)→· · ·→σ(N)

the point
P (i) =

(
cd1(σ(i))(σ

(i)) , d1(σ(i))− do(σ(i))
)

.

Note that, since the components of the code of a permutation never exceed its length,
and all the descendants of a permutation have the same length we see that we must
have

1 ≤ cd1(σ(i))(σ
(i)) ≤ l for i = 1, 2, . . . , N . 2.4.50

Note further that, since none of the σ(i) are Grassmanian, we necessarily have

1 ≤ d1(σ(i))− do(σ(i)) for i = 1, 2, . . . , N . 2.4.51

Moreover, we can apply Lemma 2.4.2 to each transition σ(i)→σ(i+1) and, by successive
applications of the inequality in 2.4.47, derive that

d1(σ(i))− do(σ(i)) ≤ d1(σ)− do(σ) for i = 1, 2, . . . , N . 2.4.52

Combining 2.4.50, 2.4.51 and 2.4.52 we obtain that each of the points P (i) lies in the
rectangle

S(σ) =
{
(x, y) : 0 ≤ x ≤ l & 1 ≤ y ≤ d1(σ) − do(σ)

}
.

Since S(σ) contains l× (d1(σ)−do(σ)) lattice points, we see that to prove the inequality
in 2.4.31 we need only show that the points P (i) are all distinct. Actually we can do
more than that. Indeed, note that from Lemma 2.4.2 we derive that either

d1(σ(i+1))− do(σ(i+1)) < d1(σ(i))− do(σ(i))

or
d1(σ(i+1))− do(σ(i+1)) = d1(σ(i))− do(σ(i))

but then 2.4.48 gives
cd1(σ(i+1))(σ

(i+1)) < cd1(σ(i))(σ
(i)) .
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Thus the point P (i) keeps moving to the left as it remains in any given row of S(σ),
This means that after at most l steps we will necessarily have the inequality

d1(σ(i+1))− do(σ(i+1)) < d1(σ(i))− do(σ(i))

which will cause P (i) to skip to a lower row. In summary, we see that P (i), as i =
1, 2, . . . , N , skips from lattice point to lattice point precisely in a strictly decreasing
lexicographic manner and thus N cannot exceed the number of lattice points in S(σ).

The last result of this section is the following (anticipated) beautiful consequence
of Theorem 2.4.4.

Theorem 2.4.6
If σ is vexillary then its LS tree reduces to a chain of vexillary permutations ending with

a Grassmanian. In particular it follows that

Ξ(σ) = Σ
(
λ′(σ)

)
2.4.53

Proof
Let σ be any vexillary permutation and let its children be given by the collection

Φ(u, r) =
{
u× ti1,r , u× ti2,r , · · · , u× tim,r

}
with r = d1(σ) and i1 < i2 < · · · < im. Then we have seen (2.4.37) that we must also
have

σi1 > σi2 > · · · > σim

However our construction also requires that

σr > σs > σi1

and the elements σi1 , σi2 , σr, σs occur in σ precisely in this order. This means that if
k ≥ 2 then σ would contain a 2143 subpattern which is contrary to our assumption that
σ is vexillary. Thus vexillary permutations have only one child, regular or lateral.

Now, recalling (see 2.3.12) that a vexillary permutation σ is characterized by the
equality λ(σ) = λ′(σ−1), we derive from the inequalities in 2.4.41 that the child of a
vexillary must also be vexillary and of the same shape as well. This means that the
Grassmanian leaf σ′ of the LS tree of a vexillary σ will necessarily also have shape λ(σ).
Thus the equality in 2.4.53 is simply another consequence of Theorem 2.3.3.





3. Symmetric Functions and Schubert Polynomials.

3.1 Stanley’s Theory of P-Partitions

In these note a partially ordered set (briefly a poset) is a pair
{
Ω , �) consisting

of a finite set Ω and a partial order “�” of the elements of Ω. It will be convenient here
and after to let n be the number of elements of Ω. For a given poset P =

{
Ω , �) we let

FP denote the family of integer valued weakly increasing function in P . In symbols

FP =
{
f : Ω→N : x � y ⇒ f(x) ≤ f(y)

}
.

The elements of FP are usually referred to as “P-Partitions”. More generally, given an
integral injective labelling ω of Ω we let FP,ω denote the subfamily consisting of those
elements of FP which strictly increase when ω decreases. In symbols

FP,ω =
{
f ∈ FP : x ≺ y & ωx > ωy ⇒ f(x) < f(y)

}
. 3.1.1

The elements of FP,ω are called “ω-Compatible P-Partitions”.

It will be convenient sometimes to keep these families finite and restrict their
elements to take only the values 0, 1, 2, . . . , N , for some unspecified very large integer
N . In this vein set

FP(N) =
{
f ∈ FP : 0 ≤ f ≤ N

}
, FP,ω(N) =

{
f ∈ FP,ω : 0 ≤ f ≤ N

}
.

3.1.2
This given , to each element f ∈ FP,ω we associate a monomial x(f) in the

variables x1, x2, x3 . . . which is to carry information as to the multiset of values taken
by f . More precisely we set

x(f) =
∏
r∈Ω

xf(r) =
∏

i

x
mi(f)
i 3.1.3

where for i ∈ N, the integer mi(f) denotes the number of times f takes the value i.
Extending an idea of MacMahon, Stanley obtained a number of identities con-

cerning the generating functions

FP,ω(x1, x2, . . . xN ) =
∑

f∈FP,ω(N)

x(f) . 3.1.4

The main goal of this section is the derivation of some of the identities that are pertinent
to our study of reduced decompositions.

The first step is to obtain an expression for FP,ω that more closely reflects its de-
pendence on the poset P and its labeling ω. The basic idea is to obtain a decomposition
of each element f into a pair (σ(f), p(f)) consisting of a permutation σ = σ1σ2 · · ·σn

and a composition p = (p1, p2, · · · , pn). To this end, let f ∈ FP,ω(N) take the values

v1 < v2 < · · · < vk
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and set
Ai = {x : f(x) = vi } . 3.1.5

Since Ω has a n elements, there is no loss to assume that the given labeling ω takes the
values 1, 2, . . . , n. For simplicity it will also be convenient to denote the elements of
Ω by their labels. This given, the permutation σ(f) is simply obtained by reading the
elements of A1, A2, . . . , Ak successively. More precisely we set

σ(f) = ↑ω A1 ↑ω A2 · · · ↑ω Ak . 3.1.6

Where the symbol “↑ω Ai” denotes the word obtained by reading the elements of Ai in
increasing order. Now, given that σ = σ1σ2 · · ·σn we simply set p(f) = (p1, p2, . . . , pn)
with

p1 = f(σ1) and pr = f(σr)− f(σr−1) (for r = 2, . . . , n) . 3.1.7

This construction is best understood by an example. Let P be the poset depicted below
with the partial order indicated by the arrows and the labeling ω indicated by the
integers placed in the circles. We have also given an instance of a particular element
f ∈ FP,ω(N) by placing its value above each of the circles.

3

35
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2

2

1

5

6

7

2

1

4

3
3.1.8

In this case our definition gives

A1 = {5} , A2 = {2, 6, 7} , A3 = {3, 4} , A4 = {1} . 3.1.9

thus 3.1.6 gives
σ(f) = 5.267.34.1

Here we have indicated by dots the positions of the descents of the resulting permuta-
tion. Following 3.1.7 we then obtain

p(f) = (1, 2− 1, 2− 2, 2− 2, 3− 2, 4− 3, 5− 3) = (1, 1, 0, 0, 1, 1, 2) . 3.1.10

To state the basic result of the Stanley Theory of P-partitions we need some
notation. To begin, given a poset P = (Ω,�), the linear extensions of the partial
order “�” will be briefly referred to as the “Standard Orders of P”. If P has been
given an injective labeling ω by the numbers 1, 2, . . . , n , then by reading its labels
according to standard orders of P we obtain a collection of permutations σ ∈ Sn.
Here and after we will call these permutations “ω-Standard” and we will denote their
collection by “STω(P)”. Finally, given a permutation σ = σ1σ2 . . . σn a composition
p = (p1, p2, . . . , pn) will be called “σ-compatible” if its components satisfy the inequalities

pn ≥ 0 &




pr+1 ≥ 1 if σr > σr+1

pr+1 ≥ 0 otherwise
for r = 1, 2, . . . , n− 1 3.1.11
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Since this condition essentially says that p majorizes the descent set of σ translated by
1 we will briefly express it by writing

“ p >> 1 + D(σ) ′′

We now have the following fundamental fact.

Theorem 3.1.1
Let P = (Ω,�) be a poset with an injective labeling ω by the integers 1, 2, . . . , n. Then

the map f→
(
σ(f), p(f)

)
defined by 3.1.6 and 3.1.7 is a bijection between the family FP,ω and

the collection C(P , ω) of pairs (σ, p) where σ is ω-standard and p is σ-compatible. In symbols

C(P , ω) =
{
(σ, p) : σ ∈ STω(P) & p >> 1 + D(σ)

}
3.1.12

Proof
For a given f ∈ Fω(P) let σ(f) = σ1σ2 · · ·σn. Identifying the elements of Ω with

their labels 1, 2, . . . , n , to show that σ(f) ∈ STω(P) we need only verify that

σr ≺ σs ⇒ r < s 3.1.13

Now recalling the construction that led to 3.1.6, we see that if f(σr) = f(σs) then the
definition in 3.1.2 yields that σr < σs. Moreover, σr and σs must lie in the same set Ai.
But then σr must come before σs giving r < s as desired. If f(σr) 	= f(σs) then σr ≺ σs

forces f(σr) < f(σs) and this means that σr ∈ Ai and σs ∈ Aj with i < j, so we must
again have r < s. This proves 3.1.13.

To show that p(f) satisfies 3.1.11 note that, by its very construction, the descents
of the permutation σ(f) can only occur between two successive words “↑ω Ai” and
“↑ω Ai+1”. But if σr ∈ Ai and σr+1 ∈ Ai+1 then f(σr) = vi and f(σr+1) = vi+1 give
pr+1(f) = vi+1 − vi ≥ 1 as desired.

Now the map f→
(
σ(f), p(f)

)
is clearly injective since we may simply recover f

from the identity
f(σr) = p1 + p2 + · · ·+ pr 3.1.14

which reverses 3.1.7. To complete the proof we need only verify that this map is onto.
Let then the pair (σ, p) ∈ C(P , ω) be given and let f be defined according to 3.1.14. We
must show that f ∈ Fω(P) and that (σ(f), p(f)) = (σ, p). To begin with, since σ is a
linear extension of P we have that σi ≺ σj forces i < j and thus the definition in 3.1.14
gives

f(σi) ≤ f(σj)

as desired. Moreover, note that if σi > σj then between i and j the permutation σ will
necessarily have a descent and the σ-compatibility of p will force

f(σj)− f(σi) = pj + pj−1 + · · ·+ pi+1 > 0 .

This shows that f ∈ Fω(P).
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Finally, to construct the permutation σ(f) according to the recipe in 3.1.6 we need
to determine first the sets Ai. To this end let us decompose the permutation σ in the
form

σ = B1B2 · · ·Bh

where the Bj are the words obtained by cutting σ at its descents. Since these words are
necessarily increasing, we may view their collection as a partition of the set {1, 2, . . . , n}.
Note then that, having constructed the sets Ai for the f defined by 3.1.14, we see that if
σr ∈ Ai, then pr+1 > 0 will cause σr+1 to be in Ai+1 and this forces A1, A2, . . . , Ak to be a
partition of {1, 2, . . . , n}which can be obtained by cutting the words Bj into successive
segments. Putting it in another way, for some indices 1 ≤ i1 < i2 < · · · < ih−1 < k we
will have

B1 =↑ω A1 ↑ω A2 · · · ↑ω Ai1

B2 =↑ω Ai1+1 ↑ω Ai1+2 · · · ↑ω Ai2

· · ·
Bh =↑ω Aih−1+1 ↑ω Aih−1+2 · · · ↑ω Ak

But this gives

σ(f) = ↑ω A1 ↑ω A2 · · · ↑ω Ak = B1B2 · · ·Bh = σ

as desired. This given the identity

p(f) = p

immediately follows from the definition of f in 3.1.14. This completes our proof.

Theorem 3.1.1 yields a beautiful expansion for the polynomials FP,ω.

Theorem 3.1.2

FP,ω(x1, x2, . . . , xN ) =
∑

σ∈STω(P)

∑
1≤β1≤β2≤···≤βn≤N

σi>σi+1 ⇒ βi<βi+1

xβ1xβ2 · · ·xβn 3.1.15

Proof
Using the map f→

(
σ(f), p(f)

)
from Theorem 3.1.1 and the definition in 3.1.3 we

get that
FP,ω(x1, x2, . . . , xN ) =

∑
(σ,p)∈C(P,ω)

xp1xp1+p2 · · ·xp1+p2+···+pn .

However, 3.2.12 gives

FP,ω(x1, x2, . . . , xN ) =
∑

σ∈STω(P)

∑
p>>1+D(σ)

xp1xp1+p2 · · ·xp1+p2+···+pn . 3.1.16

Now p >> 1 + D(σ) simply means that

σi > σi+1 =⇒ p1 + · · ·+ pi < p1 + · · ·+ pi+1
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and so we see that 3.1.15 is simply another way of writing 3.1.16.

Remark 3.1.1
We should mention that the inner sum in 3.1.15 is one of Gessel’s “Quasi-

Symmetric” functions (Cont. Math. 1984). To simplify some of our formulas, and
to be consistent with the notation introduced in section 2.3, it will be good to represent
these polynomials by a symbol indexed by a “strict” composition.(†) To this end if
p = (p1, p2, . . . , pk) and all pi ≥ 1 then we shall write

p |= n ←→ p1 + p2 + · · ·+ pk = n

To such a composition p we shall associate the subset S(p) ⊆ {1, 2, . . . , n} defined by
setting

S(p) = {p1, p1 + p2, · · · , p1 + p2 + · · ·+ pk−1} 3.1.17

This given, for p |= n we shall here and after set

Qp(x1, x2, . . . , xN ) =
∑

1≤β1≤β2≤···≤βn≤N

i∈S(p) ⇒ βi<βi+1

xβ1xβ2 · · ·xβn 3.1.18

Now, recalling the definition in 2.3.17 of the composition p(w) corresponding to the
descent set of a word w, we see that the identity in 3.1.15 may be simply written as

FP,ω(x1, x2, . . . , xN ) =
∑

σ∈STω(P)

Qp(σ)(x1, x2, . . . , xN ) 3.1.19

Remark 3.1.2
In view of the definition in 3.1.1, we see that for the example given in 3.1.8 the

labeling forces the elements ofFP,ω(N) to be strictly increasing as we go NORTH-WEST

and weakly increasing as we go NORTH-EAST. In particular, in this case, the family
FP,ω can be identified with the collection of all column-strict tableaux of shape (3, 3, 2).
Recalling the definition of a Schur function Sλ as a sum of monomials corresponding
to column-strict tableaux of shape λ we see that in this case we have

FP,ω(x1, x2, . . . , xN ) = S3,3,2(x1, x2, . . . , xN ) .

Clearly this is not an accident but a particular case of a general method for obtaining
expansions of Schur functions in terms of quasi-symmetric functions. To state the
result which follows, we need to make some notational conventions. Given a French
skew diagram D with n cells and a standard filling τ of D we shall denote by w(τ) the
permutation obtained by reading τ from from left to right, by rows starting from the
top row. For instance if D = 5442/311 and

τ =

2 10
3 7 9
1 4 8

5 6

3.1.20

(†) That is an integral vector with all components ≥ 1.



70 Chapter 3. Symmetric Functions and Schubert Polynomials.

then
w(τ) = 2 10 3 7 9 1 4 8 5 6 3.1.21

Now we can construct from any skew diagram D a poset PD by tilting the diagram 45o

counterclockwise and for two cells x, y set x ≺ y if and only if we can go from x to y by
a sequence of NORTH-WEST and NORTH-EAST steps. In the display below we have
illustrated the poset PD corresponding to the shape D = 5442/311
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Fig 3.1.22

In this display the numbers in circles are obtained by labeling the cells of D with
1, 2, . . . , n = 10 from left to right and from top to bottom. We shall here and after
assume that the posets PD are given an ω labeling constructed in this manner. This
will be referred as the “Natural Labeling of PD”. It should then be noted that every
standard standard tableau τ of shape D will then give raise to a linear extension of PD.
This should be quite clear from Fig. 3.1.22 where we have placed above the circles the
corresponding entries of the tableau τ of 3.1.20. This given, to each standard tableau
of shape D there will correspond an element σ(τ) ∈ STω(PD) obtained by reading the
labels in the circles in the order given by the linear extension corresponding to τ . For
instance in the case illustrated in Fig 3.1.22 we obtain the permutation

σ(τ) =
[

1 2 3 4 5 6 7 8 9 10
6 1 3 7 9 10 4 8 5 2

]
3.1.23

We are now in a position to state and prove a basic expansion result for skew
Schur functions.

Theorem 3.1.3
For any skew diagram D we have

SD(x1, x2, . . . , xn) =
∑

τ∈ST (D)

Qp(τ)(x1, x2, . . . , xn) 3.1.24

Proof
Let PD be the poset corresponding to D and let ω be the natural labeling of

PD obtained by the construction given above. We can easily see from the example
displayed in 3.1.8 that the column strict tableaux of shape D may be identified with the
ω-compatible PD-partitions. It thus follows from Theorem 3.1.2 that

SD(x1, x2, . . . , xn) =
∑

σ∈STω(PD)

Qp(σ)(x1, x2, . . . , xn) .
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Now from what we have observed it follows that this identity can be rewritten as

SD(x1, x2, . . . , xn) =
∑

τ∈ST (D)

Qp(σ(τ))(x1, x2, . . . , xn) . 3.1.25

However, a glimpse at Fig. 3.1.22 and the permutation in 3.1.23 should reveal that the
descents of σ(τ) occur precisely at the indices i of τ where i + 1 is strongly NORTH and
weakly WEST of i. But these are precisely the descents of τ itself. In other words by
the notation we introduced in section 2.3 we have

p(σ(τ)) = p(τ) .

Substituting this in 3.1.25 gives 3.1.24 as desired, completing the proof.

Given two words a = a1a2 · · · ah and b = b1b2 · · · bk, the collection of all words
obtained by shuffling the letters of a and b (as if they were card decks) is called the
“shuffle of a and b” and is denoted

“a �� b ”.

For instance if a = a1a2 and b = b1b2b3 then

a �� b = {a1a2b1b2b3 , a1b1a2b2b3 , a1b1b2a2b3 , a1b1b2b3a2 , b1a1a2b2b3 ,

b1a1b2a2b3 , b1a1b2b3a2 , b1b2a1a2b3 , b1b2a1b3a2 , b1b2b3a1a2 }

The following result shows the peculiar way by which quasisymmetric functions mul-
tiply.

Theorem 3.1.4
For α = α1α2 · · ·αh ∈ Sh and β = β1β2 · · ·βk ∈ Sk we have (for sufficiently large N )

Qp(α)(x1, x2, . . . , xN )Qp(β)(x1, x2, . . . , xN ) =
∑

σ∈α�� 1h⊗β

Qp(σ)(x1, x2, . . . , xN ) 3.1.26

Proof
Let Ph denote the ordinary chain

Ph = ({1, 2, . . . , h},≤) .

and let us label the elements 1, 2, . . . , h by α1, α2, . . . , αh respectively. Since Ph is
linearly ordered, the collection STα(Ph) reduces to the single permutation α. Thus
from 3.1.19 we derive that

FPh,α(x1, x2, . . . , xN ) = Qp(α)(x1, x2, . . . , xN ) . 3.1.27

Similarly, if Pk = ({1, 2, . . . , k},≤) and we label its elements β1, β2, . . . , βk we get

FPk,β(x1, x2, . . . , xN ) = Qp(β)(x1, x2, . . . , xN ) . 3.1.28



72 Chapter 3. Symmetric Functions and Schubert Polynomials.

Now let P = Ph ∪ Pk be the poset consisting of the simple disjoint union of these two
chains and let ω be the labeling of P obtained by giving the elements of Ph the labels
α1, α2, . . . , αh and the elements of Pk the labels

h + β1 , h + β2 , . . . , h + βk . 3.1.29

This given it is easy to see that every ω-compatible P-partition f ∈ FP,ω is simply
obtained by choosing a pair f1 ∈ FPh,α(N) and f2 ∈ FPk,β(N) and transplanting them
onto the Ph and Pk portions of P . In fact, the ω-compatibility of f1 is trivial and that
of f2 follows from the fact that the labeling in 3.1.29 has the same descent set as the
labeling β1, β2, . . . , βk. Thus it follows that in this case

FP,ω(x1, x2, . . . , xN ) = Qp(α)(x1, x2, . . . , xN )Qp(β)(x1, x2, . . . , xN ) . 3.1.30

Now it turns out that the desired identity in 3.1.26 is obtained by computing the same
polynomial by means of formula 3.1.19. In fact, it is easy to see that here the elements
of STω(P) are none other than the shuffles of α1, α2, . . . , αh with the labels in 3.1.29. In
our notation these are simply the permutations in

α �� 1h ⊗ β

Thus in this case 3.1.19 may be rewritten as

FP,ω(x1, x2, . . . , xN ) =
∑

σ∈α�� 1h⊗β

Qp(σ)(x1, x2, . . . , xN ) .

This completes our argument.

3.2 The Stanley Symmetric Function of a Permutation.

Early in the summer of 1982 Richard Stanley started an investigation aimed at
the enumeration of reduced decompositions. This was prompted by his discovery that
data gathered in previous work showed that the number of reduced decomposition of
the top element of Sn for n = 2, 3, 4, 5, 6 is equal to the number of standard tableaux
of the corresponding staircase shape. Given his previous work, in particular formula
3.1.19, he was led to the bold step of setting for any given σ ∈ Sn and N > l(σ)

Fσ(x1, x2, . . . , xN ) =
∑

w∈RED(σ)

Qp(w)(x1, x2, . . . , xN ) . 3.2.1

Unbeknown to him at the time, he was essentially discovering a natural generalization
of “Skew Schur Functions”. Experimentations with examples that can be obtained by
hand computations led him to conjecture that Fσ is a Symmetric Function with a Schur
Function expansion of the form

Fσ(x1, x2, . . . , xN ) =
∑

λ∈C(σ)

aλ(σ)Sλ(x1, x2, . . . , xN ) . 3.2.2



3.2 The Stanley Symmetric Function of a Permutation. 73

with C(σ) a suitable collection of shapes and the aλ(σ) certain positive integers. His
investigations led him to the seminal publication [15] where he presented a number of
results supporting his conjectures. In particular he proved the symmetry and showed
the containement

C(σ) ⊆
{
λ : λ(σ−1) ≤ λ ≤ λ′(σ)

}
. 3.2.3

In particular he derived (see 2.3.12 and Theorem 3.2.3 below) that for σ vexillary

Fσ(x1, x2, . . . , xN ) = Sλ′(σ)(x1, x2, . . . , xN ) . 3.2.4

This allowed him to completely settle the case of the top element of Sn. However
he was not able to prove Schur positivity (i.e. aλ(σ) > 0 in 3.2.2) nor identify the
collection C(σ). In subsequent years all of his conjectures were proved and even some
analogous results were established for other Coxeter groups, in a variety of papers.
The methods used ranged from purely combinatorial, to representation theoretical
and algebraic geometrical. In reviewing this literature we discovered that a relatively
simple and very accessible proof of the Schur positivity of Fσ can be obtained by suitably
combining a number of results from a variety of sources. To be precise, note that as
a corollary of Theorem 2.4.4 we obtain the following remarkably beautiful solution of
the Schur positivity problem for Fσ .

Theorem 3.2.1
On the validity of Theorem 2.4.1, for any permutation σ we have

Fσ(x1, x2, . . . , xn) =
∑

σ′∈LeavesLS(σ)

Sλ′(σ′)(x1, x2, . . . , xn) 3.2.5

In particular, for the collection of shapes occurring in 3.2.2 we obtain that

C(σ) =
{
λ : λ = λ′(σ′) for some σ′ ∈ LeavesLS(σ)

}
3.2.6

Moreover, form 3.2.5 we derive that the multiplicities aλ(σ) have a very simple combinatorial
interpretation, namely

aλ(σ) = #
{
σ′ ∈ LeavesLS(σ) : λ′(σ′) = λ

}
3.2.7

Proof
From the definitions of Ξ(σ) and Σ(λ) given in 2.3.19 we see that

Fσ(x1, x2, . . . , xn) = Ξ(σ)
∣∣∣
xp→Qp(x1,x2,...,xn)

. 3.2.8

Now using 2.4.34 we derive that

Fσ(x1, x2, . . . , xn) =
∑

σ′∈LeavesLS(σ)

Σ
(
λ′(σ′)

) ∣∣∣
xp→Qp(x1,x2,...,xn)

. 3.2.9

Now note that from the definition in 2.3.21 and Theorem 3.1.3 we get that for any
partition λ we have

Sλ(x1, x2, . . . , xn) = Σ(λ)
∣∣∣
xp→Qp(x1,x2,...,xn)

. 3.2.10
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This given we see that 3.2.5 follows from 3.2.9. This completes the proof since 3.2.6 1nd
3.2.7 are immediate consequences of 3.2.5.

Remark 3.2.1
It should be noted that also the containement in 3.2.3 follows from Theorem 3.2.1.

Indeed we see from Lemma 2.4.1 that for every regular child σ′ of a permutation σ we
have

λ(σ) ≤ λ(σ′) ≤ λ′(σ′−1) ≤ λ′(σ−1)

and since λ(σ) = λ(1 × σ) we see that these inequalities must hold also for a lateral
child. Applying them recursively yields that they will have to hold as well for any leaf
σ′ of the LS tree of σ. Thus 3.2.3 follows from 3.2.6.

Our proof of Theorem 2.4.1, on which the validity of Theorem 3.2.1 depends, will
be given in the next section. It will be based on the Theory of Schubert polynomials
together with some of the identities proved in [13], [4] and [15]. In the remainder of
this section we shall present these results. In particular we shall include here the very
beautiful argument given by Fomin and Stanley in [4] proving the symmetry of Fσ .
Of course, also this symmetry is a consequence of 3.2.5. However, even though most
of what we ever wanted to show follows from Theorem 3.2.1, there are a number of
beautiful arguments and results in this theory that are worth relating. So it will be
worthwhile to include some of them here, even at the expense of ending up with more
than one proof of the same result.

In [4] Fomin and Stanley base their arguments on the so called “Nil-Coxeter ”
algebra NCn . Using this device they were not only able to prove the symmetry of Fσ

but also could derive in a very efficient way some of the basic properties of Schubert
polynomials. This given it will be most appropriate to introduce it in this section. The
definition of NCn is quite immediate. It is simply a K-algebra with generators

u1, u2, . . . , un−1 , 3.2.11

together with an identity “1”, and relations

a) u2
i = 0 ,

b) ui uj = uj ui when |i− j| > 1 ,

c) ui ui+1 ui = ui+1 ui ui+1 for 1 ≤ i ≤ n− 2 .

3.2.12

Here K needs only be the ring of polynomials with integer coefficients in the variables
x1, x2, . . . xN , x, y. We shall see that such an algebra has a natural faithful representation
in terms of the Lascoux-Schützenberger divided difference operators δi introduced in
the next section.

The relations in 3.2.12 assure that for any word w = a1a2 · · · al we shall have

ua1ua2 · · ·ual
	= 0



3.2 The Stanley Symmetric Function of a Permutation. 75

if and only if w is a reduced word of some permutation σ. Moreover, using b) and c)
we can show that if w = a1a2 · · · al and w′ = a′

1a
′
2 · · · a′

l are both reduced words for the
same permutation σ then we necessarily have

ua1ua2 · · ·ual
= ua′

1
ua′

2
· · ·ua′

l
.

This means that to any σ ∈ Sn we can associate a well defined element uσ ∈ NCn
simply by setting for any reduced word w = a1a2 · · · al ∈ RED(σ)

uσ = ua1ua2 · · ·ual
. 3.2.13

This given, Fomin and Stanley set

Ai(x) = (1 + xun−1)(1 + xun−2) · · · (1 + xui) . 3.2.14

and obtain the following basic commutativity relations.

Proposition 3.2.1

Ai(x)Ai(y) = Ai(y)Ai(x) ( for i = 1, 2, . . . , n− 1 ) 3.2.15

Proof
Note that for i = n− 1 the identity in 3.2.15 reduces to

(1 + xun−1)(1 + y un−1) = (1 + y un−1)(1 + xun−1) . 3.2.16

This is trivially true since setting

hi(x) = (1 + xui) 3.2.17

from a) of 3.2.12 we derive that

hi(x)hi(y) = hi(x + y) = hi(y)hi(x) . 3.2.18

So the idea is to prove 3.2.15 by descent induction on i. Now the crucial identity here
is a beautiful extension of 3.2.12 c), namely

hi(x)hi+1(x + y)hi(y) = hi+1(y)hi(x + y)hi+1(x) . 3.2.19

This can be easily verified by means of a) and c) of 3.2.12. Now, assume that we have
shown

Ai+1(x)Ai+1(y) = Ai+1(y)Ai+1(x) 3.2.20

This given, we have

Ai(x)Ai(y) = Ai+1(x)hi(x)Ai+2(y)hi+1(y)hi(y)(
using 3.2.12 b)

)
= Ai+1(x)Ai+2(y)hi(x)hi+1(y)hi(y)(

using 3.2.18
)

= Ai+1(x)Ai+2(y)hi(x)hi+1(y)hi(y − x)hi(x)(
using 3.2.19

)
= Ai+1(x)Ai+2(y)hi+1(y − x)hi(y)hi+1(x)hi(x)(

using 3.2.18
)

= Ai+1(x)Ai+1(y)hi+1(−x)hi(y)hi+1(x)hi(x)(
using 3.2.20

)
= Ai+1(y)Ai+1(x)hi+1(−x)hi(y)hi+1(x)hi(x)(

using 3.2.18
)

= Ai+1(y)Ai+2(x)hi(y)hi+1(x)hi(x)(
using 3.2.12 b)

)
= Ai+1(y)hi(y)Ai+2(x)hi+1(x)hi(x) = Ai(y)Ai(x)
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completing the induction and the proof of the proposition.

The relevance of these computations in our context stems from the following
remarkable identities

Proposition 3.2.2
Given a permutation σ = σ1σ2 · · ·σn set

σ∗ = σ∗
1σ∗

2 · · ·σ∗
n 3.2.21

with
σ∗

i = n + 1− σn+1−i ( for i = 1, 2, . . . , n ) 3.2.22

Then for N > l = l(σ) we have

Fσ∗(x1, x2, . . . , xn) =
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤N

ai<ai+1 ⇒ βi<βi+1

xβ1xβ2 · · ·xβl
3.2.23

in particular
Fσ∗(x1, x2, . . . , xn) = A1(x1)A1(x2) · · · A1(xN )

∣∣∣
uσ

3.2.24

Proof
Note first that if we turn upside down the line diagram of a reduced decomposi-

tion a1a2 · · ·al and replace each label “i” by the label “n + 1− i” the result will simply
be the line diagram of n− a1n− a2 · · ·n− al. Since this replacement changes the target
permutation σ into σ∗ we deduce that we have

a1a2 · · ·al ∈ RED(σ) ⇐⇒ n− a1n− a2 · · ·n− al ∈ RED(σ∗) . 3.2.25

This means that if

w = a1a2 · · ·al and w∗ = n− a1n− a2 · · ·n− al

Then the descent sets of w and w∗ are complements of one another. In symbols

D(w∗) = cD(w) = {1, 2, . . . , l − 1} −D(w) 3.2.26

Now the definition in 3.2.1 may also be written as

Fσ(x1, x2, . . . , xn) =
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤N

ai>ai+1 ⇒ βi<βi+1

xβ1xβ2 · · ·xβl
3.2.27

In particular, using 3.2.25 we derive that for Fσ∗ we have the expansion

Fσ∗(x1, x2, . . . , xn) =
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤N

n−ai>n−ai+1 ⇒ βi<βi+1

xβ1xβ2 · · ·xβl



3.2 The Stanley Symmetric Function of a Permutation. 77

and this is simply another way of writing 3.2.23.
Finally, note that when we expand the product in the right hand side of 3.2.24,

we obtain terms of the form

xβ1xβ2 · · ·xβm ua1ua2 · · ·uam

∣∣∣
uσ

with
β1 ≤ β2 ≤ · · · ≤ βm

satisfying
ai < ai+1 =⇒ βi < βi+1 .

This is because from the definition in 3.2.14 we get that two successive factors xβiuai and
xβi+1uai+1 with βi = βi+1 = r coming form the same Ar(xr) in 3.2.24 will necessarily
also have ai > ai+1.

Now because of 3.2.12 a) the only terms that survive are those for which m = l ,

ua1ua2 · · ·ual
= uσ .

and
a1a2 · · · al ∈ RED(σ) .

Thus 3.2.24 follows from 3.2.23. This completes our argument.

As a corollary of Proposition 3.2.2 we obtain

Theorem 3.2.2
For any permutation σ the Stanley polynomial Fσ(x1, x2, . . . , xn) is a symmetric func-

tion of x1, x2, . . . , xn.

Proof
From 3.2.24 we derive that

Fσ(x1, x2, . . . , xn) = A1(x1)A1(x2) · · · A1(xN )
∣∣∣
uσ∗

. 3.2.28

Thus the assertion is a simple consequence of Proposition 3.2.1.

Stanley’s proof of the inclusion in 3.2.3 is based on the following two auxiliary
results.

Proposition 3.2.3

C(σ) ⊆
{

λ : λ ⊆ λ′(σ)
}

3.2.29

Proof
Since we have proved that Fσ is symmetric we shall have an expansion of the

form
Fσ(x1, x2, . . . , xn) =

∑
µ

bµ(σ)mµ(x1, x2, . . . , xn) 3.2.30
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where “mµ” denotes the monomial symmetric funtion corresponding to µ and the bµ(σ)
are suitable non-negative integer coefficients. In view of the expansion in 3.2.27 we see
that bµ(σ) > 0 if and only if at least one of the summands in 3.2.27 yields the leading
monomial of mµ. In other words, if bµ(σ) > 0 for

µ = (µ1 ≥ µ2 ≥ · · · ≥ µk > 0 ) � l

then from some word w = a1a2 · · ·al ∈ RED(σ) we have

xβ1xβ2 · · ·xβl
= xµ1

1 xµ2
2 · · ·x

µk

k

with β1 ≤ β2 · · · ≤ βl and βi < βi+1 when ai > ai+1. Now this implies that the descents
of w must be all contained in the set

{
µ1 , µ1 + µ2 , µ1 + µ2 + µ3 , . . . , µ1 + µ2 + · · ·+ µk−1

}
.

Equivalently, we must have the inequalities

a1 < a2 < · · · < aµ1 , aµ1+1 < aµ1+2 < · · · < aµ1+µ2 , · · · ,

aµ1+···+µk−1+1 < aµ1+···+µk−1+2 < · · · < al

To see what this tells us about the circle diagram of σ we only need to have a look at
the corresponding line diagram M(a1a2 · · · al). To this end we have depicted below
the case w = 23456 · 2345 · 1234 · 123 · 12 and µ = (5, 4, 4, 3, 2) ,

9

7

3

5

2

4

1

6

7

3

5

2

4

1

6

5

6

72

1

4

83 13

10

11

12 16

14

15 18

17

Let us imagine that we break up the construction of our diagram into k stages containing
µ1, µ2, . . . , µk steps respectively. In this case we obtain the successsion of diagrams

M(a1, a2, . . . , a5)→M(a1, a2, . . . , a9)→M(a1, a2, . . . , a13)

→M(a1, a2, . . . , a16)→M(a1, a2, . . . , a18)

Now recall that, according to definition 2.1.1, an “×” at the kth step contributes a circle
labelled “k” in position (i, j) of CD(σ) if that “×” interchanges the i-line with the σj-
line. In this particular example, the first stage creates 5 labelled circles. Due to the fact
that a1 < a2 < · · · < a5 our definition implies that these circles will fall in 5 different
columns. Proceeding with our construction, in the second stage we add 4 more circles
some of which could land in the same column as the ones created in the first stage, but
due to the fact that a6 < a7 < · · · < a9 they themselves will fall in 4 different columns.
Similarly in the third stage we add 4 more circles in 4 different columns. Here some
of these circles could land in the same column as one or two circles created in the two
previous stages.
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In the general case after r ≤ k stages we will have created

µ1 + µ2 + · · ·+ µr 3.2.31

labelled circles and, due to the fact that during each stage the ai increase the circles
created within a stage will land in separate columns. This causes circles appearing in
the same column to come from different stages. Consequently, after r stages there will
be at most r circles in any given column. This means that if we push these circles up
along their column until they are tightly packed, they will necessarily fall in the first
r lines of the circle diagram. On the other hand, if, after we finish the construction,
we tightly pack all the circles of CD(σ) in the same manner, we see from the defintion
2.3.3 of the code of σ, that the number of circles that will be packed in the first r rows
is given by the expression

n∑
i=1

ci(σ) ∧ r ,

where a∧b = min(a, b). But since the shape (see definition 2.3.1) is only a rearrangement
of the code we necessarily have the equalities

n∑
i=1

ci(σ) ∧ r , =
∑

i

λi(σ) ∧ r = λ′
1(σ) + λ′

2(σ) + · · ·+ λ′
r(σ) . 3.2.32

Since in the process of constructing the corresponding sequence of balanced tableaux

T (a1a2 · · ·aµ1) −→ T (a1a2 · · ·aµ2) −→ · · · −→ T (a1a2 · · ·al)

pairs of circles in different columns remain in different columns and pairs of cicles in
the same column remain in the same column, it follows that the circles counted by
3.2.31 will be a subset of those counted by 3.2.32, and thus we must necessarily have

µ1 + µ2 + · · ·+ µr ≤ λ′
1(σ) + λ′

2(σ) + · · ·+ λ′
r(σ) .

In summary we have shown that

bµ(σ) > 0 =⇒ µ ≤ λ′(σ) .

Thus the expansion in 3.2.30 may be rewritten as

Fσ(x1, x2, . . . , xn) =
∑

µ≤λ′(σ)

bµ(σ) mµ(x1, x2, . . . , xn) . 3.2.33

Now recall from Symmetric Function Theory that the “monomial” and “Schur” bases
are related by upper unitriangular matrices. Thus we may write

mµ(x1, x2, . . . , xn) =
∑
λ≤µ

Sλ(x1, x2, . . . , xn)Hλµ . 3.2.34
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Substituting this in 3.2.33 gives

Fσ(x1, x2, . . . , xn) =
∑

µ≤λ′(σ)

bµ(σ)
∑
λ≤µ

Sλ(x1, x2, . . . , xn)Hλµ .

=
∑

λ

Sλ(x1, x2, . . . , xn)
∑

λ≤µ≤λ′(σ)

bµ(σ) Hλµ .

This shows that the coefficients aλ(σ) in the expansion 3.2.2 satisfy

aλ(σ) =

{∑
λ≤µ≤λ′(σ) bµ(σ) Hλµ if λ ≤ λ′(σ) ,

0 otherwise.

This proves 3.2.29 and completes our proof.

We now need two further properties of the permutation σ∗.

Proposition 3.2.4
For any permutation σ we have for N ≥ l(σ)

λ(σ∗) = λ(σ−1) 3.2.35

Fσ(x1, x2, . . . , xn) = ωFσ∗(x1, x2, . . . , xn) 3.2.36

where ω denotes the fundamental symmetric function involution.

Proof
Note that from 3.2.22 we get that the code of σ∗ is given by the equalities

ci(σ∗) = #
{

j > i : n + 1− σn+1−i > n + 1− σn+1−j

}
= #

{
j > i : σn+1−j > σn+1−i

}
.

Now this may be rewritten as

cn+1−i(σ∗) = #
{

n + 1− j > n + 1− i : σj > σi

}
= #

{
j < i : σj > σi

}
.

This proves 3.2.35 since

#
{

j < i : σj > σi

}
= ci(σ−1) .

To prove 3.2.36 note that from 3.2.26 and 3.2.1 it follows that we may write for l(σ) = l

Fσ∗(x1, x2, . . . , xn) =
∑

w∈RED(σ)

Qp( cD(w),l)(x1, x2, . . . , xn) .

Now using Theorem 3.2.1 and 3.1.24 this may also be rewritten as

Fσ∗(x1, x2, . . . , xn) =
∑

λ∈C(σ)

aλ(σ)
∑

τ∈ST (λ)

Qp( cD(τ),l)(x1, x2, . . . , xn) 3.2.37



3.2 The Stanley Symmetric Function of a Permutation. 81

On the other hand, since transposing a standard tableau complements its descent set,
again from 3.1.24 we obtain that for any partition λ � l we have (for N ≥ l)

∑
τ∈ST (λ)

Qp( cD(τ),l)(x1, x2, . . . , xn) = Sλ′(x1, x2, . . . , xn) = ωSλ(x1, x2, . . . , xn) .

Substituting this in 3.2.37 gives 3.2.36 precisely as asserted.

We now have all we need to give Stanley’s proof of 3.2.3. More precisely he
obtains.

Theorem 3.2.3
For any permutation σ we have

Fσ(x1, x2, . . . , xn) =
∑

λ(σ−1)≤λ≤λ′(σ)

aλ(σ)Sλ(x1, x2, . . . , xn) 3.2.38

with
a) aλ(σ)(σ−1) = 1 and b) aλ′(σ)(σ) = 1 3.2.39

Proof
Applying 3.2.29 to σ∗ we can write

Fσ∗(x1, x2, . . . , xn) =
∑

λ≤λ′(σ∗)

aλ(σ∗)Sλ(x1, x2, . . . , xn) ,

and from 3.2.36 we get that

Fσ(x1, x2, . . . , xn) =
∑

λ≤λ′(σ∗)

aλ(σ∗)Sλ′(x1, x2, . . . , xn) .

Changing variable of summation from λ to λ′ yields that this may also be rewritten as

Fσ(x1, x2, . . . , xn) =
∑

λ′≤λ′(σ∗)

aλ′(σ∗)Sλ(x1, x2, . . . , xn) ,

and using 3.2.35 together with the fact that conjugating reverses dominance we finally
get that

Fσ(x1, x2, . . . , xn) =
∑

λ≥λ(σ−1)

aλ′(σ∗)Sλ(x1, x2, . . . , xn) .

Since Proposition 3.2.3 gives also

Fσ(x1, x2, . . . , xn) =
∑

λ≤λ′(σ)

aλ(σ)Sλ(x1, x2, . . . , xn) ,

we see that 3.2.38 must necessarily hold true as well.
It is easily seen from the above argument that 3.2.39 a) for σ implies 3.2.39 b) for

σ∗. Thus we need to establish only one of these equalities. We shall prove 3.2.39 b). To
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this end we must show that in the expansion 3.2.27 there is one and only way to obtain
the equality

xβ1xβ2 · · ·xβl
= xµ1

1 xµ2
2 · · ·x

µk

k , 3.2.40

when
µi = λ′

i(σ) ( for i = 1, 2, . . . , k ) 3.2.41

and k is the number of parts of λ′(σ). This implies that in the expansion 3.2.33 we must
have bλ′

1(σ) = 1 and then 3.2.39 follows since Hµµ = 1 in 3.2.34.

As we noted in the proof of Proposition 3.2.3, we may have the equality in 3.2.40
only if the associated reduced word w = a1a2 · · · al satisfies the inequalities

a1 < a2 < · · · < aµ1 , aµ1+1 < aµ1+2 < · · · < aµ1+µ2 ,

· · · , aµ1+···+µk−1+1 < aµ1+···+µk−1+2 < · · · < al

3.2.42

To see that 3.2.41 and 3.2.42 determine the ai uniquely we need only make one funda-
mental observation. Namely that in any column of a line diagram one “high” label gets
interchanged with a “low” label.

Now if we construct the line diagramM(a1, a2, · · · , al) in stages

· · · −→M(a1, a2, · · · , aµ1+···+µr−1) −→M(a1, a2, · · · , aµ1+···+µr ) −→ · · ·

for r = 2, 3, . . . , k, it follows that at the rth stage exactly µr distinct high labels are inter-
changed with µr low labels (not necessarily distinct). We claim that the requirements
in 3.2.41 and 3.2.42 force the high labels involved at the rth stage to be the collection

M≥r(σ) =
{
σi : ci(σ) ≥ r

}
, 3.2.43

consisting of the entries of σ that have at least r smaller labels to their right. The reason
for this is best understood by working on an example. Note that for σ = 72381645 we
have the following circle diagram

6

6

7

7

8

8

1

1

2

2

5

5

3

3

4

4

For convenience we have placed the entries of σ on top of their columns. From this it
is easy to see that we have

M≥1 =
{
2, 3, 6, 7, 8

}
, M≥2 =

{
6, 7, 8

}
, M≥3 =

{
7, 8
}
,

M≥4 =
{
7, 8
}
, M≥5 =

{
7
}
, M≥6 =

{
7
}

Note also that in this case

λ(σ) = (6, 4, 2, 1, 1) , λ′(σ) = (5, 3, 2, 2, 1, 1) and l(σ) = 14 .
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Since in general
λ′

i(σ) =
∑

j

χ
(
λj(σ) ≥ r

)

we see that the successive sizes of the collections M≥r(σ) give the components of λ′(σ).
Now in this case for the word w = a1a2 · · · a14 ∈ RED(σ) to produce the monomial

xβ1xβ2 · · ·xβ14 = x5
1 x3

2 x2
3 x2

4 x1
5 x1

6 3.2.44

we must have

a1 < a2 < a3 < a4 < a5 , a6 < a7 < a8 , a9 < a10 , a11 < a12 ,

Thus at the end of the first stage, 5 high labels will be involved. Each these labels
will then have at least one smaller label to their right in the target permutation. But
there are altogether only 5 such labels in our σ and they are precisely 2, 3, 6, 7, 8. So the
high labels involved in the first stage must be the elements of M≥1(σ). Similarly, the
second stage must involve 3 high labels. Moreover, these labels must be a subset of the
previous ones for otherwise there would be more than 5 entries of σ with at least one
smaller element on their right. This means that each of the high labels involved in the
second stage will have at least 2 smaller labels to their right in the target permutation.
But σ has only 3 entries with this property and they are 6, 7, 8. Thus again we see that
the high labels involved in the second stage must be the elements of M≥2(σ). This
reasonning forces the high labels involved in each stage to be a subset of the high labels
involved in the previous stage. This forces the high labels involved in the rth stage to
be the elements of M≥r(σ) precisely as asserted. It is easy to see that this argument, in
full generality yields that there can be one and only one word w ∈ RED(σ) yielding
the monomial in 3.2.40 when µ = λ′(σ). This completes our proof.

For sake of completeness we include below the line diagram of the word that
produces the monomial in 3.2.44 for the permuation 72681645
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We terminate this section with a result that can be used to compute the Schur
function expansion of the product of two or more Stanley symmetric functions.
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Theorem 3.2.4
For α = α1α2 · · ·αh ∈ Sh and β = β1β2 · · ·βk ∈ Sk we have

Fα × Fβ = Fα⊗β 3.2.45

with
α⊗ β = α1α2 · · ·αh(h + β1)(h + β2) · · · (h + βk) 3.2.46

Proof
Note that from 3.2.46 we derive that we can obtain the reduced words of α ⊗ β

by taking pairs u, v with u ∈ RED(α) and v ∈ RED(β) and then shuffling u with h+v.
In symbols

RED
(
α⊗ β)

)
=

⋃
u∈RED(α)

⋃
v∈RED(β)

u �� (h + v) .

Thus the definition in 3.2.1 gives

Fα⊗β =
∑

u∈RED(α)

∑
v∈RED(β)

∑
w∈u�� (h+v)

Qp(w) . 3.2.47

The last summation should remind us of the expression occurring in 3.1.26. It develops
that we can still use Theorem 3.1.4 here even though we are shuffling pairs of words
rather than pairs of permutations. Briefly, the idea is to replace u and v by permutations
of 1, 2, . . . , l(α) and 1, 2, . . . , l(β) respectively by the standard procedure that preserves
descents and then apply formula 3.1.26 to the resulting pair. In this manner we derive
that ∑

w∈u�� (h+v)

Qp(w) = Qp(u) ×Qp(v)

Substituting this into 3.2.47 gives

Fα⊗β =
∑

u∈RED(α)

∑
v∈RED(β)

Qp(u)×Qp(v) =
( ∑

u∈RED(α)

Qp(u)

)
×
( ∑

v∈RED(β)

Qp(v)

)

and thus 3.2.45 follows from the definition in 3.2.1.

Remark 3.2.2
Note that by taking α and β both Grassmanian we can use Theorem 3.2.4 in

conjunction with Theorem 2.4.4 to obtain the Schur function expansion of the product
of Sλ′(α) by Sλ′(β). On the basis of this fact Stanley observed in [15] that there could
not be a rule simpler that that of Littlewood-Richardson to compute the Schur function
expansion of an arbitrary Fσ . We believe however that the LR tree construction is
conceptionally and algorithmically simpler (although not necessarily more efficient)
than the LR-rule. What appears to have escaped from Stanley’s reasoning is that the
computation of product of Schur functions within the family of Stanley symmetric
functions should in fact be easier since it may go through inductive steps involving
a wider collection of functions. Indeed, the variety of possible circle diagrams is
considerably wider than that of skew diagrams since all of the latter can be already
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be obtained from a circle diagrams of 321-avoiding permutations. What is also rather
curious is that Lascoux and Schützenberger in [11] herald their tree algorithm as an
improvement (in efficiency) over the LR rule (which is quite untrue) and fail to point
out that it is more elementary (see [12]) and that it applies to a wider class of symmetric
functions, namely the Stanley symmetric functions.

3.3 Divided Differences and Schubert Polynomials.

We shall deal here with a family of divided difference operators δi (for
i = 1, 2, 3, . . .) acting on polynomials (or formal power series) in the variables x1,
x2, x3, . . .. The definition of δi is quite simple. Namely we set

δi = δxixi+1 , 3.3.1

where for any polynomial P in the variables x, y

δxyP (x, y) =
P (x, y)− P (y, x)

x− y
. 3.3.2

Note that we may also write this in the form

δxy =
1

x− y

(
1− sxy) 3.3.3

where sxy is the operator that interchanges x and y. In particular we have

δi =
1

xi − xi+1

(
1− si) 3.3.4

where si = sxixi+1 interchanges xi and xi+1.
Since δi acts only on the variables xi, xi+1 to compute its action we only need to

know the following identity

Proposition 3.3.1

δi xa
i xb

i+1 =




xa−1
i xb

i+1 + · · ·+ xa−r−1
i xb+r

i+1 + · · ·+ xb
ix

a−1
i+1 if a > b

= 0 if a = b
xa

i xb−1
i+1 + · · ·+ xa+r

i xb−r−1
i+1 + · · ·+ xb−1

i xa
i+1 if b > a

3.3.5

Proof
If a > b we may write

δi xa
i xb

i+1 =
xa

i xb
i+1 − xb

ix
a
i+1

xi − xi+1
= (xixi+1)b xa−b

i − xa−b
i+1

xi − xi+1

Thus

δi xa
i xb

i+1 = (xixi+1)b
(
xa−b−1

i + · · ·+ xa−b−r−1
i xr

i+1 + · · ·+ xa−b−1
i+1

)
.



86 Chapter 3. Symmetric Functions and Schubert Polynomials.

This proves the first identity in 3.3.5. The third identity follows in a similar way. The
second one is trivial.

Proposition 3.3.2
These operators satisfy the following version of the ”Leibnitz rule: ”

a) δi (f g) = (δi f) g + (si f) δi g

In particular for f homogeneous of degree 1 we get

b) δa1δa2 · · · δak
(f g) =

k∑
i=1

(
δaisai+1 · · · sak

f
)

δa1 · · · [δai ] · · · δak
g

+
(
sa1sa2 · · · sak

f
)

δa1δa2 · · · δak
g

3.3.6

where [δai ] indicates omission of the factor “δai”.

Proof
From 3.3.4 we derive that

δi (f g) =
1

xi − xi+1

((
(1− si)f

)
g + (sif) (1− si) g

)
.

This proves 3.3.6 a) and the case k = 1 of 3.3.6 b). Proceeding by induction on k assume
3.3.6 b) true for k. This given note that from 3.3.6 a) we get that

δa1δa2 · · · δak+1 (f g) = δa1δa2 · · · δak

(
(δak+1f) g + (sak+1f) δak+1g

)
=

= (δak+1f) δa1δa2 · · · δak
g

+
k∑

i=1

(
δaisai+1 · · · sak

(sak+1f)
)
δa1 · · · [δai ] · · · δak

δak+1g

+
(
sa1sa2 · · · sak

(sak+1f)
)

δa1δa2 · · · δak
δak+1g

This completes the induction and the proof of case b).

Most importantly we also have the so-called “Nil Coxeter” relations:

Proposition 3.3.3

i) δi δi = 0 (∀ i ≥ 1 )

ii) δi δi+1δi = δi+1 δi δi+1

iii) δi δj = δj δi (∀ |i− j| ≥ 2)

3.3.7

Proof
It follows immediately from the definition in 3.3.4 that δi kills every symmetric

function of xi, xi+1. Thus, since in each of the three cases in 3.3.5 the result is symmetric,
we derive that

δ2
i xa

i xb
i+1 = 0 .
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This proves 3.3.7 i). The identity in 3.3.7 iii) is trivial since when |i − j| ≥ 2 the two
operators δi and δj act on disjoint sets of indices. The identity in 3.3.7 ii) is proved by
noticing that repeated uses of 3.3.4 give

δ1δ2δ1 = δ2δ1δ2 =
1

(x1 − x2)(x1 − x3)(x2 − x3)

∑
σ∈S3

sign(σ)σ . 3.3.8

It follows from 3.3.7 i) that for w = a1a2 · · · al we shall have

δa1δa2 · · · δal
	= 0

if and only if w is a reduced word of some permutation σ. Moreover, using ii) and iii)
of 3.3.7 we can show that if w = a1a2 · · · al and w′ = a′

1a
′
2 · · ·a′

l are both reduced words
for the same permutation σ then we necessarily have

δa1δa2 · · · δal
= δa′

1
δa′

2
· · · δa′

l
.

This means that to any σ ∈ Sn we can associate a well defined divided difference
operator δσ simply by setting for any reduced word w = a1a2 · · ·al ∈ RED(σ)

δσ = δa1δa2 · · · δal
.

Here and after the symbol σ(n) will denote the top permutation of sn. That is

σ(n) =
[

1 2 · · · n
n n− 1 · · · 1

]
. 3.3.9

Remarkably, the operator corresponding to the top element is a version of complete
“symmetrization”. More precisely we have the following general form of 3.3.8.

Proposition 3.3.4

δσ(n) =
1∏

1≤i<j≤n(xi − xj)

∑
σ∈Sn

sign(σ)σ 3.3.10

Proof
The canonical factorization of σ(n) and 3.3.4 gives

δσ(n) =
n−1∏
i=1

δn−1δn−2 · · · δi

=
n−1∏
i=1

1
xn−1 − xn

(1− sn−1)
1

xn−2 − xn−1
(1− sn−2) · · ·

1
xi − xi+1

(1− si)

3.3.11

where the factors are to be taken from left to right. This given we see that δσ(n) is of the
form

δσ(n) =
∑

σ∈Sn

aσ(x)σ 3.3.12
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with the coefficients aσ(x) rational functions of x1, x2, . . . , xn. Now note that since the
product

δj

n−1∏
i=1

δn−1δn−2 · · · δi

has
(
n
2

)
+ 1 factors, it does not correspond to any reduced factorization. Consequently

we must have
δj δσ(n) = 0. (for j = 1, 2, . . . , n− 1 ) .

In view of 3.3.4 this may also be written as

δσ(n) = sj δσ(n) (for j = 1, 2, . . . , n− 1 ) .

It thus follows that we must also have

δσ(n) = α δσ(n) ( ∀α ∈ Sn )

Using 3.3.12 this becomes∑
σ∈Sn

(α aσ(x)) α σ =
∑

σ∈Sn

aσ(x)σ .

Equating coefficients of α β we get

α aβ(x) = aαβ(x) 3.3.13

This means that we only need to compute one of these coefficients. Now we see from
3.3.11 that

aσ(n)(x)σ(n) =
n−1∏
i=1

1
xn−1 − xn

(−sn−1)
1

xn−2 − xn−1
(−sn−2) · · ·

1
xi − xi+1

(−si)

= (−1)(
n
2)
( n−1∏

i=1

1
xn−i − xn−i+1

· · · 1
x1 − xn−i+1

) n−1∏
i=1

sn−1sn−2 · · · si

=
(−1)(

n
2)∏

1≤i<j≤n(xi − xj)
σ(n)

So from 3.3.13 for αβ = σ and β = σ(n) we get

aσ(x) = σσ(n)
( (−1)(

n
2)∏

1≤i<j≤n(xi − xj)

)
=

sign(σ)∏
1≤i<j≤n(xi − xj)

.

This proves 3.3.10.

This proposition has the following immediate corollary

Theorem 3.3.1
For any partition λ = (λ1, λ2, . . . , λn) we have

δσ(n)

(
xλ1+n−1

1 xλ2+n−2
2 · · ·xλn+n−n

1

)
= Sλ(x1, x2, . . . , xn) . 3.3.14
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The fact that a Schur function can be obtained by the action of the difference
operator δσ(n) on a monomial should suggest that an interesting family of polynomials
might be obtained by the action of the general operators δσ. This is precisely the
discovery of Lascoux and Schützenberger in [9]. In fact for a σ ∈ Sn the Schubert
polynomial SCσ(x) is defined by setting

SCσ(x) = δσ−1σ(n) xn−1
1 xn−2

2 · · ·x1
n−1 . 3.3.15

In particular we get
SCσ(n)(x) = xn−1

1 xn−2
2 · · ·x1

n−1 . 3.3.16

The polynomials SCσ(x) have been shown to have remarkable properties The reader
will find a detailed presentation of basic results of theory of Schubert polynomials
in Macdonald’s book [13]. For sake of completeness we shall reproduce here the
statements and proofs of the results that we will need in our proof of Theorem 2.4.1.

Remark 3.3.1
Note that for any σ ∈ Sn we have

l
(
σ−1σ(n)

)
=
(
n
2

)
− l(σ) 3.3.17

the reason for this is that all the inversions of σ−1 are transformed into non-inversions
after right multiplication by σ(n). Thus l

(
σ−1σ(n)

)
=
(
n
2

)
− l(σ−1), and then 3.3.17

follows since l(σ) = l(σ−1).

Note next that we can always find a sequence of indices a1a2 · · · ak with 1 ≤ ai ≤
n− 1 such that

l(σsa1sa2 · · · sai) = l(σ) + i for i = 1, 2, . . . , k 3.3.18

and
σsa1sa2 · · · sak

= σ(n) 3.3.19

To do this we simply choose sai to be any of the transpositions that interchanges two
adjacent elements of σsa1sa2 · · · sai−1 that are in the right order. This will eventually
bring us to the top element of Sn at which time we stop. Now 3.3.17, 3.3.18 for i = k

and 3.3.19 give

a) k =
(
n
2

)
− l(σ) and b) σ−1σ(n) = sa1sa2 · · · sak

3.3.20

In particular from 3.3.20 a) we derive that

a1a2 · · · ak ∈ RED(σ−1σ(n)) .

This given, the definition in 3.3.15 yields

SCσ(x) = δa1δa2 · · · δak
xn−1

1 xn−2
2 · · ·x1

n−1 . 3.3.21

These observations immediately yield us the following two basic facts.
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Theorem 3.3.2
For σ ∈ Sn, SCσ(x) is a homogeneous polynomial of degree l(σ) in x1, x2, . . . , xn−1 .

Proof
We see from 3.3.5 that each δi preserves homogeneity and lowers degrees by 1.

This given the statement follows from 3.3.20 a) and formula 3.3.21.

We shall here and after denote by An the collection of monomials

An =
{
xε1

1 xε1
1 · · ·x

εn−1
n−1 : 0 ≤ εi ≤ n− i for i = 1, 2, . . . , n− 1

}
.

It is well known that An is a basis for the quotient

Q[x1, x2, . . . , xn]/(e1, e2, . . . , en)

where e1, e2, . . . , en are the elementary symmetric functions. It develops that Schubert
polynomials may be integrally expanded in terms of these monomials. More precisely

Theorem 3.3.3
For σ ∈ Sn

SCσ(x) =
∑

xp∈An

ap xp 3.3.22

where the coefficients ap are non-negative integers. For the identity permutation this reduces to

SCI(x) = 1 3.3.23

Proof
In view of formula 3.3.21, to prove 3.3.24 we need only show that each δi sends

any element ofAn into a N-linear combination of elements ofAn. However this follows
immediately from formula 3.3.5. In fact, if a = εi and b = εi+1 we get that

δi xεi

i x
εi+1
i+1

is a sum of monomials of the form

xεi−r−1
i x

εi+1+r
i+1 (with r ≥ 0 and εi+1 + r ≤ εi − 1)

if εi > εi+1 or a sum of monomials of the form

xεi+r
i x

εi+1−r−1
i+1 (with r ≥ 0 and εi + r ≤ εi+1 − 1)

if εi < εi+1. In either case we see that εi ≤ n − i and εi+1 ≤ n − i − 1 force all these
summands to be of the form

xpi

i x
pi+1
i+1 (with pi ≤ n− i and pi+1 ≤ n− i− 1

and this is all that is needed to show the first assertion of the Theorem. To complete
the proof we note that by definition we have

SCI(x) = δσ(n)xn−1
1 xn−1

2 · · ·x1
n−1 ,
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but then 3.3.10 gives

SCI(x) =
1∏

1≤i<j≤n(xi − xj)

∑
σ∈Sn

sign(σ)xn−1
σ1

xn−1
σ2
· · ·x1

σn−1
=

∏
1≤i<j≤n(xi − xj)∏
1≤i<j≤n(xi − xj)

= 1

This proves the second assertion.

The following identities enable us to obtain explicit expressions for some Schubert
polynomials.

Proposition 3.3.5
For u, σ ∈ Sn

δu SCσ(x) =

{SCσu−1(x) if l(σu−1) = l(σ)− l(u)

0 otherwise
3.3.24

In particular when 1 ≤ i ≤ n− 1

δi SCσ(x) =

{SCσsi(x) if σi > σi+1

0 otherwise
3.3.25

Proof
From the definition we get

δu SCσ(x) = δu δσ−1σ(n) xn−1
1 xn−2

2 · · ·x2

Now clearly δu δσ−1σ(n) = 0 unless

l(u) + l
(
σ−1σ(n)

)
= l

(
u σ−1σ(n)

)
= l

(
(σ u−1)−1σ(n)

)
3.3.26

in which case
δu δσ−1σ(n) = δ(σ u−1)−1σ(n) .

However, from 3.17 we derive that 3.3.26 is equivalent to

l(u) +
(

n

2

)
− l(σ) =

(
n

2

)
− l

(
σ u−1

)
,

or better
l
(
σ u−1

)
= l(σ) − l(u) .

This proves 3.3.24. In particular we get

δi SCσ(x) =

{SCσsi (x) if l(σsi) = l(σ)− 1

0 otherwise
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and 3.3.25 then follows since l(σsi) = l(σ) − 1 holds if and only if σi > σi+1. This
completes the proof.

Schubert polynomials have several interesting properties the following two are
worth mentioning here

Theorem 3.3.4
For any σ ∈ Sn

a) SCσ(x) is symmetric in xi , xi+1 if and only if σi < σi+1

b) If 1 ≤ r < n is the last descent of σ then SCσ(x) ∈ N[x1, x2, . . . , xr]

Proof
Formula 3.3.24 yields that

δi SCσ(x) = 0 3.3.27

if and only if σi < σi+1 . However 3.3.4 shows that 3.3.27 is equivalent to

SCσ(x) = si SCσ(x) .

This proves the assertion in a). Note next that if r is the last descent, then

σr+1 < σr+2 < · · · < σn

So part a) gives that SCσ(x) is symmetric in xr+1, xr+2, . . . , xn. But from Theorem
3.3.2 it follows that SCσ(x) does not depend on xn, Therefore it cannot depend on
xr+1, xr+2, . . . , xn−1 as well. This proves part b).

LetHn denote the linear span of the monomials in An, in symbols

Hn = L
[
xε1

1 xε1
2 · · ·x

εn−1
n−1 : 0 ≤ εi ≤ n− i

]
. 3.3.28

This given we have the following useful result.

Theorem 3.3.5
The collection

{
SCσ(x)

}
σ∈Sn

is a basis ofHn and for any polynomial P ∈ Hn we have
the expansion formula

P (x1, x2, . . . , xn−1) =
∑

σ∈Sn

δσP
∣∣
x=0
SCσ(x1, x2, . . . , xn−1) 3.3.29

Proof
The definition in 3.3.28 gives that

dimHn = n! = #
{
SCσ(x)

}
σ∈Sn

.

Since Theorem 3.3.2 gives
{
SCσ(x)

}
σ∈Sn

⊆ Hn, we need only show independence. To
this end let

P (x) =
∑

σ∈Sn

aσ SCσ(x) 3.3.30
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Note that the homogeneity of SCσ(x) coupled with formulas 3.3.23 and 3.3.24 give

δα SCσ(x)
∣∣
x=0

=

{
1 if α = σ,

0 otherwise.
3.3.31

Applying δα to 3.3.30 and setting x = 0 we get

aα = δα P
∣∣
x=0

. 3.3.32

Thus P = 0 ⇒ aα = 0, proving independence. This given, 3.3.29 follows from 3.3.32.

The following beautiful result of Billey, Jockusch and Stanley [1] reveals the
intimate relationship between Schubert polynomials and Stanley symmetric functions.

Theorem 3.3.6
For any permutation σ ∈ Sn of length l we have

SCσ(x) =
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤n−1

ai<ai+1 ⇒ βi<βi+1

βi≤ai

xβ1xβ2 · · ·xβl
3.3.33

We shall give here the remarkably simple proof of this result due to Fomin and
Stanley [4]. To this end we need to present some auxiliary material. To begin we note
that the right hand side of this identity has a very simple expression in terms of the
Nil-Coxeter algebra.

Proposition 3.3.6
For any σ ∈ Sn we have

A1(x1)A2(x2) · · ·An−1(xn−1)
∣∣∣
uσ

=
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤n−1

ai<ai+1 ⇒ βi<βi+1

βi≤ai

xβ1xβ2 · · ·xβl

3.3.34

Proof
It is easily seen from the definition in 3.2.14 that the expansion of the product on

the left hand side produces terms of the form

xβ1xβ2 · · ·xβm ua1ua2 · · ·uam

∣∣∣
uσ

with
β1 ≤ β2 ≤ · · · ≤ βm

satisfying
ai < ai+1 =⇒ βi < βi+1

this is for the same reason as in the proof of 3.2.23. However in this case we have the
additional feature that the factor Aβ(xβ) contributes only terms xβ ua with a ≥ β. This
shows that we must also have the inequalities

βi ≤ ai ( for i = 1, 2, . . . , m ).
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Now the Nil-Coxeter relations in 3.2.12 again guarantee that the only terms that survive
are those for which m = l and

ua1ua2 · · ·ual
= uσ .

This completes the proof of 3.3.34.

To proceed we need one more identity of the Nil-Coxeter algebra.

Proposition 3.3.7
For any 1 ≤ i < n we have

δxy Ai(x)Ai+1(y) = Ai(x)Ai+1(y)ui 3.3.35

Proof
Note that from the definition in 3.2.14 we get that

Ai(x)Ai(y) = Ai(x)Ai+1(y) + yAi(x)Ai+1(y)ui 3.3.36

Interchanging x and y gives

Ai(y)Ai(x) = Ai(y)Ai+1(x) + xAi(y)Ai+1(x)ui 3.3.37

Subtracting 3.3.37 from 3.3.36 and using Proposition 3.2.1 we get

δxyAi(x)Ai+1(y) =

(
xAi(y)Ai+1(x)ui − yAi(x)Ai+1(y)ui

)
x− y

3.3.38

But we have

Ai(x)Ai+1(y)ui = Ai+1(x)(1 + xui)Ai+1(y)ui

= Ai+1(x)Ai+1(y) + xAi+1(x)uiAi+1(y)ui

= Ai+1(x)Ai+1(y) + xAi+1(x)Ai+2(y)ui (1 + y ui+1)ui

= Ai+1(x)Ai+1(y) + xyAi+1(x)Ai+2(y)ui ui+1 ui

= Ai+1(x)Ai+1(y) + xyAi+1(x)Ai+2(y)ui+1 ui ui+1

= Ai+1(x)Ai+1(y) + xyAi+1(x)Ai+2(y)(1 + y ui+1)ui+1 ui ui+1

= Ai+1(x)Ai+1(y) + xyAi+1(x)Ai+1(y)ui+1 ui ui+1

Since this last expression is completely symmetric in x and y (again by Proposition
3.2.1) we deduce that

Ai(y)Ai+1(x)ui = Ai(x)Ai+1(y)ui .

Using this in 3.3.38 gives that

δxyAi(x)Ai+1(y) =

(
xAi(x)Ai+1(y)ui − yAi(x)Ai+1(y)ui

)
x− y
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which is easily seen to simplify to 3.3.35.

We now have all the ingredients we need to establish the Billey-Jockusch-Stanley
formula.

Proof of Theorem 3.3.6
For convenience, let us for a moment denote by Gσ(x) the right hand side of

3.3.33. Recalling in extent the definition in 3.2.14, 3.3.34 gives

Gσ(x) = (1+x1un−1)(1 + x1un−2) · · · (1 + x1u1)×
(1 + x2un−1)(1 + x2un−2) · · · (1 + x2u2)×

· · · · · · · · ·
(1 + xn−2un−1)(1 + xn−2un−2)×

(1 + xn−1un−1)
∣∣∣
uσ

3.3.39

A view at this display makes it palpably clear that the only way to obtain a term
involving uσ(n) from this expression is to pick the “x” part in every one of the factors.
Thus we must have

Gσ(n)(x) = xn−1
1 xn−2

2 · · ·x1
n−1 .

This proves 3.3.33 for the top permutation. We can thus proceed by descent induction
on the length of σ. Let us then assume that we have proved Gσ(x) = SCσ(x) for all
σ ∈ Sn of length l + 1 and let α ∈ Sn be of length l. Since α is not the top element there
will be an index i < n for which αi < αi+1. This gives that the permutation αsi has
length l + 1 so by the induction hypothesis we have

Gαsi(x) = SCαsi(x) .

Now 3.3.25 can be applied to σ = αsi and obtain

SCα(x) = δi SCαsi(x) = δi Gαsi(x) .

Now, using 3.3.39 we get that

SCα(x) = δiA1(x1) · · ·Ai(xi)Ai+1(xi+1) · · · An−1(xn−1)
∣∣∣
uαui

= A1(x1) · · · (δiAi(xi)Ai+1(xi+1)) · · · An−1(xn−1)
∣∣∣
uαui(

using 3.3.35
)

= A1(x1) · · · (Ai(xi)Ai+1(xi+1)ui) · · ·An−1(xn−1)
∣∣∣
uαui(

using 3.2.12 b)
)

= A1(x1) · · · Ai(xi)Ai+1(xi+1) · · · An−1(xn−1) ui

∣∣∣
uαui

= A1(x1)A2(x2) · · · An−1(xn−1)
∣∣∣
uα

= Gα(x) .

This completes the induction and the proof of the Theorem.

An immediate corollary of Theorem 3.3.6 is the following important identity.
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Theorem 3.3.7
If σ ∈ Sn is any permutation of length l then

SC1m⊗σ (x1, x2, . . . , xn) = Fσ(x1, x2, . . . , xn) (∀ m ≥ n ) 3.3.40

Proof
Note that we have

a1a2 · · ·al ∈ RED(σ) ←→ a1 + m a2 + m · · · al + m ∈ RED(1m⊗ σ) .

Thus formula 3.3.33 for 1m⊗ σ may be written in the form

SC1m⊗σ (x1, x2, . . . , xm+n−1)

=
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤m+n−1

ai+m<ai+1+m ⇒ βi<βi+1

βi≤ai+m

xβ1xβ2 · · ·xβl
.

3.3.41

But if all the variables xn+1, xn+2, . . . , xm+n−1 are set to zero the condition βi ≤ ai + m

becomes vacuous when m ≥ n, and so 3.3.41 yields

SC1m⊗σ (x1, x2, . . . ,xm+n−1)
∣∣∣
xn+1,...,xm+n−1=0

=
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤n

ai<ai+1 ⇒ βi<βi+1

xβ1xβ2 · · ·xβl
.

This proves 3.3.40.

Before we proceed any further it will be good to note that Schubert polynomials
are stable under the natural embedding of Sn into Sn+m. To be precise we have the
following general result.

Proposition 3.3.8
If σ = σ1σ2 · · ·σn ∈ Sn has last descent at r then for any m ≥ 0 we have

SCσ⊗1m(x1, x2, . . . , xr) = SCσ(x1, x2, . . . , xr) . 3.3.42

Proof
By definition

σ ⊗ 1m =
[

1 2 · · · n n + 1 n + 2 · · · n + m
σ1 σ2 · · · σn n + 1 n + 2 · · · n + m

]
,

In particular also σ ⊗ 1m has last descent at r. Thus from Theorem 3.3.4 we derive that
both sides of 3.3.42 are polynomials in x1, x2, . . . , xr. Moreover we see that we also
trivially have

RED(σ) = RED(σ ⊗ 1m) .
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Thus 3.3.42 follows immediately from Theorem 3.3.6.

This given, here and after we will make replacements σ → σ ⊗ 1m, whenever
necessary to keep all the permutations, indexing Schubert polynomials appearing in
a given identity, in the same Symmetric Group. Keeping this in mind we have the
following basic result which contains the Schubert polynomial analog of Pieri’s rule,
usually referred to as Monk’s [14] rule (see [13] (4.15”)).

Theorem 3.3.8
For any u ∈ Sn we have

(α1x1 + α2x2 + · · ·+ αnxn)SCu(x1, x2, . . . , xn−1)

=
∑

1≤a<b≤n+1

l(u×tab)=l(u)+1

(αa − αb) SCu×tab
(x1, x2, . . . , xn) 3.3.43

Proof
Since by Theorem 3.3.3 we have SCu(x1, x2, . . . , xn−1) ∈ Hn, it follows that the

left hand side of 3.3.43 is in Hn+1. We can thus apply Theorem 3.3.35 and obtain the
expansion

f SCu(x1, x2, . . . , xn−1) =
∑

σ∈Sn+1

δσ(fSCu)
∣∣
x=0
SCσ(x1, x2, . . . , xn) 3.3.44

where for convenience we have set

f = α1x1 + α2x2 + · · ·+ αnxn . 3.3.45

Assuming that l(u) = l − 1, it follows that the product fSCu is a homogeneous poly-
nomial of degree l and therefore the summation in 3.3.44 need only be carried out over
permutations σ of length l. This given assuming that

a1a2 · · · al ∈ RED(σ)

we may compute the coefficient of SCσ in 3.3.34 by means of formula 3.3.6 with g = SCu

and k = l. We thus obtain

δσ(fSCu)
∣∣
x=0

=
l∑

i=1

(
δaisai+1···sal

f
)

δa1 · · · [δai ] · · · δal
SCu . 3.3.46

Note that we need not evaluate at x = 0 on the right hand side here since SCu is
homogeneous of degree l− 1. For the same reason we have

δa1δa2 · · · δal
SCu = 0 ,

so no additional term is needed in 3.3.46. Now it follows from formula 3.3.24 that we
have

δa1 · · · [δai ] · · · δal
SCu =

{
1 if a1 · · · [ai] · · ·al ∈ RED(u) ,

0 otherwise .
3.3.47
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Now it is easy to see that if

(a, b) = sal
· · · sai+1 (ai , ai + 1) 3.3.48

then

tab = sal
· · · sai · · · sal

and sa1 · · · [sai ] · · · sal
= σ × tab 3.3.49

and thus from 3.3.47 we deduce that the only terms that survive in 3.3.44 are those for
which

σ = u× tab and l(u× tab) = 1 .

for some 1 ≤ a < b ≤ n + 1. This given note that 3.3.48 gives that

sal
· · · sai+1δaisai+1···sal

= δxa,xb

Thus from 3.3.45 we get that

δaisai+1···sal
f = sal

· · · sai+1δaisai+1···sal
f = δxa,xb

f = αa − αb .

In summary when we have 3.3.49 the summation in 3.3.46 reduces to the single term
αa − αb. This proves 3.3.43.

For our purposes we only need the special case f = xr of the identity in 3.3.43.
This may be written as

xr SCu(x1, x2, . . . , xn−1) =
∑

1≤a<b≤n+1

l(u×tab)=l(u)+1

(
χ(a = r) − χ(b = r)

)
SCu×tab

(x1, x2, . . . , xn)

or better ∑
r<b≤n+1

l(u×trb)=l(u)+1

SCu×trb
(x1, x2, . . . , xn) =

xr SCu(x1, x2, . . . , xn−1)+∑
1≤a<r

l(u×tar)=l(u)+1

SCu×tar (x1, x2, . . . , xn) . 3.3.50

We are finally in a position to prove the crucial identity in 2.4.17. To this end
note that comparing the definition of Ξ(σ) given in 2.3.19 and of the Stanley symmetric
function Fσ(x1, x2, . . . , xn) given in 3.2.1 it is easily seen that Theorem 2.4.1 is equivalent
to the following result.

Theorem 3.3.9
For u ∈ Sn and 1 < r < n set

Ψ(u, r) =
{

α ∈ Sn : α = u× trb & l(α) = l(u) + 1 with n ≥ b > r
}

,

Φ(u, r) =
{

β ∈ Sn : β = u× tar & l(β) = l(u) + 1 with 1 ≤ a < r
}

.
3.3.51
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Then for every 1 < r < n for which both Ψ(u, r) and Φ(u, r) are not empty we have∑
α∈Ψ(u,r)

Fα(x1, x2, . . . , xn) =
∑

β∈Φ(u,r)

Fβ(x1, x2, . . . , xn) 3.3.52

Proof
We begin by rewriting 3.3.50 with u→ 1m ⊗ u and r→r + m in the form∑
r+m<b≤n+m+1

l((1m⊗u)×tr+m,b)=l(u)+1

SC(1m⊗u)×tr+m,b
(x1, x2, . . . , xn+m) =

xr+m SC1m⊗u(x1, x2, . . . , xn+m−1)+∑
1≤a<r+m

l((1m⊗u)×ta,r+m)=l(u)+1

SC(1m⊗u)×ta,r+m
(x1, x2, . . . , xn+m) .

3.3.53

Now note that Ψ(u, r) is not empty if and only if we have ub > ur for some index
n ≥ b > r. Under this condition, we have ur + m < ub + m < m + n + 1 and then the
length of the permutation (1m ⊗ u) × tr+m,n+m+1 is necessarily greater than l(u) + 1.
Likewise, Φ(u, r) is not empty if and only if we have ua < ur for some index 1 ≤ a < r.
Now under this condition, we have m < ua + m < ur + m and the length of the
permutation (1m ⊗ u) × tm′,r+m is greater than l(u) + 1 for all m′ ≤ m. This given,
when Ψ(u, r) and Φ(u, r) are both non empty 3.3.53 can be rewritten as∑

r<b≤n

l((1m⊗u)×tr+m,b+m)=l(u)+1

SC(1m⊗u)×tr+m,b+m
(x1, x2, . . . , xn+m) =

xr+m SC1m⊗u(x1, x2, . . . , xn+m−1)+∑
1≤a<r

l((1m⊗u)×ta+m,r+m)=l(u)+1

SC(1m⊗u)×ta+m,r+m
(x1, x2, . . . , xn+m) .

But since (1m ⊗ u)× tr+m,b+m = 1m ⊗ (u × tr,b) and likewise (1m ⊗ u) × ta+m,r+m =
1m ⊗ (u× ta,r) this equation simplifies to∑

r<b≤n

l(u×tr,b)=l(u)+1

SC1m⊗(u×tr,b)(x1, x2, . . . , xn+m) =

xr+m SC1m⊗u(x1, x2, . . . , xn+m−1)+∑
1≤a<r

l(u×ta,r)=l(u)+1

SC1m⊗(u×ta,r)(x1, x2, . . . , xn+m) .

Now setting xn+1 = xn+2 = · · · = xn+m = 0 and using Theorem 3.3.7 we see that for
m ≥ n we must have∑

r<b≤n

l(u×tr,b)=l(u)+1

Fu×tr,b
(x1, x2, . . . , xn) =

∑
1≤a<r

l(u×ta,r)=l(u)+1

Fu×ta,r (x1, x2, . . . , xn) ,

and this is simply another way of writing the equation in 3.3.52. Our proof is thus
complete.
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Now that we have finally established the identity in 2.4.17, (and with quite some
effort we must say), a natural question arises whether or not there is a simpler, purely
combinatorial explanation of this identity. To be precise, purely esthetical considera-
tions lead us to the following conjecture.

For each u ∈ Sn and 1 < r < n, when Φ(u, r), Ψ(u, r) 	= ∅, there is a natural bijection
Θu,r between the following two collections of reduced words

⋃
α∈Ψ(u,r)

RED(α) and
⋃

β∈Φ(u,r)

RED(β)

with the property that

p
(
Θu,rw) = p(w) for all w ∈

⋃
α∈Ψ(u,r) RED(α)

Now it develops that as this writing was about to be completed, David Little was
able to prove this conjecture by constructing a bijection based on simple manipulations
of line diagrams. In fact, for any α ∈ Ψ(u, r), David Little’s Θu,r sends a reduced word
w = a1a2 · · ·al ∈ RED(α) into a word w′ = b1b2 · · · bl = Θu,rw ∈ RED(β) for some
β ∈ Φ(u, r) with the property that

ai − bi = 1 or 0 .

It is easy to see that this assures the preservation of “descents” in the simplest possible
way.

Of course David Little’s construction proves the identity in 2.4.17, completely
bypassing all the machinery we have developped in these notes. David Little’s discov-
ery yields the simplest and most elementary proof of the Schur positivity of the Stanley
symmetric functions that could ever have been conceived. Moreover, by iterations of
the Little bijection we can obtain a very elementary algorithm that converts a reduced
factorization of any given permutation σ into a standard tableau. To do this we simply
go down the Lascoux-Schützenberger tree of σ, starting from a word w ∈ RED(σ) then
proceed from parent to child until we reach a Grassmanian leaf σ′. At that point all we
are left to do is convert the target word w′ into the standard tableau obtained by reading
the corresponding labelled circle diagram of σ′. A bijection between reduced words of
the top permutation σ(n) and standard tableaux was in fact one of the important results
of the Edelman and Greene paper [2]. It is quite possible that the algorithm we have
just described may yield the same final tableau. Nevertheless, we should add that the
proof of the validity of the David Little bijection is considerably simpler than what is
required to validate the Edelman and Greene’s correspondence.

We should also add that another byproduct of David Little’s discovery is a
completely elementary proof of the validity of the Lascoux-Schützenberger tree as
a tool for the computation of the Littlewood-Richardson coefficients. It is simply
astounding that so many time proven very difficult achievements can be derived from
such a surprisingly simple construction.



4. A Combinatorial refinement of the
Lascoux-Schützenberger Tree

In this section, we describe the bijection referred to at the end of Chapter 3. We
will break up this description into three sections. First, we present the bijection as it
pertains to the Lascoux-Schützenberger tree. Then we show how to experiment with
this bijection using a Java applet available online at

http://schur.ucsd.edu/∼garsia/SAGA APPENDIX/

Lastly, we present a number of conjectured properties of our bijection.

4.1 The bijection.

For a given permutation σ, we describe a bijection, θ, between the two collections
of reduced words

RED(σ) and
⋃

σ′∈Φ(u,r)

RED(σ′) 4.1.1

where u and r are as defined in the Branching Process of the LS tree. This bijection will
have the property that

p(θ(w)) = p(w)

for all w ∈ RED(σ), yielding a purely combinatorial proof of Theorem 2.4.4. We will
first describe our bijection through an example, after which we will formally define θ

and give an outline of the proof that θ is indeed a bijection.
Before we begin, let us introduce a bit of notation. For a given word w =

a1a2 · · · ak, we define
w(t) = a1a2 · · · at−1at+1 · · · ak

and

w↑t=
{

a1a2 · · · at−1(at − 1)at+1 · · · ak if at > 1
(a1 + 1)(a2 + 1) · · · (at−1 + 1)at(at+1 + 1) · · · (ak + 1) if at = 1 ,

where we will refer to w↑t as the word obtained from w by bumping at time t.
For a given permutation σ = (σ1, σ2, . . . , σn), recall the following definitions

used in constructing the Lascoux-Schützenberger tree.

r = max(i | σi > σi+1),

s = max(i > r | σi < σr),

I = {i < r | σi < σs and ∀j ∈ (i, r) σj 	∈ (σi, σs)}.

Lastly, we need to extend the defintion of the labeled circle diagram, T (w), to
include non-reduced words. To begin we note that we may refer to the line diagram of
a general word since this object is as easily defined in the non-reduced case as it is in the
reduced. As in the reduced case, the columns of T (w) are labelled σ1, σ2, . . . , σn. Again,
to go from the line diagram to the labeled circle diagram, we follow the procedure
illustrated in the picture below.



102 Chapter 4. A Combinatorial refinement of the Lascoux-Schützenberger Tree

i

j

k

j

i k

j

i

That is to say, we place k in the row labeled i and the column labeled j of T (w) if and
only if the kth letter of w interchanges i and j. It is important to note that prior to
switching i and j, i appeared before j in the permutation. The main difference is that
we are including the case when i > j, implying that w is not reduced. This not only
allows for the possibility that k is placed in a cell directly SOUTH or EAST of an “×",
but also that more than one number appears in the same cell. We will be careful to
avoid the latter situation in what follows.

We are now ready for an example of our bijection. Let w = 3, 4, 1, 5, 6, 5, 2, which
is a reduced word corresponding to the permutation σ = (2, 4, 1, 5, 7, 6, 3) with r = 6,
s = 7 and I = {1, 3}. The line diagram associated to w, denoted LD(w), and T (w) are
shown in the following picture.
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4.1.2

We begin the bijection by locating the letter of w which interchanges σs and σr.
There is at least one letter that does so since r < s and σr > σs. However, there cannot
be anymore since w is reduced. From 4.1.2, we see that the 4th letter of w interchanges
σs = 3 and σr = 6. The next step is to temporarily set v = w ↑4 .
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4.1.3

In 4.1.3, we can easily see that lines 3 and 5 cross at times 2 and 4. Therefore v is not
reduced. Since we have already bumped up at time 4, we continue the process by
resetting v to be v ↑2 .
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4.1.4

Again, v is not reduced since lines 3 and 4 cross at times 1 and 2 as seen in 4.1.4. Since
we just bumped up at time 2, we reset v to be v ↑1 .
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We stop the bumping process here since v is now reduced.

In summary, the bijection begins by identifying the unique time, t0, at which lines
σr and σs cross in LD(w) and letting v = w ↑t0 . The cross at time t0 switches two lines
in LD(v). If these two lines cross again in LD(v), we claim that they cross at exactly
one other time, t1 	= t0. This being the case, let v = v ↑t1 and repeat until v is reduced.
Note that the time, t, at which we bump v can always be located in the same cell of
T (v). In particular, t is always located in row σs and column r of T (v).

The bumping algorithm is formally defined as:

The Bumping Algorithm for w ∈ RED(σ):
Step 1. Let r = max(i | σi > σi+1), s = max(i > r | σi < σr) and v = w.
Step 2. t = (σs, r) entry of T (v).
Step 3. v = v↑t
Step 4. If v is not reduced, go to Step 2. Otherwise, return v.

We should point out here that in the description of the above algorithm, we refer
to the (σs, r) entry of the labeled circle diagram T (v). By this we mean the cell at the
intersection of the σth

s row and the rth column. We are not referring to the column with
label r. We should also point out that in the event I is empty, the bumping process will
inevitably bump a cross in the first row into an empty row above it. If we create a new
row on top and relabel the rows from top to bottom, it would have the same effect as
applying the bumping process to 1⊗ σ.

The proof that θ is a bijection between the sets given in 4.1.1 relies on the following
four facts:
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Fact 1. Step 2 of the algorithm is well-defined.

In other words, each time Step 2 is reached, there is exactly one number in the (σs, r)
entry of T (v). This is certainly the case the first time Step 2 is performed, but if v is not
reduced, conceivably there could be more than one number or even no number in the
(σs, r) entry of T (v). However, we claim that this cannot happen.

Fact 2. No cross is bumped up more than once.

This means that the variable t never takes on the same value twice. Not only does this
imply that the algorithm terminates, but it insures that p(θ(w)) = p(w).

Fact 3. The word v in Step 3 always corresponds to σtrstri for some i.

This means that after the bumping algorithm is done, the reduced word v that is
returned will correspond to a child of σ.

Fact 4. This process is completely reversible.

This last fact means that θ is in fact a bijection. This is an immediate consequence of
the fact that the same process yields a more general bijection, Θu,r, between the sets⋃

α∈Ψ(u,r)

RED(α) and
⋃

β∈Φ(u,r)

RED(β).

Starting with a reduced word w ∈ RED(σ) with σ ∈ Ψ(u, r), we transform w

into w′ ∈ RED(σ′) with σ′ ∈ Φ(u, r) using the general bumping algorithm defined
below. In the general case, s refers to the index greater than r such that σ = utrs.

The General Bumping Algorithm for w ∈ RED(σ) and σ ∈ Ψ(u, r):
Step 1. v = w.
Step 2. t = (σs, r) entry of T (v).
Step 3. v = v↑t
Step 4. If v is not reduced, go to Step 2. Otherwise, return v.

The advantage to using this more general algorithm is that in order to show Θu,r

is a bijection, one need only show that it is injective. This is simply because its inverse
can be defined using the exact same mechanism! Either we could define a bumping
“down" operation, ↓t, that would increase the corresponding letter of a word by one,
or we could simply turn the line diagram upside-down, apply the general bumping
algorithm as is, and then turn the diagram right-side up. Either way, the inverse is
injective if and only if Θu,r is injective. For complete proofs of the above facts, the
reader is referred to [12].

We end this section by briefly mentioning what happens under repeated appli-
cations of θ. Since each application for our bijection goes down one level of the LS tree,
repeated applications of θ will inevitably yield a Grassmanian permutation. In other
words, for a given reduced word w, we can define the map θ∗ as

θ∗(w) = (α, T )

where α is the resulting Grassmanian permutation and T is a standard tableau of French
skew shape λ/µ where λ = MN for some M and N . For example, repeated applications
of θ to w = 3, 4, 1, 5, 6, 5, 2 yields the following sequence of tableaux.
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1

3 7

2 5 4

6

1

3 7

2

5

4 6 1

3 7

2 5 4

6

1

3 7

2

5

4 6 1

3 7

2 5 4

6

1 3

72

5

46 1 3 7

2

5

4

6 4.1.5

Thus α = (2, 3, 5, 7, 1, 4, 6, 8, 9) and T is of skew shape [4, 4, 4]/[3, 2].

Remark
The above tableaux were formed by removing the rows and columns from T (w)

that were devoid of circles. This will be the convention we use for drawing labeled
circle diagrams in the remaining sections.

4.2 The Applet.

To further understand θ, a Java applet was written to automate the process of
drawing line and circle diagrams as well as carrying out the above bijection. This applet
proved its worth many times over by providing numerous examples with relative ease,
which ultimately guided us to a proof of θ’s validity. In this section, we will discuss
how to use this online implementation of the preceding bijection.

In the lower left portion of the applet, the user can select n and the type of per-
mutation desired. The currently available types of permutations are “Any" (except the
identity), “321-avoiding", “Alternating" (i.e., the permutation 2, 1, 4, 3, 6, 5 . . . , 2n, 2n−
1), “Dominant" (132-avoiding), “Grassmanian", “Reverse" (i.e., the permutation n, n−
1, . . . , 3, 2, 1), and “Vexillary" (2143-avoiding).

Directly to the right of this region are two buttons labeled “Random Permuta-
tion" and “Random Reduced Word". The first button selects a random permutation
from Sn of the specified type and generates a random reduced word corresponding to
this permutation. The second button simply produces a random reduced word corre-
sponding to the current permutation. When either button is pressed, the line diagram
is automatically updated and the current permutation and reduced word are written
to the right of each button. If desired, the user can manually type in a permutation
or reduced word. To enter a permutation, type each number separated by a single
comma and then press the “Random Reduced Word" button to input the permutation
and generate a new reduced word. To enter a reduced word, type in each number
separated by a single comma and then press RETURN on the keyboard.

Applying the bijection can be done in one of three ways. The first way is to
manually perform the bijection by bumping up the appropriate letter of the word.
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For convenience, the σr and σs lines have been colored red initially. This allows for
easy recognition of where to begin the bumping process. To start, double click in the
region of the line diagram where the red lines cross. This reduces the value of the
corresponding letter by one and highlights the appropriate lines. To continue, simply
double click in the region where the two red lines cross. Note that double clicking in a
region that has already been bumped up will bump the appropriate letter back down
to its original location.

The lines that are colored blue indicate where the bijection will terminate. In
other words, if at anytime you bump a red cross into a blue line, the bijection will be
complete. When this happens, press the “Update" button located in the lower right
portion of the screen to update the applet so you may apply the bijection to this new
reduced word. It also stores the new permutation and reduced word in the appropriate
lists located above the “Update" button. If at anytime during the bijection you want to
start over, simply press the “Reset" button.

The second way to apply the bijection is to have the computer do everything for
you. By pressing the “->" button, the computer automatically performs the bijection
and “Update"s the applet as described above.

The third and final way to apply the bijection is to use the labeled circle diagram.
For convenience, the times at which the two red lines cross in the line diagram are
colored red in the circle diagram. Double clicking in these regions of the circle diagram
has the same effect as double clicking on the corresponding region of the line diagram.

To undo the bijection, simply press the “<-" button. Note that this does not
apply the inverse of θ, but rather “Update"s the applet with the next to last permuta-
tion/reduced word stored in the appropriate list. The “Clear" button erases all informa-
tion recorded in these lists and initializes each list to the current permutation/reduced
word.

4.3 Robinson-Schensted and Edelman-Greene correspondences as particular cases.

Further experimention with the applet has revealed several amazing properties
of θ. To begin, when σ = (2, 1, 4, 3, 6, 5, . . . , 2n, 2n− 1), we see a Robinson-Schensted
like correspondence. In this case, the number of reduced factorizations is n!, since each
reduced word is a rearrangement of the numbers 1, 3, 5, . . . , 2n − 1. To each reduced
word, w, we can associate a permutation α ∈ Sn by letting α(i) = j if the jth letter
of w is 2i − 1. For example, the word w = 3, 9, 1, 7, 5 corresponds to the permutation
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α = (3, 1, 5, 4, 2). This can also be seen by looking at the labeled circle diagram of w

and reading off the numbers as they appear on the diagonal.
If we repeatedly apply our bijection to w until the resulting permutation is Grass-

manian, we would pass through the following sequence of labeled circle diagrams:

1

3

2

5

4

1

3

2

5

4

1

3

2

5

4

1

3

2

5

4

1

3

2

5

4

1

3

2

5

41

3

2

5

4

Notice that the above sequence has a Robinson-Schensted insertion feel to it.
More specifically, define a modified version of Robinson-Schensted insertion of a into
the tableau T as follows:

Modified Robinson-Schensted insertion:
Step 1. Let r = 1.
Step 2. If a is less than the smallest entry in row r of T or row r is empty, then prepend a

to row r.
Step 3. Otherwise, find the largest number, b, in row r that is less than a. Replace b with

a in T and let a = b. Increase r by 1 and repeat Step 2.

The reader should easily recognize that we are essentially applying the regular
Robinson-Schensted correspondence to the permutation (n+1−αn , n+1−αn−1, . . . , n+
1 − α2, n + 1 − α1). For example, notice what happens when we insert the numbers
of the permutation α = (3, 1, 5, 4, 2) from right to left, using this modified Robinson-
Schensted insertion.

1 3

2
2

5
4

2

4

5

2

4 1

5

2

4

The final insertion tableau is exactly the same as the tableau corresponding to the Grass-
manian permutation resulting from our bijection. This leads us to our first conjecture.

Conjecture 4.3.1
Let w = a1a2 · · ·an be a rearrangement of the set {1, 3, 5, . . . , 2n− 1}. Define α to be

the permutation αi = j iff aj = 2i − 1. Then the insertion tableau formed by the modified
Robinson-Schensted correspondence applied to α is the same as the resulting standard tableau,
T , after applying θ∗ to w.

The difficulty in proving this conjecture appears to lie in the fact that one appli-
cation of our bijection does not correspond to one Robinson-Schensted insertion.

Another apparent property of our bijection is the inclusion of the Edelman-Greene
correspondence as a special case. To illustrate this, let us first compute the image of
a standard tableau, T , of staircase shape under the Edelman-Greene map. With a
standard tableau in hand, apply Schützenberger’s promotion operator n consecutive
times to T , recording the index of the column which contains the largest entry at each
step. For example, the following sequence of tableaux illustrates repeated applications
of the promotion operator.
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31 5

2

4

6 3

1 5

2

4

3

1

2

4

3

1

2

1

2

1

The sequence 2, 3, 1, 2, 1, 3 records the column index of the largest element in the tableau
at each step. This sequence can also be viewed as a reduced word, and thus be
transformed into a balanced tableau. The procedure Edelman and Greene used to do
so is exactly the transpose of how we defined the balanced labelling of a circle diagram
in Section 2.1. Thus the resulting balanced tableau of Edelman-Greene would be the
following.

3 1

524

6

On the other hand, if we apply θ∗ to the reduced word 2, 1, 3, 2, 3, 1, which
corresponds to the above balanced tableau using the definition given in Section 2.1, we
get the following sequence of tableaux.

3 1

524

6

3 1

52 4

6 3

1

52 4

6

3

1 5

2 4 6

If we rotate the resulting standard tableau about a vertical line and replace each entry
i by n + 1− i, we form

31 5

2

4

6

which is exactly the standard tableau to which we initially applied the Edelman-Green
bijection. This leads us to our next conjecture.

Conjecture 4.3.2
The map θ∗ restricted to reduced words of the permutation (n, n − 1, . . . , 3, 2, 1) is

the same as the Edelman-Greene correspondence between balanced and standard tableaux of
staircase shape.

The relationship between θ∗ and the Edelman-Greene bijection for tableaux of
non-staircase shape is not as clear. In fact, this remains an open problem.

Our last observation deals with a jeu-de-taquin like property of θ∗. In describing
our bijection in Section 4.1, we always started the bumping process where the lines σr

and σs intersect. What happens if we start the bumping process at some other position?
One pitfall we might run into is that the two red lines cross in more than two

positions. In other words, Step 2 of the bumping algorithm might not be well-defined.
However, if we simply agree to start the bumping process at a time t where w(t) is
reduced (as is the case in the Bumping Algorithm) then this will not happen.

As an example,let’s consider the reduced word w = 3, 4, 1, 5, 6, 5, 2, the same
word illustrated in 4.1.5. Instead of starting the bumping process at time 4, we might
decide to start the process at time 2. After applying θ, we might then decide to start the
bumping process at time 4 and so on. This is illustrated in the following diagram.
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1

3 7

2 5 4

6

1

3 7

2

5 4

6

1

3 7

2

5

4 6

1

3 7

2

5

4 6

1 3

72

5

46 1 3 7

2

5

4

6

1 3 7

2

5

4

6

1 3 7

2

5

4

6

The time selected to start the bumping process at each stage is shaded. In this case, we
proceeded in a manner that would eventually bring us to a Grassmanian permutation,
although we strayed from the LS tree in the process. In particular, notice that we arrived
at the same reduced word as in 4.1.5. This leads us to our final conjecture.

Conjecture 4.3.3
Let w0, w1, . . . , wn be a sequence of reduced words where wi+1 is the result of applying the

General Bumping Algorithm to wi, starting the bumping process at time ti. If wn corresponds
to a Grassmanian permutation, then the tableau T (wn) is the same as the tableau T resulting
from applying θ∗ to w0.
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THE SAGA OF REDUCED FACTORIZATIONS OF
ELEMENTS OF THE SYMMETRIC GROUP

Le but de cette monographie est de présenter certains des développements des deux
dernières décennies concernant les décompositions réduites de permutations. L’étude
de ces décompositions est naturellement liée à la théorie des polynômes de Schubert, qui
représentent les classes d’homologie des variétés de drapeaux. L’originalité de ce texte
est de souligner une interaction naturelle entre la combinatoire d’arbres, associés aux
permutations et introduits par Lascoux et Schützenberger pour l’étude des polynômes
de Schubert, et les propriétés de fonctions symétriques introduites par Stanley pour
l’énumération des décompositions réduites.

The aim of this book is to present some of the developments of the last two decades
concerning reduced factorizations of permutations. The study of these decompositions
has inherent connections with the theory of Schubert polynomials, which represent
homology classes of flag manifolds. The emphasis is on a natural interaction between
the combinatorics of certain trees, associated with permutations and introduced by
Lascoux and Schützenberger for the study of Schubert polynomials, and properties of
symmetric functions, introduced by Stanley for the enumeration of reduced decompo-
sitions.
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