Publications du Laboratoire de
Combinatoire et d'
Informatique
Mathématique

15

Edité par S. Brlek

MWD@4 16-18 mai 1994

Méthodes mathématiques pour la synthése
des systemes informatiques

ACFAS 94

62e Congres du 16-20 mai 1994

de I'Association Canadienne-Francaise pour
I'Avancement des Sciences.

UQAM, Montréal , Québec , Canada.

Actes du Colloque.

Département de mathématiques et d'informatique

\J

i Centre de recherche
informatique de Montréal

"' Université du Québec a Montréal

Edité par:

Srecko Brlek

LACIM

Université du Québec a Montréal
C.P. 8888, Succ. Centre Ville
Montréal, Qc.

Canada H3C 3PS .

Le colloque sur le theme " Méthodes mathématiques pour la syntheése des systemes informatiques" a été tenu a
Montréal du 16 au 18 mai 1994 dans le cadre du 62e Congrés de 1'Association Canadienne-Frangaise pour
I'Avancement des Sciences.

Les organisateurs ont bénéficié du support généreux des organismes suivants:

Acfas

Association canadienne-frangaise
pour I'avancement des sciences

Centre de recherche

\“ informatique de Montréal
— 1801, Av. McGill College #800
CRIM Montréal, Québec, H3A 2N4

"’ Université du Québec a Montréal

ISBN 2-89276-129-8 LACIM Montréal
© LACIM, Montréal; CRIM, Montréal, Mai 1994.

Le présent numéro a été édité dans le cadre d'une collaboration spéciale entre le CRIM et le LACIM.

Laboratoire de combinatoire et d'informatique mathématique A C
Département de mathématiques et d'informatique L I
Université du Québec a Montréal /\/\ M
C.P. 8888, Succ. Centre Ville

Montréal, Qc. A

Canada H3C 3P8 U q

BMW-94

Méthodes mathématiques pour la synthese des systemes informatiques
Université du Québec a Montréal

16 au 18 mai, 1994

Tenu dans le cadre du congrés de ’ACFAS.

Lieu: Pavillon Judith Jasmin, Université du Québec a Montréal, 405 rue Sainte-Catherine
Est (Metro Berri)

Organisé avec le soutien financier de : Action concertée “Recherches Bell-Northern Ltée

- Fonds FCAR - CRSNG”, PRC-C3, CRIM, UQAM.

Programme

Lundi 16 mai

9:00-10:15 Conférence invitée : K. RUDIE (Queens)
Decentralized Control of Discrete-FEvent Systems

10:15-10:30 Pause café

10:30-11:15 A. BERGERON (LaCIM)
FEasy Problems in Partial Observation

11:15-12:00 A. Knouwmsl, G.V. BocaMANN, R. DssouLl (UdeM)
On Controlling Distributed Communicating Systems

12:00-13:30 Diner libre
13:30-14:45 Conférence invitée : P. RAMADGE (Princeton)
Hybrid Dynamics: Continuous and Discrete Systems

14:45-15:30 J. THISTLE, R. MALEAME, (Ecole Polytechnique)
Control of discrete-event systems under state fairness assumptions

15:30-15:45 Pause café

15:45-16:30 J.-M. PALMIER, M. MAKUNGU, F.E. AGaPi, M. BARBEAU, R. ST-DENIS
(Sherbrooke)
An Introduction to a Synchronized Petri Net Based Tool for the Synthesis
of Supervisors of Discrete Fvent Systems

16:30-17:15 Y.J. WEI, P.E. CainNes (McGill)
Hierarchical COCOLOG for Finite Machines

17:15-18:00 B. CHAIB-DRAA, J. DESHARNAIS, R. KHEDRI, I. JARRAS, S. SAYADI, F.
TcHIER (Laval)
Une approche relationnelle d la décomposition paralléle

Mardi 17 mai

9:00-10:15

10:30-11:15

11:15-12:00

12:00-13:30
13:30-14:45

14:45-15:30

15:30-15:45
15:45-16:30

16:30-17:15

17:15-18:00

19:00-

Conférence invitée : J. . GRoOTE (Utrecht)

Computer verified, algebraic style verifications of larger protocols

S. BrrLEK (LaCIM, UQAM), A. Rauzy (CNRS, LaBRI)
Implementation of Constrained Transition Systems: a Unified Approach
A. GrIFFAULT (LaBRI, Bordeaux I)

Deuz nouvelles techniques d’utilisation de MEC

Diner libre
Conférence invitée : R. Groz (CNET, France)

Vérification de protocoles: le point de wvue d’un opérateur de télé-

communications
F. Faci, L. LogriPPo (Ottawa)

Specifying Features and Analysing their Interactions in a LOTOS Environ-
ment

Pause café

S. BrRLEK, R. MALLETTE (LaCIM, UQAM)

Plain Old Telephone System Service (POTS): Validation avec MEC
J.-C. GrREGOIRE (INRS, Telecom)

The Validation of Buffer-Based Systems

B. BERKANE, E. CERNY (UdeM)

Vérification des chronogrammes hiérarchiques a [aide de “CCS + con-
traintes”

Banquet

Mercredi 18 mai Activités ayant lieu au Pavillon Carré-Phillips

10:00-
11:00-

1193, Place Phillips, 8eme etage.
Le programme final de ces activités sera disponible le lundi 16 mai

Démonstrations d’outils

Discussions informelles

Decentralized Control of Discrete-Event Systems

Karen Rudie
Department of Electrical and Computer Engineering
Queen’s University
Kingston, Ontario K7L 3N6
Canada

Abstract

A summary is given of some of the work on decentralized discrete-event control
problems set in the framework initiated by Ramadge and Wonham. A distinction
is made between those distributed control problems requiring local specifications and
those permitting global specifications. Summarized results include the conditions under
which solutions to the problems exist and associated computational complexity bounds.

1 Introduction

Discrete-Event Systems Control, as initiated in the early 1980’s by P.J. Ramadge and W.M.
Wonham, is the study of discrete-event processes, such as computer systems and manu-
facturing systems, that require some form of control to achieve desirable behaviour. A
discrete-event system is a process or collection of processes that starts out in some initial
state and is transformed from state to state by the occurrence of events. Such a system can
be thought of as a set of sequences of events, where each sequence describes one possible
series of actions that can occur within the system.

A variety of models have been used to represent the behaviour of discrete-event sys-
tems. These include, but are not limited to, automata and formal languages [RW82),
[Ram83], [Lin87], modal logic [TW86], [Ost89], Petri nets [Kro87], [HK90], and process
algebra [IV88], [Ina92], [Hey90]. We consider here only the sampling of work built on the
automata/language-theoretic work described in [RW82].

The kinds of problems captured by our formulation are as follows. The process requiring
control (called the plant) is given by an automaton over an alphabet of event labels. The
sequences generated by the automaton characterize the physically possible or unconstrained
behaviour of the system. Control is imposed by permitting some events (called controllable
events) of the system to be prevented from occurring. We then imagine that an external
agent (called a supervisor) observes the sequences of events generated by the plant and, upon
the occurrence of certain sequences, issues commands to disable (i.e., turn off or prevent from
occurring) some of the controllable events. For example, suppose that the set of events that
may occur is {e, 8,67} and suppose that the plant could generate the sequences a, a6, aé g,

and adB4. If the sequence o636 were considered “bad”, then a supervisor for the plant would
need to disable § after the occurrence of a§3. What if § were not a controllable event? Now,
suppose that § is a controllable event but that the plant can also generate aéy and advé.
Suppose further that a:6v6 is a desirable sequence. What if the supervisor could not observe
the occurrence of events v and #? Then, upon observing the sequence a§, the supervisor
would not know whether af, a6 or aéy had actually occurred; if a6 had occurred, then
the supervisor would need to disable §, whereas if ady had occurred, the supervisor would
want to enable 6. We can see that a plant becomes potentially more difficult to control if
some of the events are unobservable. Now, suppose that, as in many distributed computing
problems, several agents act on the system, and each can observe only some subset of events
and control only some subset of events. This suggests the question “Can the required control
objective be met with the given degree of decentralization?”

This summary paper gives a short overview of some typical problem formulations. We
focus on decentralized control problems and explore the questions “When are the problems
solvable?”, “Can we produce solutions when they exist?” and “How difficult is it to compute
solutions?”.

2 Background

We give a brief review of the framework for discrete-event systems control based on the
automata-theoretic model of Ramadge and Wonham. For more details on the formalities
of supervisory control theory, the reader is referred to [RW82], [Ram83], [RW87], [WR87],
[LW88], [Won88], [WR8S], [LW90].

Consider a discrete-event process that can be characterized by an automaton

G= (Qa 27 67 90, Qm)

where ¥ is a finite alphabet of event labels (and represents the set of all possible events that
can occur within the system), @ is a set of states, go € Q is the initial state, @m C Q is the
set of terminal (often called marker) states and § : £ x Q — Q, the transition function,
is a partial function defined at each state in Q for a subset of . When @ is finite, G can
be represented by a directed graph whose nodes are the states in @ and whose edges are
transitions defined by ¢ and labeled by elements from ¥. The automaton G describes the
behaviour of a discrete-event process if we interpret transitions as event occurrences that
take the process from state to state.

Sequences of concatenated symbols from T are interpreted as sequences of events, called
strings. Let T* denote the set of all finite strings over ¥ including the null string . Then
the transition function § can be extended to * x Q — Q by defining é(¢, ¢) := ¢ and for
s € X*,0 € I, §(s0,q) := §(c,8(s,q)). That is, we now think of § as indicating to which
state (or states) a sequence of events will lead. A subset of * is called a language. The
behaviour of the uncontrolled process G, which we call a plant, is given by two languages.
The closed behaviour of G, written L(G), is the language defined as

L(G) := {s | s € £* and §(s, qo) is defined)}

3

and is interpreted to mean the set of all possible event sequences which the plant could
generate. The marked behaviour of G, written L, (G), is the language defined as

Ln(G):={s|s € X" and §(s,9) € Qm}

and is intended to distinguish some subset of possible plant behaviour as representing com-
pleted tasks.

To impose supervision on the plant, we identify some of its events as controllable and
the rest as uncontrollable, thereby partitioning ¥ into the disjoint sets T, the set of control-
lable events, and Z,., the set of uncontrollable events. Controllable events are those which
an external agent may enable (permit to occur) or disable (prevent from occurring) while
uncontrollable events are those which cannot be prevented from occurring and are therefore
considered to be permanently enabled. The event set ¥ is also partitioned into disjoint sets
X, and E,, of observable and unobservable events, respectively. Observable events are those
which an external agent may observe during the course of tracking the plant. Given any
event set X, we may associate with it a mapping, called the canonical projection, which we
interpret as a supervisor’s view of the strings in X*. The projection P : £* — 2 is defined
as follows: P(e) := € and for s € ¥*,0 € T, P(s0) := P(s)P(0), i.e., P erases all unobserv-
able events. If the plant generates a string s, then P(s) is the sequence of events that an
external agent observes. Given any language K, the notation P(K) stands for the language
{P(s) | s € K}. The inverse projection of P is the mapping P! : 255 —; 9" defined
on sets of strings (or languages) as P~}(K) = {t | P(t) € K}. A supervisor (sometimes
called a controller) is then an agent which observes subsequences of the sequences of events
generated by G and enables or disables any of the controllable events at any point in time
throughout its observation. By performing such a manipulation of controllable events, the
supervisor ensures that only a subset of L(G) is permitted to occur. Formally, a supervisor
§ is a pair (T,) where T is an automaton which recognizes a language over the same event

set as the plant G, i.e.,
T = (X> 27{3 3707Xm)

where X is the set of states, £ is the transition function, zo is the initial state and X,, are
the marker states of the supervisor. The mapping % : & x X — {enable, disable}, called a
feedback map, satisfies

P(o,z) = enable, if c € ., z € X

and
¥(0,z) € {enable,disable}, if o € X, z € X.

The automaton T is constrained so that
€Ly, z€X=¢0,2)=12.

The automaton T tracks the behaviour of G. It changes state according to the observable
events generated by G and, in turn, at each state z of T, the control rule ¢(o, z) dictates
whether o is to be enabled or disabled at the corresponding state of G.

The set of sequences of events generated while the plant G is under the control of
S = (T,%) characterizes the behaviour of the closed-loop system and is represented by

an automaton §/G whose closed behaviour, denoted by L(S/G), permits a string to be gen-
erated if the string is in both G and T and if each event in the string is enabled by . The
marked behaviour of the closed-loop system is denoted by L»(S/G) and consists of those
strings in L(S/G) that are marked by both G and S. Formally, the automaton $/G is given
by

S/G = (@ x X, %, (6 x £)*, (g0, %0), @ X X;z)

where(&xf)"’:zxQxX——erXisdeﬁnedby

(6(0,9),&(0,z)) if both §(o, q), £(o,z) are defined
(6 x &)%(0,q,z) := and ¥(o, z) = enable
unde fined otherwise.

Often it is important to find supervisors that guarantee that the closed-loop system is
nonblocking, i.e., that every string generated by the closed-loop system can be completed to
a marked string in the system. This requirement is expressed as follows: a supervisor S is
proper for G if

Ln(5/G) = L(S/G)
where K demnotes the prefix-closure of a language K.

Typically, control problems require finding for a given plant a supervisor (or set of su-
pervisors) such that the closed-loop system satisfies some prescribed desirable behaviour.
Representative centralized supervisory control problems can be found in [RW82], where it is
assumed that all events are observable, and [LW88], where it is assumed that some events
may not be observable. When controllers act on a given plant, we say that the closed-loop
behaviour is synthesized by the controllers. Then, control problems involve examining under
what conditions prescribed behaviours can be synthesized. Two types of problems may be
distinguished: those requiring the behaviour of the closed-loop system to precisely equal
some specified behaviour, which we call synthesis problem without tolerance; and those re-
quiring the behaviour of the closed-loop system to lie in some specified range, which we call
synthesis problems with tolerance.

A representative synthesis problem with tolerance is introduced in [RW82] and is as
follows:

Supervisory Control Problem (SCP) Given a plant G over event set X, subset L. C I,
and languages A, E with A C E C L(G), construct a supervisor S for G which controls only
the events in I, such that A C L(S/G)CE.

The language E embodies the system designer’s notion of legal or desirable behaviour while
A specifies the behaviour common to any acceptable solution, i.e., the minimally adequate
behaviour. That is, any solution must exhibit at least the behaviour described by A and no
more than that described by E.

In order to describe the solution to SCP the notion of controllability is defined: A language
K C L(G) is a controllable sublanguage of L(G) (or just controllable where the associated G
is understood) if

K2,.NnL(G) CK,

5

where for any languages L and M, the notation LM stands for {st | s € LAt € M }. oI
we interpret L(G) as physically possible behaviour and K as legal behaviour, an informal
description of controllability is that K is controllable if for any sequence of events s that
starts out as a legal sequence (s € K), the occurrence of an uncontrollable event (0 € Zye)
which is physically possible (so € L(G)) does not lead the sequence out of the legal range
(so € K).

The class of controllable languages contained in a given language

C(M,G):={K | K C M and K is controllable w.r.t. G}

is nonempty and partially ordered by inclusion; it is closed under arbitrary union and there-
fore contains a (unique) supremal element, called the supremal controllable sublanguage of
M with respect to (w.r.t.) G, and denoted by sup C(M, G).

The solution to SCP, given in [RW82], can now be expressed: Provided A # @, SCP is
solvable if and only if A C supC(E,G). If A =0, then SCP is solvable if sup C(E,G) # 0.
Moreover, when G is a finite state automaton and A4 and E are regular languages, a supervisor
§ that synthesizes sup C(E,G) exists with S having the state transition structure of a
recognizer for sup C(E, G). Most important, this S is an optimal solution in the sense that
it permits as much behaviour as possible to occur; it is, therefore, said to be minimally
restrictive. Algorithms for computing such an § are given in [LW85] and [Rud88).

3 Decentralized Control: Global Versus Local Speci-
fication

Now, we consider the situation where the physical requirements of a problem dictate that
decentralized control be used. When a supervisor may act on any controllable event in the
entire event set, we say that the supervisor is global; in contrast, a supervisor which can
only control some subset of controllable events is said to be local. Similarly, we speak of a
specification as being global if it is over the entire plant alphabet and local if it is over some
subset of the plant alphabet. A decentralized solution prescribes the actions that two or more
local supervisors may take. In this paper, we consider the case of two local supervisors.

The decentralized control problems presented below require the following definitions.
For supervisors 8, = (71, ¢) and S, = (T3, %) acting on G with 7} = (X, %,¢,20,Xm) and
T = (Y, Z,9,Y0, Yn), the conjunction of S; and S; is the supervisor

81 A 82 = (Tl X T2,¢*2/))
defined by
Ty xTy:= (X XY, %,€ % ﬂ,(zo,yo),Xm X Ym)
withoeX, zeX, yeY =
.) (&(o,z),n(0,y)) if both £(c,z) and 5(0o,y) are defined
(€ x)0, 2,y) = { unde fined otherwise

._ J disable if either ¢(o,z) = disable or (0,y) = disable
(¢*¥)(o,z,y) := { enable otherwise.

That is, T1 x T recognizes the intersection of the languages recognized by T} and T} and Px
disables an event if and only if either ¢ or ¢ disables it. Thus, S; AS, models the actions of &
and S; operating in parallel. It can be shown [WRS8] that L(51AS,/G) = L(S; /GINL(S./G)
and Ln(S1 A S2/G) = L,(51/G) N Ln(S2/G).

Given a local supervisor S that controls some subset Lioc,e of X while observing some
subset Tj,c, of £, S denotes the supervisor which takes the same control action as S on
Lloc,c, €nables all events in & \ Zioc,c, makes the same transitions as S on Yioc,o and stays at
the same state for events in \ Zioe,o- The supervisor S is called the global extension of S
(since S acts on all of & while S acts only on a subset of £). A global extension serves as a
natural construction of a feasible global supervisor out of a given local supervisor.

We consider two main decentralized control problems, one which requires that specifi-
cations be posed in terms of the local event sets that each local supervisor will act on and
one which permits specification over the plant’s entire event set. The first problem, which
we call LP (for Local Problem), requires local specification for local control. Sufficient con-
ditions for the existence of a solution to LP have been found by Lin and Wonham [LW90]
and the problem is there referred to as DSCOP (for Decentralized Supervisory Control and
Observation Problem). The second problem, which we call GP (for Global Problem), permits
global specification for local control. In [RW90] a sufficient condition for the existence of
a solution to this problem is given. It is shown in [RW92b] that GP, a synthesis problem
with tolerance, can be solved by first considering the case of zero tolerance, which we call
GPZT (for Global Problem with Zero Tolerance). Necessary and sufficient conditions for the
existence of a solution to GPZT have been found by Cieslak et al. [CDFV88]. Work by Inan
[Ina92] yields comparable results. Willner and Heymann [WHO0] also examine the GPZT
formulation for the special case where the plant G can be represented as a synchronous
product of processes.

The distinction between local specifications and global specifications can be summarized
as follows. Each local specification describes the task that one supervisor must perform.
So, e.g., in a manufacturing system of machines depositing parts in buffers one constraint
might be that some buffer not overflow. We’d have to construct a controller whose job is
to guarantee that that buffer not overflow. In contrast, a global specification describes a
joint task that two or more controllers perform. Consider a communication system: each
agent’s protocol is a recipe for behaviour of that agent and can be thought of as a controller.
Then, a typical constraint might be that “data that has been sent by a Sender must be
printed out by a Receiver in the correct order”. In this case, our goal would be to construct
two controllers (i.e., one recipe for the Sender and one for the Receiver) whose jobs are to
together ensure that data flow in the prescribed way. There is no one controller whose task
is to control data.

The following problem formulation, considered in [Lin87] and [LW90], captures problems
where specifications are given as a collection of local constraints.

Local Problem (LP) Given a plant G over an alphabet T, legal languages E,, E, over
alphabets ©; C ¥, 5, C % (resp.), and minimally adequate languages Ay C Ey, A; C E,,
sets Xy, 81,0 C Xy and Iy, Y20 € By, construct local supervisors S; and Sy such that

2 2
LGN T A CL(S1 AS/G) C L(G)N (T E:

=1 =1

7

Here, for i = 1,2, T; is the projection from T* to L}, S is_a supervisor which can observe
only events in X;, and can control only events in Lie, and S; is the global extension of S;.

The reason we speak of LP as requiring local specifications is that the languages A;, E;
and Aj, E, describe desirable behaviour in terms of the local event sets X, and X, respec-
tively.

Formulations requiring local specification are not suitable for modeling communication
problems because specifications for communication networks are typically given as global
requirements. That is, a problem statement describes what goal the network as a whole
must achieve (e.g., what data is to be transferred to which location) without spelling out
what each agent in the network must do to achieve this goal. The protocol for each agent is
part of the solution to the problem and is better described by the languages L(S$;/@) and
L(S2/G) which accompany the solution to GP, presented below, than by any solution to LP.
A communication example modeled by GP is given in [RW90].

Global Problem (GP) Given a plant G over an alphabet =, a legal language E C L, (G),
a minimally adequate language A C E, and sets 51,55, %1,,82, C T, construct local
supervisors Sy and Sy such that S; A S; is a proper supervisor for G and such that

ACL(SAS/Q)CE

Here, fori = 1,2, supervisor S; can observe only events in i, and control only events in X;
and where S; is the global extension of S;. The set of uncontrollable events, T,. is understood
to be X\ (X1, UZy,).

The assumption here is that for LP, specifications can be thought of as a conjunction or
collection of tasks where the goal is to find several supervisors, each of which accomplishes
one of the tasks. In contrast, the specifications of GP cannot necessarily be broken up into
subtasks, each of which is performed by only one supervisor.

4 A Summary of Results

4.1 Necessary and Sufficient Conditions

Sufficient conditions under which a solution to LP exists are contained in [LW90]. When such
conditions hold, the solution roughly amounts to locally solving centralized control problems
for each of the two sets of local specifications. Moreover, in [LW90], a manufacturing system
problem is cast as LP and solved, suggesting that LP is an appropriate formulation for at
least some distributed systems problems. However, the solution to LP does not guarantee
nonblocking even if both $; and &, are proper. '

To arrive at a sufficient condition for GP to be solvable, we note that GP can be reduced
to LP for the class of systems characterized by the following property, first introduced in
[RW90]. For a language K C L(G), K is decomposable w.r.t. G and projections Py, P, if

K = L(G) N P (P(K)) N P (Py(K))

The inclusion K C L(G)NP (P (K))NP;! (P2(K)) is automatic (by definition of projection
and the fact that K C L(G)); informally then, a language is decomposable only if the plant
G and the local versions of K (P,(K) and P,(K)) contain enough information to permit the
global K to be reconstructed. As demonstrated in [RW90], for the case where I;, = %,
and ¥, = ¥y in the LP formulation, the reduction of GP to LP is possible if the languages
A and E are decomposable with respect to G, Py, P, where P, and P, are the projections
onto X, and X ,, respectively. However, decomposability is not necessary. Moreover, it is
a strong assumption since it requires that an acceptable controller be able to observe any
event that it disables.

It is shown in [RW92b] that a property weaker than decomposability, called co-observability,
plays a key role in the necessary and sufficient conditions for solving GP. To solve GP, one
first considers the special case where A equals E. It can be shown that a solution to the
general case can be derived from the solution to the special case. The latter is formulated
as follows.

Global Problem with Zero Tolerance (GPZT) Given a plant G over an alphabet T, a
legal language E such that § # E C Ly(G) and sets Ty ¢, Ty, 1,0, 22,0 C I, construct local
supervisors Sy and S; such that S; A S, is a proper supervisor for G and such that

L,($i1AS;)G)=E

Here again, for i = 1,2, supervisor S; can observe only events in T;, and can control only
events in L;. and S; is the global eztension of S;. Again, the set of uncontrollable events is
taken to be ¥\ (Z1,. U o).

By assumption, solutions to GP and GPZT are always nonblocking since a pair of super-
visors 81, S; is considered a solution to either only if $; A S, is a proper supervisor for G. In
contrast, as stated earlier, solutions to LP are not necessarily nonblocking.

Observe that for the global control problem with zero tolerance, the goal is to find
supervisors such that the marked behaviour of the closed-loop system is precisely equal to
some given language. In contrast, when nonzero tolerance is permitted, it suffices to find
supervisors such that the closed behaviour of the closed-loop system is contained in some
given range of languages. Consequently, it may often be assumed for the nonzero tolerance
case, but not for the zero tolerance case, that the languages under consideration are prefix-
closed.

It can be seen that LP and GPZT are, in fact, special cases of GP. The LP formulation
can be restated as a version of GP where the specifications A and E of GP are given as
L(G) N N, T Ai and L(G) N N, T2 E;, respectively. That is, local specifications are
simply a structured case of global specifications. Similarly, for prefix-closed specifications,
GPZT fits into the GP formulation if we let the endpoints of the range of behaviour in GP
be equal, i.e.,if A= E.

The solution to both GPZT and GP rely on a property called co-observability, defined
in [RWO2b] as follows. Given a plant G over alphabet X, sets X1 ¢, X5, 810,520 C T,
projections P, : ©* — Yo P21 Z* — I3, alanguage K C L (G) is co-observable
w.r.t. G, P]_, P2 lf

s,8,8" € L%, Pi(s) = Pi(s), Po(s) = Po(s") =
(Vo € L1,cNDzc) s € KAso € L(G)As'o,s"0 € K => sc € K conjunct 1

AN (VoeZi\Zp)s€ K/\ soc € L(G)As'o € K: 50 € T(-_ conjunct 2
AN (Vo€Xoc\Bi)s€KAso € L(G)ANs"0 e K = s0 € K conjunct 3
AN SERNL(G)NS,s" € K = sc K. conjunct 4

Intuitively, a supervisor knows what action to take if it knows what sequence of events
actually occurred. However, a string which, for each supervisor, looks like (i.e., has the same
projection as) another string may be potentially ambiguous in determining control action.
On this basis, if we assume that some external agent, such as a supervisor, determines which
strings are allowed to be in K and which in X , an informal description of co-observability is
as follows. A language K is co-observable if (1) after the occurrence of an ambiguous string,
s, in K, the decision to enable or disable a controllable event o is forced by the action that
a supervisor which can control o would take on other strings which look like s (encompassed
by conjuncts (1)~(3) in the definition of co-observability), and (2) the decision to mark or not
mark a potentially confusing string is determined by at least one of the supervisors (covered
by conjunct (4)). Note that if a language K is prefix-closed, then conjunct (4) always holds.

It was shown in [CDFV88] and [RW92b] that GPZT is solvable iff the legal language E
is controllable and co-observable w.r.t. G. In [RW92a], co-observability is used to check for
safety properties in a communication protocol.

We return to the case when the desired behaviour is given by a range of languages [A, E],
where A does not necessarily equal E. Since we know from the above result that the only
languages within the range [A, E] that can be synthesized are those that are controllable
and co-observable, to solve the more general problem GP, we must find a controllable and
co-observable language containing A and contained in E. It is shown in [RW92b] that the
infimal, prefix-closed, controllable and co-observable language containing a given language
can be computed. Therefore, GP is solvable iff and the infimal prefix-closed, controllable and
co-observable language containing A is contained in E. That is, we take the lower bound
on desired behaviour, 4, and add to it event sequences according to the algorithm given
in [RW92b] just until we get a controllable and co-observable language and we check if the
language we now have is still contained in E. If so, we find decentralized controllers that
synthesize that language (which we can do in the manner prescribed by the algorithm for
finding controllers that solve GPZT).

4.2 Computational Complexity

All computational complexity results cited in this section assume that the plant G and
specification languages A and E are given as finite-state machines.

Centralized discrete-event control problems of the type described in this paper essentially
rely on computing controllability. It is shown in [WRS8] that controllability of F w.r.t. G
can be decided in polynomial time w.r.t. the number of states in G and E. Furthermore, the
supremal controllable sublanguage of a given language can also be computed in polynomial
time. Since, as stated above, the solution of LP, the control problem with local specifications,
reduces to solving two centralized control problems, we can check whether LP is solvable in
polynomial time and, if it is, we can compute supervisors in polynomial time.

hY

10

The two global-specification problems pose a bigger problem. While it was shown in
[RW93] that co-observability can be decided in polynomial time, the negative complexity
results of centralized control problems with partial observability given in [Tsi89] can be
generalized to show that the infimal prefix-closed, controllable and co-observable language
containing a given language cannot be computed in polynomial time. This means that, while
one can check in polynomial time whether GPZT is solvable, the same is not true for GP.
Moreover, even if a language E is controllable and co-observable, Tsitsiklis’ results indicate

that decentralized supervisors that synthesize E cannot be constructed in polynomial time
[Tsi89).

5 Conclusions

We have reviewed some of the work in decentralized discrete-event control theory, making
the distinction between those problems requiring local specifications and those admitting
global specifications. While the global-specification formulation is more general, and, we
believe, more appropriate for communication problems, it is not always computationally
efficient to produce solutions to problems. On the other hand, since checking the property
of co-observability can be performed in polynomial-time and since we believe that some
communication protocol problems can be reformulated as discrete-event control problems
where co-observability is the main test for solvability, it may be practical to use supervisory
control theory to perform protocol verification. We believe that reworking problems into
a control-theoretic framework could prove helpful in analyzing and systematically solving
distributed computer systems problems.

References

[CDFV88] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. Supervisory control of
discrete-event processes with partial observations. IEEE Transactions on Auto-
matic Control, 33(3):249-260, March 1988.

[Hey90] M. Heymann. Concurrency and discrete event control. IEEE Control Systems
Magazine, pages 103-112, June 1990. ’

[HK90] L. E. Holloway and B. H. Krogh. Synthesis of feedback control logic for a class of
controlled Petri nets. IEEE Transactions on Automatic Control, 35(5):514-523,
May 1990.

[Ina92] K. Inan. An algebraic approach to supervisory control. Mathematics of Control,
Signals, and Systems, 5(2):151-164, 1992.

[IV88] K. Inan and P. Varaiya. Finitely recursive process models for discrete event
systems. IEEE Transactions on Automatic Control, 33(7):626-639, July 1988.

[Kro87] B. H. Krogh. Controlled Petri nets and maximally permissive feedback logic. In
Proceedings of the 25th Annual Allerton Conference on Communication, Control
and Computing, pages 317-326, University of Illinois, Urbana, 1987.

[Lin87]

[LW85]

[LWS8]

[LW90]

[Ost89]
[Ram83]

[RWS2]

[RWS7]

[Rud8s]

[RW93]

[RW90]

[RW92a]

[RW92b]

[TW86]

1

F. Lin. On Controllability and Observability of Discrete Event Systems. PhD
thesis, Department of Electrical Engineering, University of Toronto, 1987.

F. Lin and W. M. Wonham. On the computation of supremal controllable sub-
languages. In Proceedings of the 23rd Annual Allerton Conference on Commu-
nication, Control and Computing, pages 942-950, University of Illinois, Urbana,
1985.

F. Lin and W. M. Wonham. On observability of discrete-event systems. Infor-
mation Sciences, 44:173-198, 1988.

F. Lin and W. M. Wonham. Decentralized control and coordination of discrete-
event systems with partial observation. IEEE Transactions on Automatic Con-
trol, 35(12):1330-1337, December 1990.

J. S. Ostroff. Temporal Logic for Real-Time Systems. Advanced Software Devel-
opment Series. Research Studies Press, Somerset, England, 1989.

P. J. Ramadge. Control and Supervision of Discrete Event Processes. PhD thesis,
Department of Electrical Engineering, University of Toronto, 1983.

P. J. Ramadge and W. M. Wonham. Supervision of discrete event processes.
In Proceedings of the 21st IEEE Conference on Decision and Control, volume 3,
pages 1228-1229, December 1982.

P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete-
event processes. SIAM Journal of Control and Optimization, 25(1):206-230, 1987.

K. G. Rudie. Software for the control of discrete event systems: A complex-
ity study. Master’s thesis, Department of Electrical Engineering, University of
Toronto, 1988.

K. Rudie and J. C. Willems. The computational complexity of decentralized
discrete-event control problems. In Proceedings of the European Control Confer-
ence, pages 2185-2190, Groningen, The Netherlands, June 28 - July 1 1993.

K. Rudie and W. M. Wonham. Supervisory control of communicating processes.
In L. Logrippo, R. L. Probert, and H. Ural, editors, Protocol Specification, Testing
and Verification X, pages 243-257. Elsevier Science (North-Holland), 1990.

K. Rudie and W. M. Wonham. Protocol verification using discrete-event systems.
In Proceedings of the 31st IEEE Conference on Decision and Control, pages 3770-
3777, Tucson, Arizona, December 1992.

K. Rudie and W. M. Wonham. Think globally, act locally: Decentralized su-
pervisory control. JEEE Transactions on Automatic Control, 37(11):1692-1708,
November 1992.

J. G. Thistle and W. M. Wonham. Control problems in a temporal logic frame-
work. International Journal of Control, 44(4):943-976, 1986.

12
[Tsi89]

[WH90]

[Won88]

[WRS7]

[WRSS]

J. N. Tsitsiklis. On the control of discrete-event dynamical systems. Mathematics
of Control, Signals, and Systems, 2:95-107, 1989.

Y. Willner and M. Heymann. On supervisory control of concurrent discrete-event
systems. Computer Science Department CIS Report #9009, Technion—Israel
Institute of Technology, 1990.

W. M. Wonham. A control theory for discrete-event systems. In M. J. Denham
and A. J. Laub, editors, Advanced Computing Concepts and Techniques in Control
FEngineering, volume F47 of NATO ASI Series, pages 129-169. Springer-Verlag,
Berlin, 1988.

W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage
of a given language. SIAM Journal of Control and Optimization, 25(3):637-659,
1987.

W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete-
event systems. Mathematics of Control, Signals, and Systems, 1:13-30, 1988.

13

Easy Problems in Partial Observation

Anne Bergeron®
LACIM, Université du Québec a2 Montréal
C. P. 83888 Succ. Centre-Ville
Montréal, Canada, H3C 3P8
e-mail: anne@lacim.ugam.ca

Introduction

This paper discusses computational issues related to observation of distributed discrete processes.
This is a central problem in the theory of control of discrete-event processes initiated by Ramadge
and Wonham [Ramadge & Wonham, 89; Rudie & Wonham, 92]. Given a process P with &
possible states, an observer is another process O that monitors P in order to, for example, report
completed tasks, restrict the possible behaviors, or diagnose faults. In the absence of complete
information about occurrence of events in P, it is generally impossible to determine accurately the
current state of P. Subsets of states being undistinguishable, the number of states of an observer
can be exponential in £, the number of states of P [Tsitsiklis, 89]. This situation gets worse in
distributed processes, where we usually want to construct several observers [Rudie & Willems,
93].

We study here some classes of processes where is can be shown that, far from being exponential,
the number of states of an observer is less than the number of states of the process being
monitored. Such linearly observable processes form the basis of what we hope to be a
computationally feasible approach to control problems in distributed processes. This approach is
of practical importance since various formalism used to describe distributed processes are known
to lead to some kind of state explosion. Software tools have been developed to analyze those
specification, and they can handle gracefully automata that have several thousands of states
[Arnold, 89; 90]. With specifications of this size, however, the prospect of constructing controllers
using exponential algorithms is completely unrealistic.

1. Automata and Discrete Processes

Let 3. be a finite set whose elements are called events, and 3* bet the set of all finite sequences of
elements of 3. An automaton A on the set 3. of events is given by an arbitrary partial function —
multiplicatively denoted by a dot "-" — called a transition function:

«:SpAxY—> Sa

where S4 is an arbitrary set, called the states of A. Every transition function can be naturally
extended to any sequence x in X°* in the following way:

i) s*A=s where A is the empty sequence,
ii) s*(x0) = (s°x)-c whenever the right hand side is defined.

* This work was partially supported by grants from BNR Ltd., FCAR of Québec and NSERC of Canada.

14

Among the states Sa, we distinguish an initial state i and a subset FA S Sy of final or marked
states. We will denote by A the automaton obtained by marking all the states of an automaton A.
The language recognized by the automaton A is the set L(A) = { x li-x € Fa}. A state s is

accessible if there is at least one sequence x such that is-x =s. We will always assume that Sp
contains only accessible states.

Definition 1.1 Product of Automata

Given two automata A and B, the product A x B has states S = S4 * Sp and transition function:
:SX3¥*— 8§
where (s,£)°x = (sx, t-x) whenever the right hand side is defined.

The product has initial state i = (ia, i) and marked states F= { (s,t) Ise Fs andt € Fg}.
=

In order to compare the behavior of automata or product of automata, we define two partial orders
on automata. The first one is based on the languages recognized by automata, and the second one,
much stronger, is based on the existence of a morphism between their algebraic structure:

Definition 1.2 Morphisms between Automata

Let A, B be automata with states S5, Sp initial states ia, ig, and final states F5, Fg. A
morphism from A to B is defined by a function f: SA — Sp such that f(is) = ip, f(Fa) S Fg,
and if s-¢ is defined then f(s)-G is also defined and equal to f{s-0), that is, the following diagram
commutes:

S, XX —<f—1’3—>—-> SpxZ

) 2

f

S, —— §;

Definition 1.3 The relation A <B

Let A and B be two automata. The relation A <B holds whenever we have L(A) S L(B) and
L(A) SL(B). When both A <B and B < A, we write A ~ B.
|

Definition 1.3 (bis) The relation A — B

Let A and B be two automata. The relation A — B holds whenever there is 2 morphism from A
to B. When both A — B and B — A, then A and B are said to be isomorphic, and we will
write A «<—— B.

15

If A — B then the function f: S — Sp is unique. Occasionally, we will refer explicitly to this
function with the notation A—.—»B. If A——B and B—£—C then A — C, by composition
of g and f. If A—L B, and if the function fis injective, A is a sub-automaton of B, and we will
use the notation A < B.

Elementary properties of these definitions will be used throughout this paper:

Proposition 1.4 Let A, B, C and D be any automata:
i) AXB <A and AXB <B.
ii) A<Bif and onlyif A =B X A.
iii) C < AXB if and only if C< A and C <B.

|
Proposition 1.5 Let A, B, and C be any automata, then:
i) AXB— A and AXB— B
ii) A— B if and only if A «— A x B.
iii) C— AXB if and only if C— A and C—B.
|
Finally, we have that:
Proposition 1.6 If A — B then A <B.
|

If A—L—>B, we will note f{A) the image automaton of A. That is, the states of f(A) are:
Sfa) = {f(s) Is€Sa}

with initial state f(ia), final states f(F4), and transition function:
"1 SfA) X X— Sfa)

where t-0 is defined iff s-0 is defined in A for at least one state s in FL(t). Note that if A has k
states, then f(A) has at most k states. We have the following decomposition:

Proposition 1.7 If A—L—B, then A — f(A) —> B.

16

2. Observation and Linear Observation

Let P be a process, a specification for the process P will be modeled by an automaton Z < P. The

specification can be tought of as the set of acceptable behaviors of the process P. Suppose we are
given n sites, each of them having a set of unobservable events Xy; - Our objective is to construct n

automata, one at each site, such that when these automata function simultaneously with the process
P, the global process 'meets' all specified behaviors, and all illegal behaviors are 'prevented'. This
somewhat vague statement can be formalized within automata theory in the following way.
Suppose that Cy, ..., C,, are n automata functioning with the process P. Consider the product

P x I1C;.
If C; must function with only the information available at site #, it cannot change state upon the

occurrence of events in the set Zui of unobservable events at site i. Such an automata is called and
observation automata, or an observer, with respect to Xyt

Definition 2.1 Observation Automata

An automaton O is an observation automaton with respect to X, its unobservable events, if
whenever s-G is defined and 6 € Y, we have s°G =s.

If the global process is to meet all specified behaviors, we must have:
Z<PXxIIC;
That is, any sequence defined or marked by Z, must also be defined and marked by P x TIC;.

On the other hand, the purpose of the automata TIC; is to restrict the behavior of P, such that only
sequences defined or marked by Z are defined. Thus we want also that:

PxIIC; £Z
The next definition sums up these conditions:

Definition 2.2 Observable Specifications

Given 7 sites with unobservable events Xu; » a specification Z of a process P is observable if there
exists automata Cj, ..., C, such that:

i) C; is an observation automata with respect to ;s
ii) Z = P X IIC;

17

Given any automaton A, and a set of unobservable events Y,,,, it is always possible to construct an
observation automaton greater than A, and which is minimal among all observation automata
greater than A. This construction is basic in partial observation problems and is a variant of the
well-known determinization algorithm in automata theory:

Algorithm 2.3 The Minimal Observer Construction

Let Sa be the set of states of an automaton A, with initial state i and marked states Fa. Let 3, be
a set of unobservable events. The minimal observer O(A) with respect to X, is defined in the
following way. The states of the automaton O(A) are non-empty subsets P+(Sa) of So. The
initial state is:

T={i-uli-uisdefined and u e X,*}

and the marked states of O(A) are all subsets that contain at least one marked state of A. The
transition function

o: P+Sa) X X— P*(Sa)
is defined with the following rule:

LetS C S, if s°6 is defined in A for at least one s € S then Soc is defined and
)Ifoe Xy Soc ={s-oulse S, souis defined and u € 3,*}
ii)foe X,,S°c=8
otherwise S-o is undefined.
|

Informally, the initial state of O(A) is the set of states reachable from the initial state i A with
unobservable sequences: the observer cannot distinguish between these states. The construction
then proceeds recursively from the initial state. Suppose the observer 'thinks' it could be in any of
the states of a subset S, if an observable event 6 occurs, we have to compute all the states
reachable with unobservable sequences from states of the form s-G, where s is in S.

The following result summarizes the basic properties of the minimal observer construction. Its
proof can be found in [Bergeron, 93].

18

Theorem 2.4 Let A be any automata, and 3, be a set of events, then:
i) O(A) is an observation automata with respect to Y.
ii) A < O(A).
iii) If X is an observation automata wrt ¥, such that A <X, then OA) <X
[|

The next theorem gives a general criterion for observability. It says that, in order to establish
observability, it suffices to consider the minimal observers of Z.

Theorem 2.5 Given 7 sites with unobservable events 2u;. Let Z be a specification of a process
P, and let O;(Z) be the minimal observer with respect to Xy, then
..... Z is observable if and only if Z = P x TO;(Z).

Algorithm 2.3 can — and does — lead to computational disaster since the number of states of an
observer can be exponential in the number of states of the specification [Tsitsiklis, 89; Rudie &
Willems, 93]. The purpose of the next definition is to restrict the possible observers of Z:

Definition 2.4 Linearly Observable Specifications

Given n sites with unobservable events 2.; » a specification Z of a process P is linearly observable
if there exists automata Cj, ..., Cy, such that:

i) C; is an observation automata with respect to X »
i) Z «—— PXTC;
n

Clearly, a linearly observable specification is observable. The terminology linear comes from the
fact that we can bound the number of states of the various observers by the number of states of the
specification.

Proposition 2.5 If Z is linearly observable, and if Z has k states, then it is linearly observable
by automata that have at most & states.

Proposition 2.5 tells us that, in the presence of linear observability, there is no state explosion of
the observers C;, and the number of states of the product P x TTC; is equal to the number of states
of the specification Z, thus ensuring efficient computations. In the sequel, we will want to identify
conditions ensuring linear observability, or, even better, classes of processes where it can be
proved that observability is equivalent to linear observability.

19

If Z is linearly observable by TTC;, then Z— C;. When Z is a sub-automaton of P, and if Z is
observable TTC;, these morphism are sufficient to infer linear observability:

Theorem 2.6 Let Z — P be a specification of a process P, if Z is observable by TTC;, and if,
for each i, Z— C;, then Z is linearly observable.
n

3. Exchange Networks

Exchange networks share features with Petri nets and vector addition systems [Yong & Wonham,
93]. Additional structure on the states of automata arising in this context will provide elegant and
efficient ways of obtaining observers C;, and morphisms Z — C;, which are a necessary
condition for linear observability.

Definition 3.1 Exchange networks

An exchange network E is a graph whose nodes P = {py, ..., pi} are called places, and vertices C
are called channels. The source and target of each channel is given by functions:

s; :C— P

A configuration is a function C: P — IN which assign to each place p the natural number C(p) of
tokens in the place.
[|

We will be interested in the various configurations obtained by moving tokens along the channels.
An elementary move d will correspond to the transfer of a token from a place p; to a place pj, if

1) there is a channel d such that s(d) = p; and #(d) = Dj;
2) the place p; is not empty, that is C(p;) # 0.

A configuration Cy is accessible from a configuration C5 if there is a sequence of elementary
moves transforming C into Cj. Consider the set of all possible configurations with N tokens in a
network with places, we call this set the simplex Ay k. This is the set points (ny, ..., ng) of Nk
defined by the equation the equation Y.n; = N.

20

Figure 1: Example of an exchange network and the corresponding simplex A3 3
We also associate to each channel d € C connecting places p; to pj the vector

Vd = (X1 eees X)

whose coordinates are all 0 except, when p; # pj, x; =-1 and xj = +1.

Given an initial configuration & with N tokens, we can construct an associated automaton A g on
the set of events C, whose states are all accessible configurations from &, and whose transition
function is defined by C+ d = C + v4. We say that this automaton "lives" in the simplex Ay ¢ . For

example, if we take the network of Figure 1 we have the following representation for the
associated automaton:

Figure 2: An automaton living in the simplex A3 3

Note that if a channel is a loop, the move associated with the channel in a given configuration is

21

defined iff its source is non-empty (as the move 4 in Figure 2), and is a loop of the automaton
whenever it is defined. When dealing with exchange networks, we will always assume that all
states an automaton are final.

Consider a network E with places P = {py, ..., p¢}, channels C, and source and target functions:
s;:C— P

Let © = {1, ..., T’} be a partition of IP. We can deduce from & a derived network Ey, with places
7, channels C, and source and target functions:

sst:C—o =

which assign to a channel d the class in 7 of s(d) and of #(d). The partition & also induces a linear
transformation:

Tp : Nk — INK
defined by

T, (tysestty) = (X Piperes 31

nem nEm,
which maps the simplex Ay of IN* onto Ay g of INK',

The transformations Ty define morphisms between automata living in simplex: configurations in
IN* are mapped onto configurations in INK' as if the places in each class nj were glued together,
and vectors associated to moves are mapped onto vectors associated to moves. We have:

Proposition 3.2 Let E be a network with places PP, initial configuration &, and associated
automaton A . Let 7 be a partition of IP, and consider the derived network E5 with initial
configuration Ty(5), and associated automaton AT()- Then

Ag— ATn('G)
Proof:

We will show that the function Ty defines a morphism. The two first properties are direct
consequences of the definitions of associated automata: & and Tx(3) are the initial states of the
two automata, and all states are final.

Suppose now that d connects places p; to Dpj, and that 7 and 7y are the classes of p; and pjin the
partition 7. Let
vd = (X1, ..., X) and wq = (1, ..., V&)

22

be the vectors associated to channel d in INk and IN¥, We have easily that
Tr(va) =wg.

If C- d is defined in A 3, then p; is not empty in configuration C, thus 7; will not be empty in
configuration Tr(C), thus Tx(C)* d is defined. And

Tr(C) d =Tr(C) + Wa = Tx(C) + Tr(va) = Tr(C + vg) = Tn(C- d).
|

Let E be a network with places PP, initial configuration &, and associated automaton A ¢3. Consider
any sub-automaton Z “— A . Using Proposition 3.2, we can define the automaton Ty(Z) which
is the image of Z by the transformation T. And we have Z —> Ty(Z). Figure 3 gives an example
of such a morphism, with the partition {{p1, p2}, {p3}} of the network in Figure 1.

Figure 3: Z — THZ)

Linear transformations based on partitions give an elegant way to define observers of
specifications. The idea is that a set of unobservable events (channels) defines a natural partition of
the places in a network, obtained by identifying places connected by unobservable channels
(Figure 4).

23

Figure 4: Connected components of the restriction of a network to unobservable channels
(dotted arrows are unobservable)

Proposition 3.3 Let E be a network with places P, channels C, and Z «“— A a sub-
automaton of the automaton associated to E with initial configuration G. For any subset of
channels U € C, there exists a partition 7 of IP such that:

1) Tx(Z) is an observation automaton with respect to U,
2) Tr(C) counts the number of tokens in each connected component of the restriction of
Eto U.

Proof:

Consider the partition 7 obtained by identifying places that are in the same connected component of
the restriction of the graph E to U. Then, if d € U, s(d) and #(d) are in the same class of the
partition, and Tx(vy) is the null vector, establishing that Tx(Z) is an observation automaton with
respect to U.

The fact that Tr(C) counts the number of tokens in each connected component of the restriction of
E to U is immediate by construction.
|

4. Networks with bounded capacities

We now turn to a particular class of specifications in exchange networks, networks with bounded
capacities. These specifications are described with inequalities of the form:

C(p)) < Max;

That is, there is a maximum (> 0) number of tokens allowed in each place. A legal configuration is
a configuration that satisfies all these inequalities, a legal move is a move that links two legal
configuration.

In this section we prove that, if a network satisfies certain connectedness conditions, observability
of this kind of specification is equivalent to linear observability, thus ensuring efficient
computation of observers.

24

We first establish the following lemma:

Lemma 4.1 If a network with bounded capacities is strongly connected, and C1, C; are two legal
configurations, then C; is reachable from C by a sequence of legal moves.

Proof:

The proof is based on the following observation. Given two places, p; and p3 such that pj is not
empty and p is not full, it is possible transfer a token from pj to pp while keeping invariant the
rest of the configuration. Indeed, since the network is strongly connected, there exists a path of
channels connecting p; to p2:

D p Py
Working from the right hand side, we find the first non-empty place p (which exists since p1 is not
empty) at the left of py and transfer one chip from it to p5. These moves are always possible and

legal since the empty places between p and p have capacity at least 1. We then repeat this kind of
move until one of the chip in py has finally been moved to p.

The general argument is now easy. Assuming that two legal configurations have the same number
of tokens, each 'extra’ chip in a place of the first one will correspond to a 'hole' in the second one,
and vice-versa.

Definition 4.2 Invertible sets of channels

A set U < C of channels in a network is invertible if, in the restriction of the network to U, every
connected component is strongly connected.

The term invertible comes from the fact that if a token is moved along a channel d € U, there
exists a sequence of channels in U such that the token can be moved back through them to its
original position. The following lemma says that if unobservable channels are invertible for a given
site, then any two configuration that are considered the same by an observer are linked by
unobservable legal moves:

Lemma 4.3 Let U be an invertible set of channels in a network E with bounded capacities, and

the partition that identifies places connected by channels in U. If Cj, C3 are two legal
configurations such that

Tr(Cp) = Tr(C2)

then there exists a sequence of legal moves in U connecting C; to Cs .

25

Proof:

By Proposition 3.3, T(C) counts the number of tokens in each (strongly) connected component of
the restriction of the network to the channels in U. Thus if Tz(C1) = Tg(C2), then both
configurations have the same number of tokens in each component. Applying Lemma 4.1 to each
of these component yield the desired sequence of legal moves in Y.

|

We are now in position to prove the main theorem of this section. It states that when unobservable
events are invertible, observability is equivalent to linear observability in networks with bounded

capacities:

Theorem 4.4 Let Z be a specification of a network E with bounded capacities. Given 7 sites with
invertible unobservable events U;. Let T;(Z) be the observer at site i obtained with the partition
induced by U;. Then

Z is observable &

Z is linearly observable &
Z is linearly observable by ITT;(Z).

Proof:

Clearly, if Z is linearly observable by IIT;(Z), then it is observable. In order to show that
observability implies linear observability, we will show that observability implies

TAZ) «— O«(Z)

then, since Z— T;(Z), applying Theorem 2.6 with the morphisms Z — O;(Z), we deduce that
Z is linearly observable by I10;(Z), thus by ITT;(Z).

We first show that
0i(Z)— TAZ)
by defining, for any state S of O;(Z), and any configuration C € S,

f(8) =Ti(C)

For this function to be well defined, we have to show that if C1, C2 € S then TyC;) = T;(C2).
This is true for the initial state I of ©;(Z) defined by:

I={ G-ulG-uisdefined and u € U;*}

26

since any configuration in this set is of the form G+u and T(G-u) =Ti(3). Suppose now that the
statement is true for a state S. If d is any event such that Sod is defined, then Sod is either S or

Sod = {Cdu|C € 8, C-du is defined and u € U;*}.
If C1, C3 € Sod, they can be written as

C1=C1'-du; and
Ca =C2'duy,

where Cy', Co'e S, and Ti(C1') = T;(C2'). We then easily check that:
- T«C1) =TiCr"dur) = T(C1") + Ty(va) = Ti(C2) + Ti(va) = T«(C2).

Thus, the function f is well defined. It induces a morphism since, if Sod is defined, then there
exists a C € S such that C-d is defined, thus T;(C)-d is also defined. And we have:

f(8ed) = T{C d) =T(C)-d =f(S)-d.
In order to show that
' TiZ)— 0O«Z)
we consider the function g defined as the inverse image of the transformation T;:

8(Ti(C)) = Ty [(THC)).

To prove that T;1(T;(C)) is always a state of O;(Z), we first note that any state S of O;(Z) is
contained in such a set. Indeed, we know from the first part of the proof that C1, Co € S implies
Ti(C1) = Ti(C?) thus

S € T 1(T(C)) for any C in S.

Now, if C1 € Ty I(Ti(C)) and C € 8, then Ti(C1) = Ty(C) and, by Lemma 4.3, there is a sequence
of unobservable events that connects C to C1, implying C1 € S. So, for any C in S,

S =Ty (T(C)).

The function g is thus well-defined. To prove that it induces a morphism we first remark that if
Ti(C)-d is defined, then there is a configuration C’ in T;1(T«(C)) such that C'-d is defined,
implying that T;-1(T;(C))od is defined in O i(Z). Furthermore, since T;(C) = Ti(C"), we have

8(Ti(C)-d) = g(Ti(C")d) = g(T(C"d)) = Ty Y(TAC"d))

27

and since C-d € T 1(Ti(C))ed,

T W(TH(C" @) = Ty (T(C))od = g(Ty(O)) °d.

5. References

Arnold, A., MEC: a system for constructing and analyzing transition systems, In (J. Sifakis, ed.)
Automatic verification of finite state systems. Lecture Notes in Computer Science, vol 407, 1989,

pp. 117-132.

Arnold, A_, Systémes de transitions finis et sémantique des processus communicants, T.S.I., vol.
9, n° 3, 1990, pp. 193-216.

Bergeron, A., A Unified Approach to Control Problems in Discrete Event Processes. R.A.LR.O.
Informatique Théorique , vol. 27, no 6, 1993, pp. 555-573.

Ramadge, P., Wonham, W., The Control of Discrete Event Systems, Proceedings of the IEEE,
vol. 77, n® 1, January 1989, pp. 81-98.

Rudie, K., Wonham, W., Think Globally, Act Locally: Decentralized Supervisory Control, IEEE

Transactions on Automatic Control, Vol. 37, n® 11, November 1992, pp. 1692-1708.

Rudie, K., Willems, J., The Computational Complexity of Decentralized Discrete-Event Control
Problems, IMA Preprint Series #1105, March 1993.

Tsitsiklis, J., On the Control of Discrete-Event Dynamical Systems, Mat. Control Signals Systems
(1989) 2, pp. 95-107.

Yong, L., Wonham, W., Control of Vector Discrete-Event Systems I- The Base Model, IEEE
Transactions on Automatic Control, Vol. 38, n° 8, August 1993, pp. 1214-1227.

29

On Controlling Distributed Communicating
Systems

A. Khoumsi* G.v. Bochmann R. Dssouli

Université de Montréal
Faculté des arts et des sciences
Département d’informatique et

de recherche opérationnelle
C.P. 6128, Succursale Centre-Ville
Montréal, (Québec) H3C 3J7

April 1994

Abstract

In this paper, we propose a new approach for controlling a distributed communica-
ting system (DCS). The aim of the control is to restrict the behaviour of the system
for obtaining a desirable behaviour. Traditionally, the control consists in forbidding, when
desired, the occurrences of some events. In our study, we consider the fact that a distributed
system is necessarily composed by several subsystems which, besides interacting with the
environment, communicate with each other via 2 medium of communication. Therefore,
the task the local controllers is not only to prevent the occurrences of some events, but also
to exchange a private information via the medium of communication. This new approach
is applied to a particular structure of distributed sequential communicating systems.

1 Introduction

A discrete event system (DES) is a dynamic system in which events occur instantaneously,
causing a discrete change of the state of the system. In this paper, we consider the case where
the sequences of events constitute a regular language. Thus, a DES can be modeled by a
FSM. Since DESs need in general to be controlled in such a way to avoid several undesirable
sequences of events, a control theory was initiated by Ramadge and Wonham ([12, 8]). This
theory has subsequently been extended to encompass other aspects, such as decentralized
control which interests us in this study ([2, 9]). This extension arises to consider distributed
DESs, while the initial theory failed to resolve problems for networks of communicating
processes, which can be modeled as distributed DESs

*Supported by FCAR-NSERC-BNR grant

-~

30

Among the most interesting works about controlling distributed discrete event systems,
there are those presented in [2, 9]. Since the results in [9] are the most general, we consider
only this reference. Traditionally, the task of the local controllers is to prevent, when desired,
the occurrences of some events. In our study, we generalize the task of the local controllers.
For that, we use the fact that a distributed system is composed by several local centralized
subsystems which interact with the environment and communicate with each other via a
medium supposed reliable. Consequently, in our case the task of the local controllers is to :

e Prevent, when desired, the occurrences of some events (traditional task);
¢ Exchange a private information with each other via the reliable medium (new task).

The remaining of this paper is organized as follows. Section 2 reviews the part of super-
visory control framework needed for our study. Section 3 introduces the structure of the
distributed communicating systems considered in our study. This structure is based on ser-
vice and protocol concepts. In Section 4, the new approach of control is detailed and applied
to the structure presented in Section 3. A simple example is given in Section 5. Finally, in
Section 6, we conclude and propose some possible extensions. Let’s notice that the terms
”controller” and ”supervisor” will be used as synonyms.

2 Control of discrete event systems

2.1 Centralized control

For a given DES noted M, and specified by a FSM Si, the aim of the control is the following.
From a desirable behaviour M, specified by a FSM S,, we have to synthesize systematically
the controller noted M, such that M; | Mz —i.e., My working in parallel and in interaction
with M,— behaves as desired. To achieve the desired behaviour, i.e., to influence the
evolution of M;, the controller has to ([5, 8, 12]):

e track the evolution of M), by observing occurrences of its events;
o disable —i.e., prevent occurrences of— some events when desired.

We consider here only the case where all events of M; are observable by M,, i.e., the
supervisor detects occurrences of all events of M;. Before continuing, let’s give the following

definitions.

Definition 1 A FSM is defined by S = (@, K, J,g0) where : (a) Q is the set of states;
(b) K is the alphabet, ie., the set of events; (c) § defines the transitions, i.e.,
6:Q x K — Q, and (g, 0)! means that (g, o) is defined; (d) go is the initial state.

Let’s notice that ¢ is also defined for a sequence s of events, i.e., 6(g, s) is the state reached

from the state g after the occurrence of the sequence s, and (g, s)! means that (g, s) is
defined.

31

Definition 2 Let A = (Q4,V,04,940) and B = (@B, V, 8, gpo) be two FSMs defined over
a same alphabet V. 4 is smaller than B (or B is bigger than A), if all sequences of events
executable in A from g40, are executable in B from ggo. This is noted A < B. In other
words, A is smaller than B if and only if the language L, accepted by A is included in the
language Lp accepted by B.

Definition 3 Let A and B be two FSMs over a same alphabet K, respectively accepting
the regular languages L4 and L. The sum of A and B, noted A + B, is the minimal FSM
which accepts the language L4 U Lg. :

Since M, has to disable some events of M, it is natural to partition the set K of events
into controllable and uncontrollable events: K = K., U K, (Figure 1). A controllable event
o (0 € K,,) is an event whose occurrence can be prevented by M;. On the contrary, an
uncontrollable event v (y € K,.) is always enabled by M,. The DES M, to be controlled is
then modeled by a FSM S; = (@1, K, 1, 10), and the desired behaviour M, is specified by
a FSM So = (Qo, K, 60, qoo), with K = Kw U Kuc.

The desired behaviour specified by S is realizable if and only if So < S; (Def. 2) and S,
does not necessitate to disable uncontrollable events from Si. In this case, such behaviour
is said controllable, w.r.t. S;. Otherwise, it is said uncontrollable, w.r.t. S;. Let then
Conts,(So) be the set of FSMs which specify the controllable behaviours, w.r.t. S;, which
are smaller than or equal to So. Since Conts, (So) is closed under FSM sum (Def. 3, [12]),
we can define the supremal element of Conts, (So), noted sup(Conts, (S,)), which is the sum
of all elements of Conts, (So). Algorithms for computing sup(Conts, (S,)) can be found in
[5, 12]. Let’s notice that if Sp is controllable, w.r.t. Sy, then S, = sup(Conts, (Sp)).

For obtaining the supremal behaviour specified by sup(Conts, (So)), the supervisor M,
has to observe the evolution of M; and to update the set of allowed events. Therefore, M,
is specified by C = (S;, ¥), where :

e S = sup(Contsl (So)) = (Q27 K7 52, QZ,O)-

o ¥: Q, — 2K, For each state g of Q,, W¥(q) is the set of events of K, which are
enabled by M, when M, has executed a sequence s from its initial state q1,0, such that
q = 62(g2,0,5). ¥(g) contains necessarily K,., and S, is smaller than both S; and S,.

In our case where all events are observable—and then the alphabets of S; and S, are
equal—, computing ¥ from S, is self-evident. In fact, if S, = (@2, K, 62,q20) then ¥ is
formally defined by ([5]) : '

Vg€ Q2: ¥(g) = Kuc U{o|(o € Kzo) A (82(q,0)1)}.

Example 1 The alphabet of S; and Sp of Figures 2.(a) and 2.(b) is K = K., U K., where
K. = {a,b,¢,d, e} and K, = {a,B8}. So is uncontrollable since it necessitates to disable the
uncontrollable events a and B, respectively at states 3 and 4 of S;. By using the algorithm
proposed in [5], we compute the FSM S; = sup(Conts, (So)) represented on Figure 2.(c).
The behaviour of the controlled M; is modeled by S, if the supervisor disables the event b
at state 1, and the event d at state 2. Therefore : ¥(1) = K \ {b} = {a,¢,d,e} U {a, 8},
¥(2) = K'\ {d} = {a,b,c,e} U{a, 8}, and the supervisor is specified by C; = (S5,).

32

2.2 Decentralized control

A distributed communicating system (DCS) is a DES whose events may occur in different

sites. The set K of events is then partitionned into K’ 1, Ka,...K,, where n is the number of

sites, and K; is the set of events occurring in site i. We consider here only the case where :
K =U.,K;, a.ndVi,an:iaéj=>K;ﬂKj=®.

Intuitively, this means that the different sites are disjoint (Fig. 3). Each element of the
alphabet K is defined by e;, where e is the name of an action and i identifies the site where
e occurs. Let’s notice that the events of K correspond to both: (a) interactions between
the DCS and the environment; (b) communication between the sites. This fact is detailed
in Section 3.

For controlling a DCS M;, n local supervisors M;,,...,M;, may be necessary. Each
M;; can observe all and only the events of K; and can disable only controllable events
of K;. Therefore, each K; is partitionned into Kico and K, ie., K; = K U Ky,
which respectively represent controllable and uncontrollable events on site i. We also define
Ko = U Koy, Kye = Ui Kiue, and then K = K, U K,.. For a DCS M; modeled
by a FSM S;, the aim of a decentralized control is then the following one. From a global
desirable behaviour M, specified by a FSM S;, we have to synthesize systematically the local
controllers My ;, for i = 1,...,n, such that M; behaves as desired when it is in interaction
with the n local supervisors. Before continuing, let’s define different kinds of projections.

Definition 4 Projections
Def. 4.1: (Projection of an event). Let o be an event of the alphabet K. The projection of
o on an alphabet K; is noted P;(c) and is defined by :

A ={

where € is an empty sequence (without event).

o if o€ K;
¢ otherwise

Def. 4.2: (Projection of a sequence). Let s be a finite sequence of events, and let o be an
event. The projection of a sequence on an alphabet K; is defined recursively by:

FPle)=e
Fi(so) = P(s)P:(o)
Example: if K = {a,b,c}, K1 = {a,b} and s = acbabcbcca, then Py (s) = ababba.

Def. 4.3: (Projection of a regular language). If L is a regular language, the projection of L
on K; is defined by: P;(L) = {P:(s) | s € L}.

Def. 4.4: (Projection of a FSM). Each FSM A accepts a regular language noted L4. The
projection of A on an alphabet K; is the minimal FSM noted P;(A) which accepts the
language P;(L4). In other words : Lp, 4y = P;(L4).

For obtaining a desired and realizable behaviour specified by a FSM S,, each supervisor
M,; has to :(a) observe the local evolution of M;, i.e., the occurrences of events of M, in

33

site 4; (b) update the set of local allowed events, i.e., the set of events which may occur in
site 2. Therefore, each M;; is specified by C; = (S;;, ¥;), where :

o Soi= P:'(So) = (Q2,;, Ki, 52.:', 92,:',0)5
o U;:Q,: — 2Ki is defined by ¥;(q) = K;uc U {0 | (0 € Ki o) A (624(g,0))}.

Intuitively, when M, executes the sequence s and is then in state ¢, = d;(g10,5), each
supervisor M,;, for ¢ = 1,...,n, is in state ¢ = 6,,(g2,:,0, Pi(s)) and enables events in
Vi(q2)-

In [9], it is proven that a desired behaviour Sy is realizable if and only if Sy is controllable
and n-observable, w.r.t. S;. The controllability is defined in Section 2.1, with K, = UL, Ko
and K, = UL,K;u.. A formal definition of n-observability is given in [9], and here we
give only an intuitive idea. A behaviour Sp is n-observable if it necessitates that the local
supervisors have to make decisions which depends only on what they observe. In other
words, every local supervisor M, ; takes a same decision after the executions, from the initial
state of 53, of two sequences s and ¢ such that Pi(s) = P;(t). If n=2, the n-observability
is called coobservability ([9]). If there is only one local supervisor, the n-observability is
equivalent to the observability ([5, 8]).

Example 2 The alphabet of S; and Sp of Figures 4.(a) and 4.(b) is K = K; U K, with
K1 = Kl,co = {al,bl}, Kz = Kz,w U Kz,uc, Kz'w = {C2} a.nd K2,uc = {52}. So is not con-
trollable because it necessitates to disable the uncontrollable event d; from state 3. S is
not coobservable because M, (supervisor in site 2) must enable §, after the occurrence
of event a; (State 2), and disable the same event J, after the occurrence of sequence a,b,
(State 3). This is not possible because M2 cannot know if M; is at state 1,2 or 3, since
Py(a;) = Py(a1b;) = e. The supremal controllable behaviour S; = sup(Conts, (So)) is
represented on Figure 4.(c). In this example, S, is realizable because it is controllable and
coobservable. The local supervisor M, has to disable b;, while M, has to enable c; and 4,
(Fig. 4.(f)). Mz, and M;; are respectively specified by C = (Sz,1, ¥1) and C; = (S;2, ¥5).
S2,1 and S5 are represented on Figures 4.(d) and 4.(e), ¥1(1) = {a;} and ¥3(1) = {c3,d.}.
In this example, M;,; is not really necessary since it disables no event. Therefore, in general
if we obtain a local supervisor M,; which enables all local events of K;, then M, ; is not

necessary.

In the next section, we introduce the structure of the distributed communicating systems
considered in our study. Such structure is based on service and protocol concepts. Af-
terwards in Section 4, we propose a procedure for controlling a DCS having the structure
considered. With this procedure, the local supervisors M;;, not only prevent occurrences
of some events, but they also exchange some private information with each other. In this
case, the controllable behaviours, which are not realizable by only preventing occurrences of
events, become realizable.

34

3 Distributed communicating structure

3.1 Introduction

A distributed communicating system is a system shared on different sites which can com-
municate :

o with the user (environment) via servive access points (SAP)
e with each other via a medium.

The medium is supposed reliable since it is not just a physical link, but it also contains all
software and hardware tools necessary to hide the unreliability of the physical link. With
the 7-layer OSI architecture, the medium provides at least a service of the transport layer
([11]). Therefore, a message sent from a site i to a site j, reaches its destination without
being corrupted. Let’s notice that the term ™user” is used in a general case, i.e., the user
represents the environment which interacts with the DCS.

3.2 Service and protocol concepts

Each site i contains a module, called protocol entity and noted PE;, which : (a) interacts
with the user of the site ¢; (b) communicates with the medium, to exchange messages with
other protocol entities. In the user’s viewpoint, the distributed system is globally a black box,
where interactions with the medium are invisible (Fig. 5.(a)). Therefore, the specification
of the service provided to the user (called service specification) defines the ordering of the
interactions visible by the user. These interactions are called service primitives. Informally,
such specification defines the service provided to (or desired by) the user of the DCS.

In the designer’s viewpoint , it is necessary to generate the local specifications of the n
protocol entities (Fig. 5.(b)), PE,..., PE, (called protocol specifications) from the speci-
fication of a desired service. Informally, each local specification of PE; specifies "what is
implemented in site i”. An approach which directly generates protocol specifications is called
synthesis ([1, 3, 4, 6, 7, 10]). In our present study, we use Finite automata as a formalism
of specification, and we consider only sequential systems.

Definition 5 A sequential service is described by a FSM SS = (@s, K, 05,950) which
specifies the global ordering of service primitives (SP) observed by the user at the
different sites. Events of the alphabet K, of SS are noted e;, where e is the name of a
service primitive (SP), and ¢ identifies the site where the SP is executed. The occurrence of
an event e; means that the service primitive e is executed in the site i by the protocol entity

PE;.

Example 3 Let the distributed system constituted by two sites and schematized on
Figure 6.(a). A formal specification of the service is represented on Figure 6.(b). Four
service primitives @, b,c and d are defined, and the alphabet is K, = {a1,b1,¢1,d1,c2,d3},

35

Definition 6 A protocol entity PE; is described by a FSM PS; = (Q, K, é;, g0) wh.ich.
specifies the ordering of the local interactions with the user and with the medium on site 3.
The elements of the alphabet Kj, i.e., the events which occur in site 7, are of three types.

1. Execution of a service primitive e on site ¢ (interaction with the local user). This event
is noted e;.

2. Sending a message with a parameter p from PE; to a protocol entity PE;. This event
is noted s](p).

3. Reception by PE; of a message with a parameter p coming from a protocol entity PE;.
This event is noted] (p).
The use of the parameter p contained in a message is explained in Section 3.3. An example
of protocol specifications is given on Figure 8 (See Example 4 in Section 3.3).

3.3 Synthesizing the protocol from the service

Before introducing the principle of the procedure for synthesizing the protocol, let’s define
the global protocol specification.

Definition 7 The global protocol specification is a FSM GPS = (Q, K, 4, do) which specifies
the ordering of all events (interactions with the user and with the medium) which occur in the
distributed system. Therefore : K, C K = UL, K;. The service and protocol specifications
SS and PS;, fori = 1,...,n, can be obtained from GPS by projections (Def. 4 on Section 2).
Let P; and P;, for ¢ = 1,...,n, be respectively the projections on the alphabets K, and K;,
fori=1,...,n. Then S§ = P,(GPS), and PS; = P,(GPS) (Example 4). Informally, GPS
specifies the global structure of the distributed communicating system. An example of GPS
is given on Figure 7 (See Example 4).

The aim of synthesis is the generation of the protocol specifications PS;, for i = 1,...,n,
from the desired service specification SS. Intuitively, we have to generate what must be
implemented in each site from what the user desires. The basic principle used for synthesizing
the different PS; is the following ([1, 3, 4, 6, 7, 10]).

e If, in SS, two consecutive service primitives A and B are executed by two different
protocol entities PE; and PE;, i.e., if in SS two transitions A; and B;, with i # j, are
consecutive, then :

1. PE; executes A and sends a message to PE;. This message is parameterized by the
identifier p of the state of SS reached after the execution of A.
2. When PE; receives the message parameterized by p, it executes B.

o If after a transition A;, there is a choice between m transitions Bk executed by the
protocol entities PEji, for k = 1,...,m, then :

1. PE; executes the primitive A and selects one of the protocol entities PEj; which
executes one of the primitives Bk.

36

2. PE; sends a message to the selected PE;;. This message is parameterized by the
identifier p of the state of SS reached after the execution of A.

3. When PE;j; receives the message parameterized by p, it may execute Bk.

The parameter p contained in a message is necessary to avoid any ambiguity when a
protocol entity receives a message. From this basic principle, several systematic methods of
synthesis are developped in the literature, and we propose the one used in [7). The latter
generates, in a first step, the global specification GPS from the specification SS of the
desired service. In a second step, PS; [fori =1,... yT, are obtained by projecting GPS on
the alphabets K;.

Example 4 From the service specification of Figure 6.(b), the obtained GPS is represented
on Figure 7. From GPS, we deduce the two alphabets K, K; and K as follows :

Ky ={a1,b,c1,d1,53(4),r}(2)}; Kz = {cs,dz,53(2),73(4)}; K = K1 UK,. The projec-
tions of GPS on alphabets K;, for i = 1,2, give the two protocol specifications PS; of
Figure 8.

4 Controlling a sequential DCS

4.1 Introduction of the problem

Let a sequential DCS (SDCS) M; modeled by a FSM GPS;, over the alphabet K which
contains all interactions with the user and the medium. In the user’s viewpoint, M; can be
modeled by a FSM SS; which specifies the service provided to the user. The alphabet K, of
SS1 contains only interactions with the user, and S, is then such that S8, = P,(GPS,),
where P is the projection on the alphabet K,. As an example, let the SDCS M; modeled
by GPS) and S8, respectively represented on Figures 7 and 6.(b).

The problem is then the following. From a specification SS; which models a desired
service,over the alphabet K,, the aim is to control the SDCS M; in such a way that it
provides the biggest realizable service which is smaller than SS,. The entries of the problem
are then : GPS,;, SS; and SS,.

4.2 Approach for the problem

A desired behaviour of a distributed system is realizable, by only preventing occurrences of
some events, if and only if it is controllable and n-observable ([9],Section 2.2). Intuitively,
a behaviour is not n-observable if the decisions of at least one local controller M;; do not
depend only on what M ; observes locally, but also on previous decisions of local controllers
in other sites. In other words, at least one local supervisor needs additional information for
making its decisions. As an example, the behaviour specified by the FSM of Figure 4.(b) is
neither controllable nor n-observable (see also Example 3 in Section 2.2).

Since there is a possibility for exchanging information between the sites, via a medium
of communication, we propose that the different local controllers, besides forbidding some
events, exchange information in such a way that every local supervisor receives all the

37

necessary information for making its decisions. In this case, a controllable behaviour, which is
initially not n-observable, can be made realizable by adding to it an exchange of information
between the local supervisors.

Let’s propose a way for exchanging information between the different local supervisors
M,;, for + = 1,...,n, in order to control a SDCS M,;. Each M,; interacts with the
corresponding protocol entity PE; of site i by forbidding some local events, and exchanges
some private information with other local supervisors. The private information is transmit-
ted by filtering the messages exchanged between the protocol entities. The message filtering
is realized as follows (Figure 9).

_Let a protocol entity PE; which has to send to PE; a message parameterized by p (event
s}(p)). The message is intercepted by M;; which adds a private information m in it, before
sending the message to PEj. Such operation is called Filtering of a transmitted message,
and is noted s](p, +m). '

When the message reaches the site j, it is intercepted by M, ; which removes the private
information m, before giving the message to PE;. Such operation is called Filtering of a

received message, and is noted r}(p, —m).

4.3 Synthesizing local supervisors

Before proposing a procedure which generates systematically the formal specifications of the
local supervisors M, let’s define the operator ®.

Definition 8 Let A and B be two FSMs respectively over the alphabets V, and VB, and
accepting respectively the languages L4 and Lp. Let A x B be the synchronized product of
A and B. If for instance V4 = Vp, then A x B accepts the language L4 N Lg.

A @ B is the supremal (biggest) FSM which is smaller than A x B and is free of deadlock.

The proposed procedure for synthesizing the local supervisors is noted Synt_Loc_Sup and
is composed of the five following steps. The entries of Synt_Loc_Sup are the FSMs GPS;,
551 and SSo (Sect. 4.1). GPS, is defined over the alphabet K = K, U K,,, where K, is

_the alphabet of SS; and S5, and K, contains events corresponding to the communication
between the sites.

Step 1. If SSp is not smaller than SS; or contains deadlocks, then SS, is replaced by
SSo ® S5, (Def. 8).

Step 2. The FSM GPS:0 = GPS; ® S5 is computed. GPS, o models the supremal be-
haviour of M; which provides the desired service (because SSp = P,(GPS¢)) and is free
of deadlocks.

Step 3. GPS, is possibly not controllable, and then not realizable. Therefore, the supre-
mal controllable GPS,, w.r.t. GPS,;, which is smaller than GPSy is computed. This
is noted GPS. = sup(Contgps, (GPS1,0)) (Section 2). Let’s notice that for computing
GPS., all the events r7(p) are considered uncontrollable.

38

Step 4. GPS. is possibly not n-observable (Sections 2.2 and 4.2), and then not realizable. In
this case, it may be impossible to provide the service S5, = P,(GPS.). Therefore, GPS.
is transformed into GPS with the following rules. If E; i(p) is the sequence composed of
event s](p) followed by ri(p) (Figure 10.(a)), then for any 7, j and p, such that E; ;(p) is
defined in GPS. :

Case 1. If E,-,,-‘(p) is single in GPS, then it remains unchanged.

Case 2. If all sequences E; ;(p) lead to a same state of GPS, (Figure 10.(b)), then they
remain unchanged.

Case 3. Otherwise, each E;;(p) leading to a state identified by m (Figure 10.(c)), is
replaced by the sequence of s!(p,+m) followed by r3(p, —m) (Figure 10.(d)), where
s}(p,+m) and ri(p, —m) are defined in Section 4.2.

This transformation is noted Filt, ie., GPS = F ilt(GPS.), and is such that
P,(Filt(GPS.)) = P,(GPS.). Informally, the transformation Fil¢ does not change
the provided service. Contrary to GPS., the behaviour specified by Filt(GPS,) is al-
ways realizable. Intuitively, the private information exchanged between the local con-

trollers My ; —s!(p, +m) followed by r3(p, —m)— eliminates the reazon why GPS, is not
n-observable. In fact, every M, ; will have all necessary information for deciding which

local controllable events are allowed.

Step 5. The specifications of the local supefvisors are computed by projecting GPS in
the alphabets of the different sites. In other words, for each site 3, M, ; is specified by
(S2,i, ¥;) where :

® 53; = Fi(GPS) = (Q2y, K2, 82,4, g2,5,0), P: being the projection on the set K; of events
occurring in site 2.

o U;:Qy; — 2Ki, where U;(q) is the set of local events allowed when M;; is in state
g. Formally : i(q) = Kie U{o | (0 € Kiwa) A (82:(a,0)D)}.
In the definition of Wi(q), &2,(g,s}(p))! (resp. &2:(q,rI(p))!) means that the event
s(p) or an event s(p,+m) (resp. r(p) or ri(p, —m)) is executable from the state q
of Sz,;.

5 Example

Let the SDCS to be controlled modeled by GPS, of Figure 7, and then providing the service
modeled by SS; of Figure 6.(b). The desired service is specified by SSo represented on
Figure 11.

Procedure Synt_Loc_Sup

Step 1. SS is smaller than S5, and is free of deadlocks, then 551 ®8Sy =SS,

Step 2. The obtained GPS, is represented on Figure 12 and is not controllable, because
it necessitates to forbid the uncontrollable event b, at state 3.

39

Step 3. The supremal controllable GPS., w.r.t. GPS,, which is smaller than GPS,p, i.e.,
GPS. = sup(Contgps, (GPS1p)), is represented on Figure 13. In this example, the
controllable events are ay, ¢;,d; and all events s!(p). Thus, the uncontrollable events are
b1, ¢z,d; and all events r(p).

Intuitively, since the uncontrollable event b, is forbidden from state 3 of GPS , then the
state 3 must be avoided by forbidding the controllable event d; from state 2.

Step 4. GPS, is not coobservable, w.r.t. GPS;, and then not realizable (Section 2.2).
Intuitively, when the message with parameter 2 is received in site 1 (by r2(2)), the local
controller M,,; cannot know if it corresponds to the event which leads to state 2 or to
state 12 (Figure 13). Therefore, M, cannot decide to forbid the controllable event c;.
If we apply the transformation Fil¢t to GPS,, we obtain GPS = Filt(GPS,) of Figure 14.
Intuitively, M2, can decide to forbid the event ¢; because the message coming from site 2
contains an information (2 or 12) which did not exist in GPS..

Step 5. Each M;;, for ¢ = 1,2, is specified by (S2,,%;). The FSMs S2,1 and Sz, are
represented on Figure 15. Let K; ., and K;,. be respectively the sets of controllable and
uncontrollable events in site i. Therefore, K} . = {a1,¢1,d, s2(4)}, Ky ue = {b1,73(2)},
Ko = {53(2)} and K, = {c3, dz,73(4)}. The functions ¥, and ¥, are as follows :

Ui(1) = Kiue U{ar}, ¥1(2) = Kiue, ¥1(3) = Kiue U {si4@)}, ©1(4) = Kig,
\1’1(5) = Kl,uc U {Cl}.

U2(1) = Koue, ¥2(2) = Kipe, ¥y(38) = Ky, Ua(4) = Kou. U {sl(2)},
¥5(5) = Kz,uc U {s3(2)}

Let’s notice that, in this example, the task of M, is only to inform M,, if d; has
occurred before c,. If yes, M, , adds the parameter 12 in the sent message (s3(2, +12)).
Otherwise, M;; adds the parameter 2 in the sent message (s3(2,+2)). '

6 Conclusion

In this study, a new approach is proposed for controlling a distributed communicating system
(DCS). Besides preventing occurrences of some controllable events, the task of the local
controllers is also to exchange a private information with each other. With this approach,
the controllable behaviours of a DCS which are unrealizable when the local controllers do
not communicate with other, become realizable. A procedure is proposed for generating
automatically the specifications of the local controllers when the DCS to be controlled is
sequential. The procedure is applied to a simple example.

For future work, we intend to extend our study by considering the control of distributed
systems with timing requirements. We also intend to study the control of concurrent dis-
tributed systems.

40

References

[1] G.v. Bochmann and R. Gotzhein. Deriving protocols specifications from service speci-
fications. In Proceedings of the ACM SIGCOMM Symposium, USA, 1986.

[2] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory control of discrete
event processes with partial observations. IEEE Transactions on Automatic Control,
33(3):249-260, March 1988.

[3] C. Kant, T. Higashino, and G.v. Bochmann. Deriving protocol specifications from
service specifications written in lotos+. Technical Report 805, Université de Mon-
tréal. Département d’informatique et de recherche opérationnelle, C.P. 6128, Succursale
Centre-Ville, January 1992.

[4] F. Khendek, G.v. Bochmann, and C. Kant. New results on deriving protocol specifica-
tions from services specifications. In Proceedings of the ACM SIGCOMM Symposium,
pages 136-145, 1989.

[5] A. Khoumsi, G.v. Bochmann, and R. Dssouli. Contréle et extension des systémes 3
événements discrets totalement et partiellement observables. In Proceedings of The
Third Maghrebian Conference on Software Engineering and Artificial Intelligence, Ra-
bat, Morocco, April 1994.

[6] A. Khoumsi, G.v. Bochmann, and R. Dssouli. Dérivation de spécifications de proto-
cole & partir de spécifications de service avec des contraintes temps-réel. Réseauz et
Informatique Répartie, 1994.

[7] A. Khoumsi, G. v. Bochmann, R. Dssouli, and A. Ghedamsi. A systematic and opti-
mized method for designing protocols for real-time applications. Technical Report 900,
Université de Montréal. Département d’informatique et de recherche opérationnelle,
C.P. 6128, Succursale Centre-Ville, 1994.

[8] P.J. Ramadge and W.M. Wonham. The control of discrete event systems. In Proceedings
of the IEEE, volume 77, pages 81-98, January 1989.

[9] K. Rudie and W.M. Wonham. Think globally, act locally: Decentralized supervisory
control. IEEE Transactions on Automatic Control, 37(11):1692-1708, November 1992.

[10] K. Saleh and R. Probert. A service based method for the synthesis of communicating
protocols. International Journal of Mini and Microcomputer, 12(3), 1992.

[11] A. Tanenbaum. Réseauz: Architectures, protocoles, applications. InterEditions, Paris,
1990.

[12] W.M. Wonham and P.J. Ramadge. On the supremal controllable sublanguage of a given
language. SIAM J.Control and Optimization, 25(3):637-659, May 1987.

41

M,

M,

Figure 1: Symbolic representation of controllable and uncontrollable events.

c a

(a)

e
OO nORY

O OLOROINOLC

®)

()

Figure 2: Example of a centralized control. (a) S;. (b) So. (c) S; = sup(Conts, (So)).

¢K1 ixz

@

)

Figure 4: Example of a decentralized control problem.

(a.) Sl.

(b) So.

(c) Sz

sup(Conts, (So))- (d) Sz2,1. (e) Sz,2. (f) Symbolic representation of local supervisors.

42

{a} {a} {a} {a} a3 ... {a}
= e S e o
Protocol Protocol | ... Protocol
Entity 1 Entity 2 Entity n
] | |
E Reliable Medium |
@) ®)

Figure 5: Service and protocol concepts. (a) Service. (b) Protocol.

i 51 & §2 ;dz

PE | P52

| |
[Reliable Medium |

(a

(a)

®)

Figure 8: Synthesized protocol specifications. (a) PS;. (b) PS,.

43

E.M;l-i PE, E-M;E PE, 5-M;§ PE_
ooy oo o 3 e T 3 E
a Filter .. Filter] i Filter]
"""" v F v T v !
| Reliable Medium |

Figure 9: Local controllers.

O S’;(p)go r,f(p)@

(@

OELANQRL.
©

®)

OLLLYoLLLNG
@

Figure 10: Rules of filtring.

1) O‘ 5,2
11

Figure 12: GPS, (obtained at step 2 of Synt_Loc_Sup).

44

(a) ®)

Figure 15: Specifications of the local controllers (obtained at step 5 of Synt_Loc_Sup). (a)
S31. (b) S22.

45

Hybrid Dynamics: Continuous and Discrete
Systems

Peter J. Ramadge *
Department of Electrical Engineering
Princeton University, Princeton, N.J., 08544
ramadge@ee.princeton.edu

April 1994

EXTENDED ABSTRACT

1 Introduction

This article is a summary of recent research on hybrid systems but it is by no means a
comprehensive survey. It reports some recent work in the control community and touches
on some related work in the computer aided verification community. Most of the material
concentrates on two special examples which are presented and analyzed in detail.

Roughly, a hybrid system is a dynamical system consisting of coupled continuous and
discrete subsystems. For our purposes one can think of a set of o.d.e.s coupled with a finite
automaton. The o.d.e.s determine the local evolution of a set of continuous variables, the
continuous variables induce state changes of the automaton and the state of the automaton
determines the vector field of the o.d.e.. Two examples of switched flow control will be
presented and analyzed later.

Hybrid systems arise in a variety of settings. Most notably when digital computers
are used to control the flow of continuous variables, but also in other situations where the
dynamics of continuous variables are determined by discrete actions. For example, in some
flow models of manufacturing systems or in protocols with timing constraints.

The behavior of a hybrid system can be very complex. In special cases it is possible
to reduce the continuous components to a ‘higher-level’ automaton model. In other cases
the continuous dynamics, by the introduction of chaotic behavior, make the adoption of a
statistical model more appropriate.

*Research partially supported by the National Science Foundation under grant ECS-9022634

46

The concept of hybrid systems is certainly not new. Witsenhausen [25] considered a class
of hybrid-state continuous time systems in 1966. There is currently a renewed interest in
this area due to the widespread use of digital computers in tasks requiring the regulation
of continuous dynamics. For example, [23], [24], [13], and [11] deal with the issue of the
quantization of continuous variables in a feedback loop; [14], [22], and [18] concern modeling
frameworks for hybrid systems; Brockett investigates hybrid models for motion control in
robotics [5]; and [20], [7] consider the dynamic behavior of a class of hybrid systems.

In the verification community there has also be recent interest in using hybrid models
to develop tools for the automatic verification of so-called embedded computer systems:
computers dedicated to the regulation of devices and their dynamics. For example, Alur and
Dill [1], [2] develop a theory of timed automata. This framework is then extended in [3] to
a general class of hybrid automata. The main issue in this work is the verification that a
hybrid system exhibits a desired behavior.

A timed automaton is a hybrid system consisting of a set of simple integrators (clocks)
coupled with a finite state automaton. Such systems can be used, for example, to model
protocols with timing requirements and constraints. For timed automata, Alur and Dill [1]
have introduced a temporal reduction of the continuous dynamics to a finite state automaton
and proposed the use of this reduction to answer certain verification questions. Alur and
others [3] have also examined the verification question in the case of more complex dynamics
that might arise, for example, in the regulation of continuous variables: pressure, tempera-
ture, etc. It is shown that even for simple linear dynamics the verification questions can be
undecidable.

Similar methods and observations have been employed to analyze the behavior of hybrid
systems from a dynamical systems point of view. The paper [7] introduces two simple
examples of hybrid systems that result from switched flow control. Using a reduction to a
finite automaton one of these systems is shown to be generically periodic; the other system
is shown to be chaotic. The chaotic nature of the dynamics suggests computational difficulty
and may tie in with the un-decidability results from the verification literature.

In the remainder of the paper will be be concerned with the properties of the two examples
from [7].

2 Switched Flow Systems

2.1 The Switched Arrival System

Consider a system consisting of N buffers, and one server. We refer to the contents of a
buffer as ‘work’; it will be convenient to think of work as a fluid, and a buffer as a tank.
Work is removed from buffer z at a fixed rate p ; > 0 and the server delivers material to any
selected buffer at unit rate. We assume that the system is closed, so that ¥, p; = 1. The
location of the server may be selected using a feedback policy. Moving the server alters the
topology of the flow, and hence permits control over the buffer levels. Figure 1 (a) shows
the set-up with N = 3 and the server in location 1.

47

? Pt Pt opy =l
1

Figure 1: (a) The switched arrival system, (b) The switched server system.

In applications work can represent a continuous approximation to the discrete flow of
parts in a manufacturing system, or jobs in a computer system, etc. Since each buffer acts
as an integrator, the example can also be thought of as a switched set of simple o.d.e.s.

A interesting control policy is to assign a threshold to each buffer and instantaneously
move the server to any buffer in which the level of work falls below the assigned threshold.
In what follows we take all the thresholds equal to zero, and switch the arrival server each
time a buffer empties. A more general analysis with both upper and lower thresholds can
be found in [15].

Let w;(t) denote the amount of work in buffer ¢ at time ¢ > 0, and let w(t) =
(wi(t),...,wn(t)). Att =0 we assume that w;(0) > 0 with N, w;(0) = 1. We call w(t)
the state of the buffers at time t. If at time ¢ the server is in location 7, then the server will
remain at j until a buffer empties. This event will occur after a time 7 = min ¢ {w;(t)/p:}.
For t < s < t+ 7 the buffer state is determined by the set of linear equations

w;(t) — pi(s — 1), if 2 # 7;

e (1)
wi(t) + (1 - pi)(s—1), i=j.

wi(s) = {

At time ¢ + 7 one or more buffers are empty. If exactly one buffer is empty then its index
is k = argmin,{wi(t)/p:}. In this case the arrival server is instantaneously moved to fill
buffer k, and the above process repeats. If more than one buffer is empty we assume the
system stops, so that w(s) = w(t + 7) for all s > ¢ + 7.

Let {t,} be the sequence of times when buffers empty, we refer to these as the clearing
times of the system, and let 7, = t, — tn_1,1 > 1. {7,} is the sequence of inter-event times,
ie., the times between the emptying of buffers. The case of particular interest is when
Yo 1 Tn = 0, 1.e., there are an infinite number of events and im ,_,o t, = 00. We verify in
due course that this situation is in fact ‘typical’.

Since the rate of work being processed is equal to the rate of work arriving, the total
work in the buffer system is constant. The buffer state thus evolves in continuous time in
the region of R” defined by the intersection of the hyper-plane ¥ ;w; = 1 with the regions

w; >0,2=1,...,N.

By sampling the trajectories at the clearing times we obtain an equivalent discrete-time

48

model. * Let zx(n) = wi(tn), and z(n) = (z1(n),...,zn(n)). At each clearing time the
index of the empty buffer determines the new location of the server, and once this is known
the value of the state until the next clearing time is determined by (1). Thus the sampled
sequence {z(n):n > 0}, completely specifies the buffer trajectory. For simplicity we assume
that 0 is a clearing time, i.e., that the initial condition has one buffer empty. This ensures
that the initial condition is the first element in the sampled sequence.

The sequence {z(n)} lies in the set X = {z: ¥;z; = 1,z; > 0, and for some Jyx; =0} I
Gj: X — X denotes the map that describes the transformation of X that results by placing
the server in location 7 until a buffer empties, then

Gi(e) = o + (min {o/m})(L; ~) @

where p is the vector of the p ;, and 1; is the vector of zeros except for a 1 in the j * position.
Note that if z € X with z = 0 and k # j, then G j(z) = z. So G; only modifies z € X when
z; is the only zero element of z. The transition function of the sampled system, G: X — X, is
then given by G(z) = G g(z)(z) where g(z) = argmin ;{z;}. If g(z) is not uniquely defined,
any of the indices minimizing « ; can be selected. This corresponds to the unlikely event that
two or more buffers empty at exactly the same time. The state so reached is a fixed point
of the transition function, i.e., G(z) = z. The set of initial conditions that give rise to such
trajectories is easily shown to be of zero Borel measure.

To illustrate what is happening under G consider the system with N = 3. In this case the
state space X can be visualized geometrically as the equilateral triangle in IR 2 with ‘edges’
X1, X3, X3, where X; = {z: ¥} z; = 1,z; > 0 for j # i,z; = 0}; and ‘vertices’ v, = (1,0,0),
vz = (0,1,0), and v3 = (0,0, 1). The vertices represent states where two buffers have emptied
simultaneously; these are the fixed points of G.

Let z € X, ie, z = (0, »,z3), where z > 0,z3 > 0. Since z; = 0, the server starts
filling buffer 1 at rate 1, while buffers 2 and 3 empty at rates p > 0 and p3 > 0. If 2=,
then buffer 2 empties first and G(z) € X ,. I 2 > 2, then buffer 3 empties first and
G(z) € X3. When %2 = 2, both buffers empty simultaneously, and G(z) = v ;. This last
event occurs when z = P, where P; is the point (0, —22—, —£2_). The state transitions under

]] ? p2+p3? p2+ps
G are illustrated in Figure 2 (a).

2.2 The Switched Server System

The second example consists of N buffers, with work arriving to buffer 4 at a constant rate
of p; > 0, and a server that removes work from any selected buffer at unit rate. As in
the previous example the location of the server can be chosen using a feedback policy. We
assume that the system is closed, so that Y ;p; = 1. Figure 1 (b) shows the set-up when
N = 3 and the server is in location 1. 2

An interesting policy can be formulated as follows. The server remains in its current

1This is analogous to forming a Poincaré map.

2This is a closed version of the model of [19].

49

(0,0,1)

TR

Figure 2: (a) Transitions under G, and (b) Transitions under H.

location until the associated buffer empties. Then the server instantaneously switches to a
new buffer determined by a deterministic function of the current buffer state.

To determine the system equations we proceed as follows. First, for ¢ > 0, let w ;(2)
denote the amount of work in buffer 4, and let w(t) = (w 1(2),...,wn(t)). I the server is in
location j at time ¢, then the server remains there until the event “buffer ; empty” occurs.
This takes a time 7 = w j(t)/(1 — p;). For t < s < t+ 7, the buffer state changes linearly:

wi(t) + pi(s — ¢), if 4 # 3;
wi(t) — (1 —pi)(s—1t), ifi=j.

When the buffer empties at time ¢ + 7 the server instantaneously switches to the buffer
determined by a given feedback rule, S:IR ¥ — {1,..., N}, and then the process repeats.

ls) = {)

As with the switched arrival system, we let {¢ ,} and {7,} denote, respectively, the se-
quences of clearing times and inter-event times. Once more, the interesting case is when
3.3° Tn = 00. The total work in the buffer system is constant, and the buffer state evolves
in continuous time according to (3) in the region of R ¥ defined by the intersection of the
hypersurface 3 ; w; = 1 with the regions w; >0,2=1,...,N.

By sampling the system trajectories at the clearing times we obtain an equivalent discrete-
time model. Let x(n) = wi(t.) and z(n) = (z1(n),...,z ny(n)). Reasoning as in the previous
case, this sequence completely determines the buffer state for all ¢ > 0. For convenience
assume that time 0 is a clearing time. The sequence {z(n)} lies in the region X of R ¥ defined
in the previous subsection. Let H ; : X — X, be the map describing the transformation of
X due to clearing buffer j. Then H ; is linear with

i + 8525, 177

0, otherwise.

Hj(z); = { (4)

The transition function H: X — X of the sampled system is defined by H(z) = H s(z)(z),
where S: X — X is the switching function that determines the next buffer to serve at state
z. Clearly the S(z) *» component of H(z) will be zero.

It will not be necessary to specify an exact form for the switching function S. However,
we assume that when switching function S is applied to a buffer state z, the buffer selected

for service is nonempty.

50

To illustrate what is happening under H consider the system with N = 3, and the
switching function S(z) = argmax{z ;}. In this case the state space is the one dimensional
manifold X discussed in the previous subsection. The map S partitions X into three regions
S; = §71(3), 1 = 1,2,3, each of which is a connected component of X. Three boundary
points by, b, b3 separate these regions. Let z € S 3, with z € X,. So z = (1,0,z3) with
z3 > z1. Then buffer 3 is selected to be cleared and the next state is H 3(z) € X3. Clearly
H maps S3 into X3. The state transition is illustrated in Figure 2 (b).

Intuitively, the switched arrival and switched server systems are “inverses” of each other.

See [7] for details.

3 Analysis of the Switched Arrival System

We restrict our analysis here to the case N = 3. It can be shown that the closed loop hybrid
system exhibits characteristics of chaos [12, page 50]: it has sensitive dependence on initial
conditions, is topologically transitive, and its periodic orbits are dense in the state space. It
is clear that there are three fixed points and it is easy to show that each of these is unstable.
Similarly, it is possible to show that each periodic orbit is unstable. Thus although the state
trajectory remains bounded it is highly unlikely that it will settle into a periodic pattern.

An alternative to direct analysis of the state trajectory is to model the initial condition
as a random variable and examine the corresponding sequence of induced measures on the
state space. Assuming certain regularity conditions these measures have density functions,
and we can study the evolution of these functions with time.

3.1 Statistical analysis of the switched arrival system

The theory of the statistical analysis of deterministic functions on the unit interval is fairly
well developed. For convenience in appealing to these results we first recast our system as
a map on the unit interval. Let ¢ 1:X;—(0,1/3), ¢2: X—(1/3,2/3), and ¢3: X3—(2/3,1),

where +1 a4 2
z T
‘33;452 : (21,0,23) — ’13—";453 : (z1,22,0) — 23

We map (0,1,0) to 0, (0,0,1) to 1/3, and (1,0,0) to 2/3. This defines a one-to-one and onto
map ¢: X —[0,1). Geometrically, this parameterization of X can be thought of as “cutting”
the triangle X at the point (0,1,0) and “unfolding it” onto the unit interval.

We then bring in the induced transition function g:[{0,1] — [0,1] defined on [0,1) by
g=¢o0Go¢! and at the point 1 by g(1) = 0. Since the changes of coordinates ¢ 1, @2, @3

¢1 : (0,-'152,373) g

51

are affine, g is also piecewise linear. Specifically, for z € [0, 1]

4

1 2ty z € [0,p1)
i-etmz—p) z€[p,3)

oo | e selim)
1— 828z —py) 2€[ps,3)

% &:t&(z 3) zE[%,ps)

‘ %-—L’tﬁ’-(z—pg) z € [p3, 1].

.P3 14,1 o =241, _p
3 P2+P8’p2 +3 P1+Pa’a'ndp3 +3 Prtp2”

g of of 2,0, and 1, respectively.

where p; = These are the preimages under

Our underlying measure space is (I, A,m) with I = [0,1] and Lebesgue measure m.
Let L; denote the family of integrable functions on [0,1], and D C L ; denote the family
of density functions. The transformation g is nonsingular with respect to m, i.e., for each
A € A,m(A) =0 implies m(g ~*(A)) = 0. Hence g induces a Markov operator P :Ly—L,,
called the Frobenius Perron operatorof g [16, p.37]. If the initial condition 2(0) for the system
([0,1],9) is a random variable on the probability space (I,.4,m) with density function f o,
then the next state 2(1) = g(2(0)) is a random variable with a density function f ; = P,(fo).

The fixed points of P, in D are called stationary densities. These represent statistically
stationary regimes of operation. The map g is statistically stable if there exists a stationary
density f* such that for any density f € D, im p—e ||P7(f) — f*[l» = 0. In this case,
regardless of the initial density the state will a.symptotmally be distributed with density f *.
In this sense the system has a unique “steady state”.

Our main result for the sampled switched arrival system is the following [7].

Theorem 3.1 The map g representing the sampled switched arrival system on [0,1] is sta-
tistically stable and the unique stationary density is the piecewise constant function

faloal . if2e(0,1/3)

2 prp2+pLp3+p2ps?

re = S, s /o),
3__ps(l-ps) if z € [2/3,1].

2 prp2+prps+p2ps’?

In addition, g is measure preserving and ergodic on the measure space (I, A,p *), where u*
1s the measure induced by f*.

The proof of this theorem is contained in [7]. However, it is easy to give a partial
justification of the result. Using standard methods [16, p.38], we calculate the Frobenius-
Perron operator of g to be

PL+ps e f(P2 — TJTz-i-Lm) + 8- Ff-%{) z€[0,3)
z— z— L1
Py(f)(z) = P2+ps =t - (Pz+Pa)+ 25 P1+P2 flps = '(T-l%) 2€[53

(z=%)ps (z—%)ps
Patps e S (1 — pates)+ Prtrs fGG - _PT:-;:—) z €[5 1.

52

From the expression for P ; we can make some simple observations. First, let D . denote the
set of density functions that are constant on each of the subintervals [0,1/2), [1/3,2/3) and
[2/3,1],i.e.,if f € D, then f has the form f(z) = & 11j0,1/3) (2) + @21p1/32/3) (2) + @sljz/ay (2).
Then D, is invariant under Py, i.e., for each f € D, Pg(f) € D.. Now any f € D, can be
represented as a triple @ = (a 1,02, 03) € [0,1]3, with a; 4+ a3 + a3 = 3, and the action of P,
on f can be represented as a matrix product Pa where P is the 3 X 3 matrix

_p__ A
pitps p1tp2

P = P2 0 P2
p2+ps pLt+p2

—Ps _Ps 0
p2t+ps prtps

A simple calculation shows that P is the transpose of an irreducible aperiodic Markov matrix.
Hence by the standard Frobenius-Perron theorem for nonnegative matrices we know that 1
is a simple eigenvalue of P, and that all other eigenvalues have absolute value strictly less
than 1. Moreover, for the eigenvalue 1 there exists a unique strictly positive eigenvector o *
with 3°; af = 3, and for any a € R?, with ¥; oy = 3, P"a—a* as n—oo.

)

Let the piecewise constant density function corresponding to @ * be denoted by f*. Clearly
f* is a stationary density of P,. Moreover, for any piecewise constant density f € D «,
limp—seo || P*(f)— f*|| = 0. This suggests that f* is a potential globally attractive stationary
density. To show statistical stability, however, we have to show that every f € D converges
to f* (in L1) under the iterations of P,. This requires a more detailed argument.

The fact that g is ergodic and measure preserving with respect to f * allows us to appeal
to the Birkhoff Ergodic Theorem to equate (almost surely) sample path averages with ex-
pectations. Specifically, for any bounded measurable function, k, on I, and for almost all
initial conditions z(0) € I

tim 3" g a(0) = [B ()i

R L
i.e., time averages of h(z(n)) are equal a.s. to the expected value of h with respect to f *.

For example, let 7 : X — R * with 7(z) = min 4, z;/p;, where j is any index for which
z; = 0. For z € X, 7(z) is the service time at the buffer state z, i.e., the time until the
next buffer empties when the buffer state is . For a buffer trajectory {z(n)}, 7(z(n)) is
the (n + 1)* inter-event time. Using the coordinate change ¢, we can obtain an equivalent
measurable function ¥ = 7(¢ ~) which gives the service time as a function of the state z € I.
The average inter-event time for initial state z(0) is 7 = im no0 2 X7, 7(¢°(2(0))), and by
the Birkhoff Ergodic Theorem this a.s. equals fj 7(z)f*(2z)dz. Evaluation of this integral
yields 7 = 1/(4d), where d = p 1p2 + p1p3 + p2ps- Since ¥ > 0, the inter-event times, {7 ;},
sum to infinity almost surely.

When the system is stationary, e.g., the initial state is a random variable with density
f*, the inter-event times have fixed first order statistics. For example, if p 1 > ps > p3, then
the density f} of the service times is given by

3 pa'(l;dpizz fte [0 _1._.]

=1 Y 1—p3 |?
* _ 2 p-!l—p‘!2 : 1 1 .
f-r(t) - =1 . 2d 2 lf te (1'—Ps) 1"‘P2]’

pi(1—p1)? ifte(1 L]

2d 1-p2? 1—p;

53

where d = p1ps + p1p3 + p2p3-

4 Analysis of the Switched Server System

We now consider the sampled switched server system with attention restricted to the case
N =3. For N = 3 the state space is the one dimensional manifold X defined in Section 2.

We use the topology on X induced by the Euclidean topology of R 3. For B C X, B
denotes the closure of B and 0B denotes the set of boundary points of B. We let u denote
the one-dimensional Hausdorff measure on X. The p-measure of a connected component in
X corresponds to its path length.

The parameter space for the systemis © = {(p 1,p2,03)| L pi =1,p: > 0,2 =1,2,3}. On
© we use the topology induced by the Euclidean norm in R 3

The switching function S: X — {1,2,3} partitions X into switching sets, {S ;}3 , with
Si = S71(2). We assume:

[S1] Each switching set S; has a finite number of connected components.
[S2] There exists o > 0 such that for all z € X, z s(z) > e

Let S = U;0S;. We refer to points in 8S as the switching points or boundary points.
Assumption [S1] ensures that 0S5 is a finite set. Indeed, [S1] and the topology of X imply
that each switching point is a boundary point of exactly two switching sets. So the number
of switching points is equal to the total number of connected components of the switching
sets.

Assumption [S2] guarantees that a minimum amount of work is present in the buffer
selected for service. This is equivalent to the Clear-A-Fraction property introduced in [19).
It guarantees that the inter-event times sum to infinity.

Let 7o denote the equivalence relation on X induced by S, i.e., the equivalences classes of
7o are the switching sets S;, and let 7 be the equivalence relation on X with z = y(mod =)
iff for all m > 0, S(H *(z)) = S(H™(y)), i-e., iff z and y produce the same control sequence.
It is easy to see that m is a congruence on (X, H), i.e., that ¢ = y(mod =) implies that
H(z) = H(y)(mod 7). If S(z) is thought of as an ‘observation’ of the state z € X, then 7
is the observability congruence of the system (X, H, S).

Let X denote the set of equivalence classes of 7, and let m also denote the canonical
pro_]ectlon 7: X — X. Then there exists a unique map H:X — X such that nH = Hr.
Since 7 is finer than o, and z = y(mod 7o) iff S(z) = S(y), it is clear that there exists a
map §: X — {1,...,N} such that S = Sr. The above observations are summarized in the
commutative dlagram

x &5 x £ {,..,N}
Tl lm 3/
X & x

54

The situation of interest is when the quotient system (X, H, S) has a finite number of
states, i.e., m has finite index. In this case the control structure of the switched server
system will be reduced to a finite automaton, i.e., the switching sequence and hence the
control policy will be completely determined by a deterministic finite state system. As a
result the control policy will be eventually periodic.

___ Finally, for each switching function S and for all n, H "+!(X X) C H*X). So X 2 H(X) D

H2(X) D ---. The limit set is the forward attractor A = N ® Hn(X). This is the set of limit
points of all p0551b1e trajectories.

The main result for the sampled switched server system is the following [7].

Theorem 4.1 For each fized p € © there is a set I' , C X of measure zero, such that for all
switching functions S having switching points outside of ' ,, the following hold:

1. The observability congruence = has finite indez.
2. A contains at most 2|0S| possible periodic cycles.
3. All buffer trajectories converge uniformly ezponentially to periodic orbits.

4. Items 1-8 continue to hold for sufficiently small variations of the switching function S
(meaning small changes in the switching points).

In addition, there ezists a set I' C X of measure zero such that for each switching function
having switching points outside I' there is an open dense set in the parameter space for which

items 1-3 hold.

Roughly, the theorem says that for almost all switching functions S the control policy
of the sampled switched server system is determined by a finite automaton and is thus
eventually periodic. This in turn implies that the buffer trajectory is asymptotically periodic.
Moreover, the system retains this qualitative behavior for sufficiently small changes in the
system or controller parameters. So these characteristics are structurally stable.

Notice that the quotient automaton gives all important information regarding the con-
troller dynamics. It displays both the transient as well as the steady-state controller behav-
ior. Given the steady-state controller behavior it is a simple matter to actually compute the
asymptotic periodic orbit for the buffer state.

There remains the problem of computing the finite automaton (X, H, S). It is easy, in
this example, to formulate an algorithm by which this may be done, a.nd this algorithm
indicates that the automaton (X, H,S) is structurally stable with respect to variations of
the switching function S, and the parameters p. However, since the algorithm makes use of
the (expansive) inverse map G, it would appear to have undesirable characteristics.

5 Conclusions

There are several technical difficulties involved in extending our results to higher dimensional
systems. The available results on the statistical stability of higher dimensional systems

55

are inapplicable, and a complete analysis of discontinuous piecewise contractions in higher
dimensions is an open problem. Some issues that arise in proving statistical stability have
been examined in a general setting in [21] following the method of [17]. In addition, the
state transition function of the sampled N buffer switched server system is an example of
a Markov map [4], and the statistical stability of such maps is investigated in [8]. Work on
contractive systems has specifically concerned the N buffer system [10], and discrete time
systems on the unit interval where a controller selects among a finite number of contractive
transition maps [9]. The method of analysis used here for the switched server system does
not immediately extend to the higher dimensional case. Aside from the results of [10], this
remains an open problem.

References

(1] R. Alur and D. L. Dill, “Automata for Modeling Real-Time Systems,” Proceedings of the
17 International Colloguium: Automata, Languages and Programming, pp. 322-335,
Coventry, U.K., July 16-20, 1990.

[2] R. Alur and D. L. Dill, “The theory of timed automata,” Proceedings of the REX Work-
shop, Real-Time: Theory in Practice, pp. 45-73, Mook, The Netherlands, June 3-7, 1991.

[3] R. Alur, C. Courcoubetis, T. A. Henzinger and Pei-Hsin Ho, Hybrid Automata: An Al-
gorithmic Approach to the Specification and Verification of Hybrid Systems, Proceedings
of the Workshop on Theory of Hybrid Systems, 1993.

[4] A. Boyarsky and M. Scarowsky, “On a Class of Transformations Which Have Unique
Absolutely Continuous Invariant Measures,” Transactions of the American Mathematical
Society, Vol. 255, pp. 243-262, November 1979.

[5] “Hybrid models of motion control systems,” in Perspectives in Control, H. L. Trentelman
and J. C. Willems, Eds, Birkhauser, 1993.

[6] S. Buss, C. H. Papadimitriou, J. Tsitsiklis, “On the predictability of coupled automata:
an allegory about chaos,” Proceedings of the 31st Annual Symposium on Foundations of
Computer Science, pp. 788-793, Oct. 1990.

[7) C. J. Chase, L. J. Serrano, and P. J. Ramadge, “Periodicity and chaos from switched
flow systems: contrasting examples of the discrete control of continuous systems,” IEEE
Transactions on Automatic Control, Jan. 1993.

[8] C. J. Chase, “Analysis of Dynamics in Continuous Variable Systems with a Scheduled
Controller,” Ph.D. dissertation, Department of Electrical Engineering, Princeton Univer-
sity, January 1992.

[9] C.J. Chase and P. J. Ramadge, “Predictability of a Class of Supervised One-dimensional
Systems,” in Proc. 5th IEEE Inter. Symposium on Intelligent Control, Philadelphia, PA,

Sept. 1990.

56

[10] C. J. Chase and P. J. Ramadge, “Dynamics of a Switched N Buffer System,” in Proc.

28th Allerton Conf. on Communication, Control, and Computing, Champaign, IL, Oct.
1990.

[11] D. F. Delchamps “The Stabilizing a Linear System with Quantized State Feedback,”
IEEE Transactions on Automatic Control, vol. 35, no. 8, pp. 916-924, August 1990.

[12] R. L. Devaney Chaotic Dynamical Systems. Addison-Wesley, New York, N.Y., 1989.

[13] R. M. Gray, W. Chou, and P.-W. Wong, ”Quantization noise in single-loop sigma-delta
modulation with sinusoidal inputs,” IEEE Trans. Commun., vol. COM-37, pp. 956-968,
1989.

[14] A. Golli and P. Varaiya, “Hybrid dynamical systems,” Proceedings of the 28th Confer-
ence on Decision and Control, Tampa, Fl., pp. 2708-2712, Dec. 1989.

[15] C. Horn and P. J. Ramadge, “Dynamics of switched arrival systems with thresholds,”
Proceedings of the 32nd IEEE Conference on Decision and Control, San Antonio, Texas,
Dec., 1993.

[16] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems. Cam-
bridge University Press, New York, N.Y., 1985.

[17] T.-Y. Liand J. A. Yorke, “Ergodic Transformations from an Interval into Itself,” Trans-
actions of the American Mathematical Society, Vol. 235, pp. 183-192, 1978.

[18] P. Peleties and R. Decarlo, “A modeling strategy for hybrid systems based on event
structures,” Preprint: School of Electrical Engineering, Purdue University, W. Lafayette,
IN 47907.

[19] J. R. Perkins and P. R. Kumar, “Stable, Distributed, Real-Time, Scheduling of Flexible
Manufacturing/Assembly/Disassembly Systems,” IEEE Trans on Auto. Control, vol. 34
(2), Feb. 1989, pp. 139-148.

[20] P. J. Ramadge, “On the Periodicity of Symbolic Observations of Piecewise Smooth
Discrete-Time Systems,” IEEE Trans on Auto. Control, vol. 35 (7), July 1990.

[21] L. J. Serrano, “The Effects of Time Sampling and Quantization in the Discrete Control
of Continuous Systems,” Ph. D. Thesis, Princeton University, Oct. 1990.

[22] J. A. Stiver and P. J. Antsaklis, “A novel discrete event system approach to modeling
and analysis of hybrid control systems,” Control Systems Technical Report #71, Dept.
of Electrical Eng., University of Notre Dame, Notre Dame IN 46556, June 1991.

[23] T. Ushio and C. S. Hsu, “Simple example of a digital control system with chaotic
rounding errors,” Int. J. Control, 45 (1), pp. 17-31, 1987.

[24] T. Ushio and C. S. Hsu, “Chaotic rounding error in digital control systems,” IEEE
Transactions on Circuits and Systems, 34 (2), pp. 133-139, Feb. 1987.

[25] H. S. Witsenhausen, “A class of hybrid-state continuous-time dynamic systems,” IEEE
Transactions on Automatic Control, vol. AC-11, no. 2, April 1966.

57

Control of Discrete-Event Systems Under State
Fairness Assumptions

(Extended Abstract)*

J.G. Thistle and R.P. Malhamé
Section automatique
Département de génie électrique et de génie informatique
Ecole Polytechnique de Montréal
C.P. 6079, Succ. Centre-ville
Montréal, (Québec)
Canada H3C 3A7

Abstract

This article studies the deadlock-free control of finite automata subject to speci-
fications in the form of Rabin acceptance conditions. The automata are assumed to
satisfy a state fairness condition, whereby any transition that is infinitely often enabled
(by both the underlying dynamics and the control mechanism) must eventually occur.
The problem of computing the automaton’s controllability subset — the set of states
from which it can be controlled to satisfy its acceptance condition - is solved through
a fixpoint characterization of this state subset. The state fairness condition simplifies
the fixpoint characterization and allows the controllability subset to be computed in
polynomial time. The problem represents a modified version of Church’s problem and
the emptiness problem for automata on infinite trees, and has potential applications
to the verification and synthesis of reactive systems and to supervisory control.

1 Introduction

This article relates to the extension of supervisory control theory [RW89] to the setting
of infinite-string formal languages and the associated automata [Ram89]. The infinitary
extension allows the examination of liveness issues within the context of the theory [TW94a,
TW94b]. Such questions appear to be useful, for example, in the formulation of real-time
supervisory control problems [WW93].

Earlier articles identify a basic control synthesis problem that amounts to one of control-
ling a finite automaton to the satisfaction of a specification in the form of a Rabin acceptance

*Research supported by a grant from the Fonds pour la formation de chercheurs et 1’aide & la recherche
of the province of Quebec, Canada, Bell-Northern Research Ltd. and the Natural Sciences and Engineering
Research Council of Canada under the Action concertée sur les méthodes mathématiques pour la synthése
de systémes informatiques.

58

condition [TW94a]. In its basic form, this problem is equivalent to Church’s automaton syn-
thesis problem and the emptiness problem for automata on infinite trees, which represent
theoretical paradigms for the synthesis and verification of concurrent and reactive systems
[EJ88, PR89]. In [Thi], results on this basic problem are extended to admit a second Ra-
bin acceptance condition representing a liveness condition assumed to be satisfied by the
automaton irrespective of control action.

The problem considered in [TW94a, Thi] is that of computing an automaton’s control-
lability subset — the set of states from which it can be controlled to the satisfaction of its
specification. The solutions proposed are polynomial in the size of the automaton’s state
set and exponential in the number of state subset pairs in the Rabin acceptance condition.
These can be considered essentially optimal in the sense that the problems are NP-complete.
In the present article we give a fixpoint characterization of a controllability subset that allows
a polynomial-time computation. It applies in the case of automata that satisfy state fairness
conditions. Such a condition states that any transition that is infinitely often enabled by
the dynamics of the automaton (and, in our case, simultaneously by the control mechanism)
will eventually occur.

Section 2 defines Rabin automata and their controllability subsets. In section 3, a fixpoint
characterization of the controllability subset is given. Related work is discussed in section 4.
Fixpoint preliminaries are presented in an appendix.

2 Controllability subsets

We first establish some formal language notation. A string is any sequence of symbols of
some (finite) alphabet £. The set of all finite strings over ¥, including the empty string,
1 (having length zero), is denoted by E*. The set of all (countably) infinite strings — or
w-strings — is denoted by X“. A string k € £* is a prefiz of a string w € £* U £ if it is an
initial subsequence of wj; in this case we write k < w, or k < w if k is a strict subsequence
of w.

A (deterministic) Rabin automaton is a 5-tuple

A= (%, X,6,z0,{(Rp,1,) : p€ P}),
where
e X is an alphabet of event symbols;
e X is a finite state set;
® §: ¥ x X — X (partial function) is a transition function;
® 2o € X is an initial state; and

o {(R,,I,) : p € P} is afamily of pairs of state subsets indexed by elements of some
index set P.

59

As usual, we extend the transition function to strings by defining

§:¥*xX — X
(L,z) —» =z
6(o,6(k,z)), if 6(o,6(k,z)) is defined
(ko,z) = { undefined, otherwise

where k € ¥* is any finite string and o € ¥ is any symbol. We shall write 6(k, z)! to signify
that §(k,z) is defined.

We shall interpret automata as generators, rather than acceptors, of strings. A finite
string k € X* is said to be generated by A if §(k, zo)!.

Let C C 2% represent a set of allowable control actions in the following sense: if ' € C
then at any point in the evolution of the system, the set of transitions that can occur may be
restricted to those labelled by an element of I'. (In other words, the set of symbols that may
be “generated” at any given time can be restricted to those belonging to I'.) A controller
can be modelled as a map f : ¥* — C taking finite sequences of (past) events into control
actions.

The set of finite strings generated by A under f is the set of all k£ € ¥* generated by A

such that for any prefix £'o of k, o € f(F').
To discuss the infinite behaviour of A we assume without loss of generality that distinct

transitions of A carry distinct event symbols; that is,

Vo € ¥,Vr1,29,23,24 € X :
8(o,21) =22 & 8(0,23) =24 => 21 =23 & T3 = 24

An infinite string s € £* is said to be generated by A (under f) if
i. all finite prefixes of s are generated by A (under f); and if

ii. for any event symbol ¢ € ¥ such that ko is generated by A (under f) for infinitely
many finite prefixes k of s, o appears infinitely often in s.

The second condition states effectively that any state transition that is infinitely often en-
abled according to the transition structure of 4 (and the control action of f) must occur
infinitely often. Such a liveness assumption is known in the literature as a state fairness
condition [CVW86].

We consider the problem of controlling the automaton A, under this state fairness as-
sumption, so that it generates only infinite strings that satisfy the Rabin acceptance condi-
tion.

To define satisfaction of the Rabin acceptance condition, let the set of states visited
infinitely often during the generation of a string s — the recurrence set of s — be given by

Qs:={zeX:|{k<s:(k,z0) =2} =w}
The string s is accepted if
dpeP : QNR, #0 & Q, C I,

60

In other words, s is accepted if it traces out a path on the transition structure of A that
begins at the initial state and intersects R, C X infinitely often and I, C X almost always,
for some p € P. In order to discuss acceptance of strings generated from states other than
the initial one, let A; be the automaton obtained from 4 by replacing the initial state zg
with z.

The controllability subset F4 C X is defined as the set of all (initial) states € X for
which there exists a map f : ¥* — C such that

1. every finite string generated by A, under f extends to an infinite string generated by
A, under f; and

ii. every infinite string generated by A, under f is accepted by A,.

The second clause of this definition requires that the controller restrict the infinite trajectories
of the automaton to those that satisfy the acceptance condition; the first requires that the
controlled system be deadlock-free.

3 Fixpoint characterization of the
controllability subset

We shall characterize the controllability subset in terms of fixpoints of the inverse dynamics
operator 84 : 2X — 2X that maps every state subset X’ C X to the set of states z € X
such that for some I € C, there exists o € I' such that (o, z)! and furthermore for all such
o €T, §(o,z) € X'. In other words, §4(X’) is the set of states from which A can be forced
to enter X’ in a single transition.

Define in addition the operation A(#4 X'), for X’ C X, which allows the controller to
disable any transitions that terminate in X’. The operation thus replaces the set C of control
actions with

C:={I'CT: @ eC)T\E'CI'CT]},

where ¥/ ;==X\ {c € X: (Fr € X,2' € X")[§(0,z) = 2]}.
Define the operator p* : 2X — 2% so that

pA(X") = vXo. pX;. AFX) (X, U X

This fixpoint intuitively represents the set of states from which the automaton can be con-
trolled to reach X' (under the state fairness assumption). The reader unfamiliar with the
quantifier-style notation for fixpoints is referred to appendix A. Now define the following

subset CA C X:
c4 = pA(U C2)
peP
where CJ := v Xo. pX;. [A#X)(X; U(R,N Xo)) N I,] represents the largest subset X, C I,

such that the system can be controlled so that (a) there exists a path from every z € X, to
R, and (b) the system remains within Xj.

61

It is easy to see that C# can be computed in polynomial time (see Theorem A.1). Our
main result states that C# represents a fixpoint characterization of the controllability subset
FA. In order to simplify the proof, we bring in the following operations on automata:

restriction to a subset X' C X:
AL X' = (5, X,8,20,{(R,,I,) : p € P}), where

undefined if §(o, z’) is undefined;
§'(o,2') =3 68(o,2') if §(0,2")! & 2’ € X

z’ otherwise

&R,=R,NX'&I,=I,n X', Vpe P

self-looping of a subset X' C X:
A(—= X') = (3,X, 8,20, {(R;, I,) : p € P}), where

, n_ |2 if §(o, 2" & 2’ € X;
§(o,2) = { 6(o,z’) otherwise
&R, =R,UX' &I =I,UX', Vpe P

We state without proof the following result on the effect of these operations on the
controllability subset:

Proposition 3.1 Let A = (X%,X,6,20,{(Rp,I,) : p € P}) be a deterministic Rabin
automaton equipped with a family of control actions C C 2% as described above. Let
X' C X. Then

(a) FAX'C FAN X'

(b) X' C FA = FPACX) = pA

We also note that the fixpoint C# shares the same properties:

Proposition 3.2 Let A = (X, X,6,z0,{(Rp,I;,) : p € P}) be a deterministic Rabin
automaton equipped with a family of control actions C C 2% as described above. Let

X' C X. Then ,
(a) CAX ccAnX!
(b) X' CCA= CA=X) = CA

We are now ready to state and prove the main result:

Proposition 3.3 Let A be a Rabin automaton equipped with a family of control actions
as described above. Then F4 = CA.

Proof: For the containment F4 O C4, we construct a state feedback control $:CA—C
based on the fixpoint definition of C4A.

62

First, consider the definition of C’A, p € P. Note that by Theorem 1, CA
where

A
z_.l C

Py?

CHo: —@ and, for : > 0,
cA = eA(*’CA)(cA UR,NCH)NT,

Accordmgly, choose a state feedback map ¢, : CA — C so that for z € C’A and o € ¢,(z),
6(a,z) € C#, and for some o’ € ¢,(z), 6(c’,z) € C AU (R, NC), where i is the least such
that = € C i+l
Now con31der the entire subset C4 := pA(U,e¢p C;‘) = UL, C#, where

Cg' := 0; and, for i > 0,
Ch1 1= 047G U Uper CF)

Define, for each Cy},, a state feedback map ¢,+1 C#i; — C such that for all z € Ch1,
§(o,z) € C*4, for all 0 € ¢iy1(z); and for some o’ € ¢iy1(z), 6(0",z) € CA U U,ep cA.

Finally, choose an arbitrary total ordering of the index set P and define the state feedback
map ¢ : CA — C such that

i. if z € C4\ Upep C’;“, then ¢(z) = ¢;(z), for the least 7 such that = € C#;
ii. and if z € Upep Cy', then ¢(z) = ¢p(z), for the least p € P such that z € CH.
Now define, for any = € C4, the map

fe: ¥*—C
k— ¢(6(k, z))

We must show that f, satisfies both clauses of the definition of F4. The first clause
follows directly from the definition of ¢ : C* — C. For the second clause, suppose that
s € T¥ is genereated by A, under f,. Note first that §(k,z) € C4, for any prefix k of s. Now
if s has infinitely many prefixes & such that §(k,z) € C7; \ Upep C’;“, then, by the definition
of ¢;4+1 and the definition of generated w-strings, s must have infinitely many prefixes k&’ such
that §(k',z) € CAU Upe P C"‘ Since i is arbitrary, it follows that s has a prefix £” € ©* such
that 6(k",z) € Uyep C.

For any z € Upep , let the P-rank of z be the least index p € P such that z € C’;“
and let the rank of z be the least pair (p,¢) in the lexicographic ordering of P x N such that
z € C,;‘fi. It follows by the definition of ¢ that if k" € C;‘, then the P-rank of 6(¥"”,z) is no
greater than that of 6(k”,z), for all £” < k" < s. Therefore, let ¢ be the least ¢ € P such
that 6(1,z) € C;! for some (and therefore for co-finitely many) I < s. It follows from the
definition of ¢, and the definition of the generation of w-strings that if s has infinitely many
prefixes I’ such that §(/,z) has rank (g, ;) then s has infinitely many prefixes !” such that
either the rank of §(1”, z) is less than (g, j) or 6(I",z) € R,N C’;‘ Thus s must have infinitely
many prefixes £ € ¥* such that §(k,z) € R, and only ﬁnitely many such that 6(k,z) & I,.
It follows that s is accepted by A,. This establishes the inclusion F4 D C4.

For the reverse inclusion, F4 C C4, we use induction on the number of live states
of A. A state is called live if there exists a transition leading from that state to another
(different) state. The set of live states of A is denoted L(.A). An approximate opposite to

63

liveness is degeneracy. A state is degenerate if there do exist transitions that are defined
for that state, but all such transitions lead only to the state itself. Thus the sets of live
and degenerate states are disjoint, but their union need not equal the entire state set. The
set of degenerate states of A is denoted D(A). Note that the operations of self-looping and
restriction potentially convert live states to degenerate states.

It is easy to see that F4,C4 C L(A) U D(A) and that

FAnD(A)= |J(R,NI,N D(A)) = CAn D(A)
pEP
Thus it suffices to show that FA N L(A) C CA. If L(A) = 0 then this inclusion holds
vacuously. Suppose therefore that + € F4 N L(.A) and make the inductive hypothesis that
the result holds for all automata with fewer live states than A. By definition of F4, there
exists a feedback map f that controls A to satisfy its acceptance condition in deadlock-free
fashion. We perform a case analysis on the closed-loop behaviour of A under the map f:

i. if there exists some z’ € L(.A) such that §(k,z) # 2’ for all £ € L* generated by A,
under f, then

z € PANX\{z})
(_: CA HX\{z'}) (ind. hyp.)
c Cc4A (by Prop. 3.2)

ii. if there exist some z’, 2" € L(.A) and some k € £* such that §(k,z) = 2’ and §(k', z) #
z" for all k¥’ > k generated under f, then by the above argument, ' € C#4, and so,

r € FA{E
C CAED (ind. hyp.)
= C4 (Prop. 3.2)

ili. finally, if for all z/,z"” € L(A) and k € X* such that §(k,z) = z’, there exists k' > k
generated by A, under f, such that §(£’,z) = z” then

(a) if for every &' € L(A) and k € X* generated by A, under f such that §(k,z) = 2,
there exists k' > k generated by A, under f such that §(',z) € CAND(A), then

L(A) C pXy. 64PN (X, U (C4 N D(A)))

(by Theorem A.1 and induction on the length of strings), so
L(A) € p#(C*) = C4

(b) otherwise we can show that there exists a string s € X generated by A, under f
such that for any z’ € L(A), there exists k < s such that §(k,z) = z’. It follows
that L(A) C I, and L(A) N R, # 0, and therefore

L(A) C pXa. [04PED(X, U (R, N L(A))) N L)

(by Theorem A.1), for some p € P. It follows that
L(A) C CA € C# (by Theorem A.1).

64

4 Conclusion

We have considered a version of the control problems of [TW94a, Thi] that admits a
polynomial-time solution.

The problem considered in [TW94a] is formally equivalent to Church’s problem and the
emptiness problem for automata on infinite trees, and that studied in [Thi] is equivalent
to extended versions of the the above problems. The present problem is a counterpart of
the probabilistic tree-automaton emptiness problem studied in [CY88]. Indeed, the solution
presented here when applied to controlled probabilistic automata can be viewed as yielding
a controlled behaviour satisfying the acceptance conditions with probability one.

References

[CVW86] Constantin Courcoubetis, Moshe Y. Vardi, and Pierre Wolper. Reasoning about

[CYS8S]

[EJ8S]

[ELS6]

[PRS9]

[Ram89)

[RW89)]

[Thi]

[TW94a]

fair concurrent programs (extended abstract). In Symposium on the Theory of
Computing, pages 283-294. ACM, 1986.

C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state
probabilistic programs. In Proceedings of the 29th Annual Symposium on Foun-
dations of Computer Science, pages 338-345, 1988.

E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and
logics of programs (extended abstract). In 29th Annual Symposium on Founda-
tions of Computer Science, pages 328 — 337, 1988.

E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments
of the propositional mu-calculus (extended abstract). In Symposium on Logic in
Computer Science, pages 267 — 278. IEEE, June 1986.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Sizteenth
Annual Symposium on Principles of Programming Languages, pages 179-190. As-
sociation for Computing Machinery, January 1989.

Peter J. G. Ramadge. Some tractable supervisory control problems for discrete-
event systems modeled by Biichi automata. IEFE Trans. Automatic Control,
34(1):10-19, January 1989.

P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77(1):81-98, January 1989.

J. G. Thistle. On control of systems modelled as deterministic Rabin automata.
Submitted for publication.

J. G. Thistle and W. M. Wonham. Control of infinite behaviour of finite automata.
To appear in SIAM J. Control and Optimization 32 (3), 1994.

65

[TW94b] J. G. Thistle and W. M. Wonham. Supervision of infinite behaviour of discrete-

[WW93]

event systems. To appear in STAM J. Control and Optimization 32 (3), 1994.

K.C. Wong and W. M. Wonham. Hierarchical control of timed discrete-event
systems. In Proceedings of Second European Control Conference, pages 509-512,
June-July 1993.

66

A Fixpoint preliminaries

Our definitions of monotonicity and continuity and our presentation of the basic results of
Tarski and Knaster (Theorem A.1) are adapted from those of [ELS6].

A k-ary operator on a power set 2% is a map f : (2¥)F — 2%,

An operator is monotone if it preserves inclusion; that i 18,

ngX,:=>f(X1,,Xz,Xk)gf(X],,X:,Xk) 9].SZSIC

An operator is U-continuous if, for any 4, 1 < ¢ < k, and any nondecreasing sequence
XX CX?.

U FXa,.. 0, X, X)) = f(Xa, .. UX,’,
j=0 j=0

An operator is N-continuous if, for any 7, 1 < ¢ < k and any nonincreasing sequence
XD XD X?.

(o]

N f(Xayeeos XEyo o, Xe) = f(X, .. ﬂ

4=0

Both U-continuity and N-continuity imply monotonicity; for operators on finite power
sets the reverse implications hold.

We denote extremal fixpoints of monotone operators by means of the “fixpoint quanti-
fiers” p and v, which quantify over subsets. Expressions of the form

pY. $(Y) (resp. vY. ¢(Y))

represent the least (resp. greatest) Y C X such that ¥ = ¢(Y) - in other words the least
(resp. greatest) fixpoints of the operator that maps every Y C X to ¢(Y). The question of
the existence of such fixpoints is dealt with below.

Theorem A.1 (Tarski-Knaster)
Let f: 2% — 2% be a monotone operator on X. Then f has least and greatest fixpoints;
in fact,

@) wY. f(Y) = N{Y'CX: Y'=f(Y)} = N{Y"CX: Y 2f(Y))
) vY f(¥Y) = H{Y'SX: Y'=f(Y)} = UY"CX: Y CfY)}
(ii) if f is U-continuous then uY. f(Y) = U2, Fi(0).
(ii') if f is N-continuous then »Y. f(Y) = NXo f1(X).

(where f* denotes the i-fold composition of f with itself).

An Introduction to a Synchronized Petri Net Based Tool for the
Synthesis of Supervisors of Discrete Event Systems!

J.-M. Palmier, M. Makungu, F. E. Agapi, M. Barbeau, and R. St-Denis

Département de mathématiques et d'informatique
Université de Sherbrooke
Sherbrooke (Québec)

CANADA JIK 2R1

Abstract

This work is part of a project which consists of developing methodologies for automatic
synthesis of supervisors of discrete event systems. In this paper, we present a software tool
which allows synthesis of supervisors of industrial processes modeled as Synchronized Petri
Nets (SPNs). Control requirements are also expressed as SPNs. This software tool is based
on the theoretical framework of Ramadge and Wonham. The paper describes a connection
between SPNs and the framework of Ramadge and Wonham. Our software tool uses
Design/CPN for graphic edition of SPNs. Synthesis algorithms are implemented in C++.
Implementation issues are further discussed in the paper.

1. Introduction

The modeling power of automata is sometimes limited, and more and more engineers rather
use Petri nets for modeling their processes. Indeed, Petri nets generally lead to smaller
models than equivalent automaton representations. We are developing a software tool
which allows generation of supervisors of plants modeled as Synchronized Petri Nets
(SPNs) [Moal 85]. The tool is based on the theoretical framework for synthesis of
supervisors of Ramadge and Wonham [Rama 89]. The problem addressed by this
framework is construction a supervisor C which task consists of enabling and disabling
events of given system components in accordance with certain requirements. The
framework of Ramadge and Wonham requires at the specification level: i) the development
of a model G of the plant; ii) the identification of a subset I, of the events X in G that are
uncontrollable; iii) the description of a mask function IT: £ — A U { € } which represents
how the events in G are observed by a supervisor (where A is the set of observed events);
and iv) the expression of the control requirements as a legal language L (the behavior of C
coupled with G must be contained in L).

I The research described in this paper was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Fonds pour la formation de chercheurs et I'aide 2 la recherche
(FCAR).

67

68

In our approach, the plant model G and the model of the legal language L are both
expressed as SPNs. The connection between SPNs and the framework of Ramadge and
Wonham consists of the following. First, reachability graphs of the SPNs are computed.
The resulting graphs are automaton representations of the language of the plant and the
legal language. Second, these automata become the input of a set of C++ classes that
implements the supervisor synthesis framework of Ramadge and Wonham. The
construction of real size SPNs cannot be realized without using a tool that provides an easy
and efficient way to edit and manipulate Petri nets. The development of such a tool
represents a big amount of effort and, instead of programming our own tool, we interfaced
our environment with a commercial product called Design/CPN [Meta 93].

This paper is structured as follows. Section 2 discusses the theoretical foundations
of the approach. An overview of the functionalities of the tool is presented in Section 3 and
its implementation is discussed in Section 4. Finally, concluding remarks are presented in
Section 5.

2. Theoretical Foundations

Hereafter, we adopt the terminology and notation conventions from [Bram 83] and [Moal
85]. The basic problem in supervisory control is to construct a supervisor whose task is to
enable and disable the controllable events of a discrete event system.

Discrete Event System

A Discrete Event System (DES), also called a plant, is modeled as a bounded Synchronized
Petri Net (SPN):

G =<P,T, Pre, Post, Z, u, Cap, My >

that is: i) a Petri net <P, T, Pre, Post>, where P is a bounded set of places, T a bounded set
of transitions, Pre:PXT—N (N denotes the set of natural numbers) a backward incidence

function, and Post:PxT—N a forward incidence function; ii) a set £ of asynchronous and
discrete events; iii) a transition labeling function w:T—X that associates to each transition in
T an event in Z; iv) a function Cap:P—N-{0} that associates a capacity to every place; and
finally, iv) an initial marking My:P—N.

A DES is pictured in Fig. 1 a). Places are shown as circles, that is,
P={p1,p2.p3.p4}, and transitions as rectangles, that is, T={t;,ts,t3,t4}. The backward
incidence function is pictured as arrows from places to transitions, e.g., Pre(py,t1)=1 and

Pre(py,t3)=0. The forward incidence function is pictured as arrows from transitions: to
places, e.g., Post(pa,t;)=1. The labeling of a transition, that is, p(-), is inscribed in the
transition rectangle. All places have capacity 2, that is, Cap(p)=2 for all pe P. The initial
marking, shown as integers inside places, is M(p1)=M(p3)=1 and M(p2)=M(p4)=0. This
simple example clearly illustrates the compactness of a Petri net model with respect to an
equivalent automaton model. Indeed, a single Petri net structure is shared by two
concurrent components. The same behavior expressed as automata would require two

state-transition machines.

69

tl

a p2
pl { 1

1
p4 pS 2
d b
t4 P78
1
1
p4 c p3
3
a) Plant SPN b) Legal behavior SPN

Figure 1: Plant SPN and legal behavior SPN
A transition te T is enabled in a marking M if M(p)>Pre(p,t) and
M(p)-Pre(p,t)+Post(p,t)<Cap(p) for all pe P.
. An enabled transition may occur resulting in a new marking M' defined as:
| M'(p)=M(p) - Pre(p,t) + Post(p,t) for all pe P.

The fact that marking M' is reachable from marking M after the occurrence of transition t is
denoted as M[t>M'. This notation is naturally extended to sequences of transitions te T*,

70

that is, M[t>M' means that marking M' is reachable from marking M after the occurrence
of the sequence of transitions . '

We denote as L(G) the language generated by G which is defined as:
L(G) = { se Z* | there exist T T* and M:P—N such that p(t)=s and Mg[T>M }.

For the DES of Fig. 1 a),

L(G) = (abcd)’ll(cdab)".

where Il denotes the shuffle product operator [Gins 66] and the overline bar represents the
prefix closure operator.

The set of all strings of events is denoted as Z*. The empty string is represented as
€. A subset LcZ* is called a language over . The prefix closure of L is denoted as L

and is the set of all strings that are prefixes of strings in L. If L=L, then L is said to be
prefix closed.

Controlled Discrete Event System

The set X of a DEs is partitioned into X=X, UZX,, the sets of uncontrollable and controllable
events. For the plant of Fig. 1 a), the set of uncontrollable events is X,={b} whereas the
set of controllable events is Z.={a,c,d}. Let I'={0, 1}Z be the set of all binary assignments
to the elements of . A controlled DES (CDES) is a SPN:

G, =<P, T, Pre, Post, Z, u, Cap, My, I >

where a transition t may occur in a marking M with an event 6e X and a control vector
yeT if and only if: i) t is enabled in marking M, ii) L(t)=0, and iii) the control vector
enables the event labeling transition t, that is, Y(c)=1.

Supervised Discrete Event System

A supervisor C=(S,0) is a pair which includes a deterministic automaton S and a feedback
function ¢ defined as:

S=(X, A8 %0, Xpn)and 0: X - T

S must be interpreted as a device driven by the sequence of events generated by G, while
the behavior of G must be controlled by the function ¢, and thus indirectly by the states of
S. If ¢(x)(0)=Y(0)=1, then C is enabled; otherwise, o is disabled.

In some cases, C cannot observe all the events of G.. In others, it cannot
distinguish between certain events. These cases are resolved by introducing an observation
component, between G, and C, represented by a mask function:

M:T—>Au{e}

where A=II(0) is the event of G observed by C when IT masks the event G. Thus, the
events in IT-!(¢) are those that cannot be seen by C. If C cannot distinguish between o,
and oy, then I1(01)=I1(07). If IT is the identity function, then A=X and the original events
are all observed by C. In Fig. 1 a), all events are indentically observed but "a" is observed
as €, that is, II(a)=¢, I1(b)=b, II(c)=c, and IT(d)=d.

A supervised DES (SDES) is a pair consisting of a CDES G, and a supervisor C
represented together as:

C/G; = (G, C) = (< P, T, Pre, Post, X, 1, Cap, Mo, T'>, (S, ¢))

where C/G. means that G is controlled by C. The transition function of C/G. is defined as
follows. Let x and x' denote states of S and M and M' denote markings of G.. A
transition of C/G. from a state (x,M) on event o€ X to a state (x', M) is represented as:

(x,M)—>(x',M")

and defined if and only if: i) there exists a transition te T such that u(t)=c and M[t>M', i1)
&(T1(0), x) is defined and §(T1(0), x) = x', and iii) ¢(x)(c)=1.

The control requirements are captured by the notion of legal behavior L. The legal
behavior L is a language, modeled as a SPN, which elements are the admitted event
sequences. For the example of Fig. 1, the legal behavior is shown in part b). In this
example, the plant may generate non admitted event sequences, e.g., the word "ab" is in
L(G) and not in L.

A supervisor synthesis problem is stated as follows. Given a CDES G and its
legal behavior L, find a supervisor C=(S,¢) such that L(C/G)cL is as large as possible.

In this paper, the plant behavior as well as the legal behavior are modeled as SPNs. A

71

72

supervisor is represented as an automaton. Synchronous operation of the plant and
supervisor behaviors, as shown above, restricts the plant to legal sequences of events. The
reader may be interested to look at related models such as the one of Kumar and Holloway
were both the plant and the supervisor are modeled as Petri nets [Kuma 92].

3. Overview of the Tool

The generation of a supervisor for a plant modeled by a SPN, with our software tool,
consists of four steps: i) edition of the SPN’s of the plant behavior and the legal behavior,
i1) computation of reachability graphs of both SPNs, and iii) generation of a SUpervisor.
These steps are discussed hereafter in more details.

Edition of the SPN

The SPNs modeling the plant and the legal language are constructed using Design/CPN, a
package developed by Meta Software Corporation [Meta 93]. This software supports
edition and simulation of Hierarchical Colored Petri Nets [Jens 93]. It provides everything
required to edit the SPNs of our application, so we did not have to program our own
editing tool. The SPNs of Fig. 1 have been created using Design/CPN.

Unfortunate!y, Design/CPN does not provide direct access to the internal
representation of edited Petri nets. Therefore, we programmed in ML a function that
creates a file containing the description of a SPN. ML is the programming language of
Design/CPN and ML programs can be executed within the Design/CPN environment.

Computation of reachability graphs

Computation of reachability graphs of the plant SPN as well as the legal language SPN is
required for the generation of the supervisor. The reachability graph of a SPN is an
automaton which states are the reachable markings of the SPN and transitions are
occurrences of transitions of the SPN [Bram 83].

Computation of reachability graphs is done by a program written in C++. It uses
data structures compatible with those used in the next phase of the synthesis process. Our
program is inspired by a Pascal program called Trecon developed at Aarhus University
[Jens 87].

73

Generation of the supervisor

The supervisor synthesis method [Barb 93] borrows algorithms from Ramadge and
Wonham [Rama 87, Wonh 87] and Cieslak et al. [Cies 88]. It also exploits a new
algorithm for handling partially observed plants [Barb 94].

The inputs of the method are: i) an automaton generating the plant language, ii) an
automaton generating the legal language L, iii) a set X, of uncontrollable events, and iv) a
mask function [T:X—Au{e}. The output is a supervisor C=(S,¢) where S is an automaton
and ¢:X—T" a feedback function. The supervisor is synthesized such that two properties
are satisfied by the SDES C/G.. First, C/G; must generate solely legal sequences of
events, that is L(C/G;)cL. Second, since some events may be indistinguishable or
unobservable, it is needed that the supervisor behaves in the same way on sequences of
events that cannot be distinguished, for obvious consistency reasons. These required
properties are satisfied by synthesizing a supervisor C such that the language of C/G. is a
sublanguage K, of L with three formal properties. Namely, K, is:

» prefix closed, that is, K, = Kp;

* (Z4,L(G))-invariant, that is, s€ K, o€ I, so€ L(G)=>sc¢€ K,; and

* (IL,L(G))-recognizable, that is, s€ K, s'e L(G), II(s)=II(s")=s'e K.
4. Implementation of the Synthesis Algorithms

This section described implementation of the algorithms for the synthesis of supervisors.
Supervisors can be derived using different algorithms [Wonh 87, Cies 88, Cho 89, Wonh
93, Barb 94]. The choice of an algorithm depends on the considered problem. In order to
carry out synthesis of supervisors, operational forms of algorithms are required. A natural
approach to achieve greater efficiency in the implementation of such algorithms is that of
object-oriented programming, since the mathematical objets can be considered as abstract data
types. Object-oriented programming have three obvious advantages. The first is that a class
is simply a model from which each object is created with its own attributes that no other
object can access except through the local services of the former. The second advantage is
that, through the mechanism of inheritance, subclasses automatically share all attributes and
services of their superclasses. Finally, a major improvement over procedural programming is
that a uniform interface can be provided over a wide range of object types. The same service
name can be used for different objects, differently implemented. However, these differences

are transparent to the clients. Therefore, we implemented objects and algorithms handled in
the synthesis process as a kernel of basic C++ classes that can be incrementally modified and
extended. The kernel is powerful and simple enough to be used with several logical models
of discrete event systems. The model currently implemented is automata and direct support
for Petri nets is planned. '

|1

4 N\
‘ Automaton
|1 name
states
Labeled_Graph events / Supervisor
‘7 initial_state
transition_graph
. J 11
1| 1 1
Mappin
State N 2\
name V
marked 1
Marked
Mark Feedback Mask Correspondence
Unmark
n
Event
n n name
AState CState controliable
; Controllable
tal
‘7 atomic_states Set_event_controllable
Set_svent_uncontroliable

Transition

exit_state
label
new_state

Figure 2: Class diagram

75

Fig. 2 illustrates the structure of the main classes included in the kernel. The notation
used is an extension of Coad and Yourdon's notation [Coad 91]. The primitive classes are
AState (atomic state), CState (composite state), Event, and Transition . The first two are
subclasses of class State. A composite state is built from a tuple of atomic states. Every
object of class State has both an internal compact representation and an external symbolic
representation. The former is required for efficient implementation of algorithms. The latter
allows the user to provide input which is closer to a natural language and to read results in an
uncryptic manner, thus facilitating traceability between inputs and outputs. Furthermore,
symbolic reasoning tools that generate legal languages [Larri 94] or establish diagnostics on
the way solutions were obtained can profits of such a framework. To illustrate this point, let
us consider the case where the solution obtained is the empty supervisor. This case arises
when the safety properties cannot be satisfied without pruning all states of the automaton
representing the legal language during the synthesis process [Wonh 87], or when the liveness
properties cannot be fulfilled during the analysis of the control-loop system with model
checking algorithms [Clar 92]. In such case, the initial constraints must be weakened or the
behavior of some plant components need to be changed. Minimal and'optimal modifications
to the original problem cannot, however, be done without a powerful symbolic diagnostic
tool.

Fig. 2 also shows a generic class, called Mapping, provided to define various king of
mapping such as feedback, mask, and correspondence functions. Finally, the class
Automaton its instances are defined as aggregations of objects of primitive classes. Each
automaton object contains an initial state, a set of states, a set of events, and a transition
graph.

Fig. 3 shows the interface definition of the class Supervisor. It provides synthesis
services as constructors creating objects of the class Supervisor. Based on a variety of
polymorphism, called overloading, synthesis of a supervisor is completely transparent to the
user, since each constructor has its own parameter list. For example, the first constructor is
used when events are identically observed and the correspondence function between the states
of the plant and those of the legal language is unknown [Wonh 87]. This indicates that the
correspondence function must be calculated before the derivation of the supervisor. In some
problems, the correspondence function is known (it can be the identity function). In this
case, the second constructor is used. Finally, the next two constructors are used in a similar
fashion, but to solve the supervisory control problem under partial observation [Cies 88, Cho
89, Barb 94].

76

class Supervisor

{
private:
Automaton s;
Feedback phi;

public:
Supervisor(Automaton plant, Automaton legal);
Supervisor(Automaton plant, Automaton legal, Correspondence f);
Supervisor(Automaton plant, Automaton legal, Mask m);
Supervisor(Automaton plant, Automaton legal, Mask m, Correspondence f);

Figure 3: Definition of the class Supervisor

5. Conclusion

This paper has introduced a Synchronized Petri Net (SPN) based software tool for the
systematic construction of supervisor. Petri nets are interesting because they lead to more
compact models than automaton models. Petri net models are therefore easier to
understand and less complex to analyze. Reachability graphs of SPNs are computed and
the synthesis process is carried out. A C++ implementation of the synthesis algorithms has
been briefly described. This work is being done to support a methodology for the
specification and development of process-control systems [Barb 93].

References

[Barb 93] M. Barbeau and R. St-Denis, "A Rigorous approach for the specification and
development of process-control systems", Proceedings of the 6th International Conference
of Software Engineering & its Applications, Paris, November 1993, 599-608.

[Barb 94] M. Barbeau, G. Custeau, and R. St-Denis, "An Algorithm for computing the
mask value of the supremal normal sublanguage of a legal language", Technical report no.

125, Département de mathématiques et d'informatique, Université de Sherbrooke, J anuary
1994.

[Bram 83] G. W. Brams, Réseau de Petri : théorie et pratique, éditions MASSON, 1983.

77

[Cho 89] H. Cho and S. I. Marcus, "On supremal languages of classes of sublanguages that
arise in supervisor synthesis problems with partial observation", Mathematics of Control,

Signals, and Systems, 2, 1989, 47-69.

[Cies 88] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya, "Supervisory control of
discrete-event processes with partial observations", IEEE Transactions on Automatic
Control, 33 (3), 1988, 249-260.

[Clar 92] E. M. Clarke, O. Grumberg, and D. E Long, "Model checking and abstraction",
Proceedings of the 19th ACM Symposium on Principles of Programming Languages,
January 1992, 343-354.

[Coad 91] P. Coad and E. Yourdon, Object-Oriented Analysis, Second Edition, Yourdon
Press Computing Series, 1991.

[Gins 66] S. Ginsburg, The Mathematical Theory of Context Free Languages, McGraw-Hill
Book Company, 1966.

[Jens 87] K. Jensen, P. Huber, P. O. Jensen, N. N. Larsen, and I.-M. Martinsen, "Petri
net package program documentation”, Version 4.1, Technical Report from Computer
Science Department, Aarhus University, May 1987.

[Jens 93] K. Jensen, Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use - Volume 1, EATCS Monographs on Theoretical Computer Science,
Springer-Verlag, 1992.

[Kuma 92] R. Kumar and L. E. Holloway, "Supervisory control of Petri net languages",
Proceedings of the 31st Conference on Decision and Control, Tucson, Arizona, December
1992, 1190-1195.

[Larri 94] P. Lariviére, "Dérivation de langages légaux a partir de contraintes exprimées en
logique temporelle”, Mémoire de maitrise, Département de mathématiques et
d'informatique, Université de Sherbrooke, a paraitre.

[Meta 93] Meta Software Corporation, Design/CPN Reference Manual for X-Windows -
Version 2.0, 125 Cambridge Park Drive, Cambridge, MA 02140 USA, 1993.

[Moal 85] M. Moalla, "Réseaux de Petri interprétés et Grafcet", Technique et Science
Informatiques, No. 1, 1985, 17-30.

78

[Rama 87] P. J. Ramadge and W. M. Wonham, "Supervisory control of a class of discrete
event processes", SIAM Journal Control and Optimization, 25 (1) 1987, 206-230.

[Rama 89] P. J. Ramadge and W. M. Wonham, "The control of discrete event systems",
Proceedings of the IEEE, Vol. 77, No. 1, January 1989, 81-98.

[Wonh 87] W. M. Wonham and P. J. Ramadge, "On the supremal controllable
sublanguage of a given language", SIAM Journal Control and Optimization, 25 (3) 1987,
637-659.

[Wonh 93] W. M. Wonham, "Notes on control of discrete-event systems", Department of
Electrical Engineering, University of Toronto, June 1993.

79

Hierarchical COCOLOG of a Finite Machine

Y.J. Wei Peter E. Caines*

Department of Electrical Engineering, McGill University
3480 University Street, Montreal, P.Q, Canada H3A 2A7
*The Canadian Institute for Advanced Research, Canada

peterc@cim.mcgill.edu

Abstract

The theory of the dynamically consistent partition lattice of a given finite machine
M is briefly reviewed. A family of multiple sort first-order logics called hierarchical
COCOLOG is introduced to logically express mutil-level control theories for M. Dur-
ing a (two-level) realization of a control strategy for M solving a given control task,
communication takes place between the COCOLOG theories at each level; this commu-
nication is mediated through two extra-logical rules called respectively the instantiation
rule and the block membership rule.

Keywords: discrete event systems, finite machine, logical control, hierarchical structure,
lattice.

1 Introduction

The apparent existence of hierarchical systems in the real world and the perception that hi-
erarchical structures possess certain properties of efficient information processing and control
have motivated many attempts to give mathematical formulation to the notion of a hier-
archically structured system. We follow in the line of work in the mathematical theory of
automata and input-state-output machines. Notable among many contributions in this con-
tent is Krohn-Rhodes decomposition theory; they proved that any finite automaton can be
decomposed via covering by a cascade product of a list of permutation-reset automata [G68];
their work may be viewed as the generalization of Jordan-Holder theorem of group theory to
the semi-group setting of automata theory. While the Krohn-Rhodes theory is expressed in
terms of the covering of an automaton, the hierarchical lattice of a finite machine M, which
is presented in [CWei94] and used in this paper, is lattice structured decomposition of M.
A set of ideas relating to the present paper is to be found in the book by J.Hartmanis and
R. Stearns [HS66].

80

Within the automata formulation of control theory for discrete event systems (DES), the
research by Zhong and Wonham [ZW90] is devoted to the hierarchical structure of DES; one
of the primary motivations for this work is the creation of aggregation methods which ensure
the consistency of the dynamical controllable specification of events at the different levels
of aggregation of a given automaton. The resulting theory has some points of contact with
the present work in that the editing procedure generates the set of so-called dynamically
consistent automata. Other work in the decomposition and decentralized control is to be
found in Lin and Wonham [LW90], Rudie and Wonham [RW92]; one principle distinction
between that work and the notion presented here is that the state of the overall controlled
system in [LW90,RW92] is the product of the states of various sub-automata, where in this
paper, the state of the system is the singleton z ¢ X which falls in different submachines
according to the state partition = and coordination.

2 The Hierarchical Lattice of a Finite Machine

Subsection 1 and 2 of this section review the formulation of the hierarchical lattice of a finite
machine. Readers are reference of [CWei94] for a detailed presentation.

2.1 Dynamically Consistent Partitions and Partition Systems

In this paper, a finite system is modeled by a finite machine M =< X,U,® >, where X
is the finite set of states, U is the finite set of inputs, ® : X x U — X is the transition
function. Our formulation of the hierarchical structure of a finite system is based upon
nested partitions of the system’s state space, given by the lattice of partitions of X.

A partition 7 of X is a collection of pairwise disjoint subsets (called blocks) of X such
that the union of this collection equals to X. A partition m; is said to be stronger than
a partition 7, if every m—block is a subset of some mp-block. It is wildly known that the
greatest lower bound and the least upper bound of two partitions are defined by intersection
and chain union respectively. Further the set PAR(X) of all partitions of X forms a lattice
with respect to set inclusion partial order and the intersection and chain union, which is
bounded above and below by trivial partition 7, and the identity partition ;s respectively.
We shall use the notion X; to emphasize that the set X is taken as a singleton.

For a given state z € X, one apply a sequence o of inputs called control sequence, the
system generates a sequence t of states called trajectory. Con(M) and T'ra(M) shall denote
the set of all legal control sequences and trajectories respectively. Given 7 = {X3,---,X,} €
PAR(X), A sequence of states ¢t = z;---z;_12; € Tra(M) is called an internal trajectory
with respect to X; if t C X;; it is called a direct trajectory from X; to X; if z1---zi—1 C X;
and z; € X; for some i # j. Tra(r)i and Tra(r)! shall denote respectively the set of all
internal (respectively direct) trajectories of M with respect to X; and X;. Any trajectory
can be decomposed into a sequence of sub-trajectories, say t1¢; - - - t,, such that ¢;’s are either
internal or direct trajectories.

81

For the mapping 0 : X x Con(M) — Tr(M),
0((z,0)) = zoz122 - - T, € Tra(M),

where o = uouiug -+ up—1 € Con(M) and zo = z, z; = ®(zi_1,u;i-1), 1 < i < p, we can
define the following sets: U} = 8~1(Tra(r)!) and U} = §=(Tra(r)!). These sets shall play
the role of high level control inputs in the hierarchical dynamical partition system. Define
lengh((z,0) = |o]|, then obviously, the lengths of element of U} maybe different.

Now we introduce a concept called dynamical consistency. By that we mean that a
high level transition from a block X; to X; is possible only when all states in X; can be
driven to some state in X; without passing through a third block. A partition such that this
consistency obtains, is called dynamically consistent partition.

Definition 2.1 Dynamically Consistent Condition and Partition System (DCC).
Given 7 = {X1,---, Xk} € PAR(X) and (X;, X ;) € ™ x 7, a dynamically consistent condition
(DCC) holds for the set pair (X;, X;) if for each element z; of X;, there exists at least one
direct trajectory from X; to X; and which has initial state z;, i.e.

Vz e X;,30 e U*,Vo' < o (B(z,0") e X; AB(z,0) € X;), 1#7, (1)
Vz € X;,30 e U*,Vo' < o (®(z,0') € X5), 1=, (2)

where o’ < o means that o’ is the initial segment of 0. For U = {U7; U = §-1(Tra(x)}),1 <
i,J < k}, the transition function ®™ : 7 x U — 7 of the dynamically consistent partition
machine (DCPM) M™ =< 7,U,®" > is defined by the equality relation ®"(X;,U;) = X;
when DCC holds for (Xj, X;),1 < 4,5 < || and not defined when DCC fails for (X;, Xj).
PAR(M) shall denote the set of all dynamically consistent partition machines of M.

From now on, we always assume that any partition machine in consideration is a DCPM.

Definition 2.2 Ordering of DCPM of M.
Given M™ =< 7, U, ®™ >, M™ =< 7, V, 8™ >e¢ PAR(M). We say M™ is weaker than
M™, written as M™ < M™, if 1, < .

The trajectories and control sequence can be concatenated in a consistent way. Let
S§=T1- - Tp,t =y1--yYq € Tra(M), then dynamically consistent concatenation of s and ¢ is
the string st if there exists u € U such that ®(z,,u) = y1, s otherwise. For A, B C Tra(M),
the dynamically consistent concatenation of A and B is: Ao BA{sot;s e A&t e B} C AB.
For w; = (zo,01),w2 = (Yo,02) € X X Con(M), if ®&(zo,01) = yo, then the dynamically
consistent concatenation of wy and w,, written as w; o w, is the element (2o, 0102), (,0%)
otherwise. For C,D C X x Con(M),CoD = {wov;weC,v e D}.

It is easy to prove ®” defined above satisfies semi-group property under dynamically
consistent concatenation. one may show that if 7; < 75, then a m,-control event is a collection
of dynamical consistent concatenations of some 7;— control events.

Definition 2.3 For M™ and M™ € PAR(M), define
Mvrl nM7|'2 — Mmﬂwg, Mﬂ'] U M1r2 — M7r1uc7r2’

Immediately, we have HIPAL(M)A < PAR(M),N,U¢, 2> forms a lattice, which called
dynamically consistent hierarchical lattice of M.

82

2.2 In-block Controllability Partition Systems and its Associ-
ated Lattice

For an analysis of hierarchical system behavior, one should not only consider the global dy-
namics between the state space of subsystem but also the local dynamics in each subsystem
given by the partition element X; ¢ . This inspires us to consider the so-called in-block
controllability, by which we mean subsystem controllability.

Definition 2.4 Controllable Finite Systems.
A system M is called controllable if for any (z,y) € X x X, there exists a control sequence
o € U” which gives rise to a trajectory from z to y,i.e. Vz € X,Vy ¢ X,3s e U*, (®(z,s) = y).

For partition system we have

Definition 2.5 In-block and Between-block Controllability.
MT is called in-block controllable if every associated submachine M; =< X;, U;, @, xixv; >
of the base system is controllable, i.e.

VX;em,Ve,ye X;,Is e U7, Vs' < s, (P(z,s") e X; A B(z,s) =y).
MT™ is called between-block controllable if
VY,',—X_,' eEm, S elU* (@”(7,‘, S) = YJ)

In other word, MT™ is controllable as a finite system. IBC P(M) (respectively, BBC P(M))
shall denote the set of all in-block controllable (respectively, between-block controllable)
partition systems.

In this paper, we focus on the algebra structure of IBC' P(M). We have
Theorem 2.1 IBCP(M) is closed under chain union.

From the above theorem, M™"Y*"2 is the least upper bound of M™ and M™ in IBC P(M).
Unfortunately, intersection does not preserve in-block controllability. Hence IBC' P(M) can-
not be a lattice with respect N and U°.

Definition 2.6 Greatest Lower Bound (glb in IBCP(M))
Given a finite machine M and two in-block controllable DC partitions m; and 75, define

7y M WZAU{W'; 7 <7, T < w2}
and define M™ N M™ = MmNz,
Theorem 2.2 If M controllable, then < IBC P(M),N, U, <> forms a lattice.

An in-block controllable partition system M7 inherits the controllability from the base
system.

83

Theorem 2.3 Let M™ ¢ IBCP(M), then M7 is a controllable (i.e. between-block con-
trollable) if and only M is controllable.

Definition 2.7 The tuple < M™, My,---, My, % > is called a two level hierarchical struc-
ture of M, where 1 is partition function ¢(z) = X; if z € X;. M" is called high level
system in this structure. Each of M,’s is called low level system. 1 is called communication
function.

3 Syntax of Hierarchical COCOLOG

Beginning in this section we choose an element 7 ¢ IBC'P(M) and the associated two level
hierarchical structure to describe the hierarchical COCOLOG system. A hierarchical CO-
COLOG system is a family of first order theories {ThZ,Th}.--- ,ThL"l, Th§; k > 0}. Each
of these theories has its own syntax, semantics and inference rules, wherein each represents
the properties of one component in the hierarchical structure. Each one may take its own
extra-logical transition to a subsequent theory at the same level through the extra-logical
control rules of that level. Each of them has the facility to communicate with theories at
the other level through another extra-logical rule called instantiation rule or block-position
rule. The full detail of COCOLOG can be found in [CW92]. In order to define a two level
hierarchical COCOLOG control structure for M, we extend the basic COCOLOG languages
[CW92] Ly, by the addition of (i) a high level COCOLOG language L7, (ii) a inter-layer com-
munication language L°, and (iii) attach one sort language for each of components in the

structure. These are described briefly below.
The COCOLOG Language of a Hierarchical Structure & > 0:

Ly=LIUL{ULlULiU---u Ll
where LT is a block-sort COCOLOG language for M™, L} is i—sort COCOLOG languages
for M;, L is called communication sort language. The sets of constant symbols, function
symbols and predicate symbols are list below for each sort language are listed below:
For L}, k > 0:
Const(Ly) = {717 T ’va Uf, T ’ch’ U(o),--- Uk - 1),6aT7 T aK(p) +1};
Func(L}) = {®",+",-"}, Pred(L}) = {RbI"(:,-,-),Eq"(,-),CSEF()}.
For1 <:<p,
Const(Ly) = X; UXfUU U Ik, Func(Ly) = {®,+, -},
P’Ped(Li) = {Rbli(" “ ')7Eqi('v)’CSEI::()’E;()a 1<5< lﬂ'l&'] 7é i}’
where the elements of X; are called entry states from block X; and X; N Xi =0, & :
X; xU; — X; UX. E;() is the new predicate called entry state predicate from X; to Xj.
For L§:
Const(L§) = {X1, Xq, - X, JUXUU, Func(L§) = {¢(-,-)}, Pred(L$) = {Eq°(-,-)},
where ¢ : X — 7. WFF(L}), WFF(L}) and W FF(L;) are the sets of well formed formula
by the Backus-Naur rules with respect to L}, L} and L{ respectively.

84

4 Axiomatization and Proof Theory of a Hierarchical
COCOLOG

The axiom set of a hierarchical COCOLOG consists of several parts. Each of them lies in
one sorted language. and inference in each component at any given level will be carried out
only within the corresponding of this language and axiom set.

Definition 4.1 The axiom set L} of the high level COCOLOG theory Th} consists of the
following: o .

(1) Block transition axiom set: AXM®"(LT)A{Eq.(®"(X ,U;),X’); 1 < 4,5 < p}; (2)
Block reachability axiom set: AX MR (L7); (3) Arithmetic function axiom set AX M4 #*(LT);
(4) Equality axiom set AX MZ4(LT); (5) Logical axiom set AX M"9(LT); (6) Size axiom set
AXM#==(LT); (6) State estimation axiom set AX M®*(LT) when k > 0.

The reader should refer to [1] for full definitions of the above axiom sets. The inference rules
are simply the restricted modus ponens and generalization :

Definition 4.2 Set of Inference Rules IR} = {MP(L™,G(L™)}, where

B
éAT"“'——, ABeWFF(LD), G:<a. AeWFF(L.y),ze L,

VzA’
provided z does not occur free in A for rule G.

MP(LY):

With the axiom set ¥, one can generate a new formula A called a theorems by applying the
rules of inference to the axioms in a systematic way. In this case, we say A is provable from
Y7 and this is denoted by £f - A. At any instant k, the collection of all such theorems is
called a high level theory, and this is denoted

ThiA{A; A e WFF(Lp)&X] Firr A}
This set includes all truths about M7 is expressible in terms of the first-order language L}.

Definition 4.3 The axiom set X% of the low level COCOLOG theory Thi consists of the
following:

(1) Transition axiom set for M;: AX MW" (Li)A{Eq (®(z¢,u?),z%); 7 € X;&u? e Ukz's €
X;UX¢}. (2) Local reachability axiom set: AX M (LL); (3) AXMemith(Li) (4) AXMFI(LL);
(5) AX M'9(Li); (6) Size axiom set AX M**#*¢(L%); (7) State estimation axiom set: AX Me*(L})
when k > 0; (8)] Exit state axiom set: AXM***(L})A{Ei(z); j # i& ¢’ € X!}, whenever
Jz; € Xiyu e U(®(zi,u) = 2),

Definition 4.4 Inference Rules IR(Li) = {MP(L.),G(L%)}. These correspond to these
in Definition 4.2.

Similarly, the following set of formulas is called low level theory for M;:
ThiA{A; A e WFF(L,)&Z; Fg; A}.
Th§ can be defined in a similar way. We only remark here that

2 = {E¢°(¥(z*), X:); ' e Xi,Vz e X AX; e} U AXMET U AXM™ (L) U AX M*°(L).

85

Theorem 4.1 For k > 0,1 <1 <|r|, Th}, Th. , Th{ are consistent and decidable.

The following theorem shows that the set of unrestricted inference rules IRy = {M P(Ly), G(L:)}
does not provide more theorems than IR} with respect to WFF(L}).

Theorem 4.2 For F ¢ WFF(L};),
i Fraw) F <= B Firay) F.

In terms of semantics, we remark that one should define the model of a hierarchical CO-
COLOG theory in such way that the algebraic property of the domain reflect the concepts
listed in the previous Section 1.

5 Extra-logical Transitions in Hierarchical COCOLOG

For each COCOLOG theory, there is one set of extra-logical rules called extra-logical control
rules, these make an extra-logical transition from one theory to another one at one given
same level. In a hierarchical COCOLOG system, each theory has at least one additional
(maybe two additional in the case of more layers involved), which pass the information from
one level to another. We call one that passes information form high level system to low level
system instantiation rule, which assign a control objective to low level system. The intuition
behind this rule is to tell low level system what to do. We call one that passes information
from low level system to high level system block membership rule, which reports to high level
system which block the low level system is in. The construction of the following rules is
depend upon the task. We assume that set of tasks is to drive the base system from the
current state to the target state z7.

High level control rule. For each U7 ¢ U:

if F/(L}) then Eq"(U(K),T)). (3)
Low level control rule for M;: For u? ¢ U;
if D(Li)z) then Eq'(Ui(k),w), (4)

where z appears free in D,(L}), which will be instantiated by a state constant (current target
state) according the following rules.
Instantiation Rule INS; for U, ¢4

IF Eq"(U(E),U) THEN Ve, (Ei(z) - Dy(Li)(z/2)), i # j. (5)
IF Eq¢"(U(k),U) THEN Eg(a],z7), i=j. (6)

Notice THEN part lies in W F(L3), so it can be verified from .
Then the submachine M; is invoked and Th}; takes its theory transition through extra-

logic control rule:

86

Usually, it takes several low level control steps to achieve this control objective. The
following rule reports back to high level when it has been achieved.

Block-membership Rule BMj: For each z' € X:
IF CSE{(z]) THEN CSEf . (4(z"). (7)

This rule does not provided any information to high level system before the current target
state is reached, because there is no new information in terms of block position. Once the
control objective has been achieved by low level system, the block position is changed, then
the high level COCOLOG theory take one theory transition.

Example 5.1 See Figure 1-(a). Suppose that the current and target states of Mg at time
k = 0 are z°® and z* respectively. So the current and target states of high level system M™
are X; and X, respectively. Suppose in (3), F2(L]) = 3X'3I, CSE™(X') A RbI" (X', X,,1),
then either Uf or U? may be invoked. if Eq™(U(1), Uf), then from (5) the task for M,
is specified by the formula Eq'(zT,2%). D,(L})(z/2°) = 3I,3z,CSE}(z) A Rbl'(z,25,1).
Then by (4) Th decide Eq'(Uy(1),5) and switches to Th} and so on. Finally Tkl decides
Eq'(U1(3),b) and the current state is z°. Since ¢(2°) = X3, by (7) Th] switches to Thj
and repeat the above operation for M, until z* is reached.

(a (®)

Figure 1: (a) A 8 state machine Mg and one partition 7, (b) Extra-logical transition of

hierarchical COCOLOG system.

REFERENCES

[CW92] P. E. Caines, S.Wang, COCOLOG: A conditional observer and controller logic for finite
machines, under revision for SICOPT.

[CWei94] P.E. Caines. Y.J.Wei The hierarchical lattice of a finite machine, submitted for publica-
tion to System and Control Letters, Feb, 1994

(G68] A. Ginzburg, Algebraic Theory of Automaton, Academic Press, New York, 1968

[HS66] J. Hartmanis, R.E. Stearns, Algebraic Structure Theory of Sequential Machines, Prentice-
Hall, Englewood Cliffs, N.J., 1966.

[LW90] F. Lin, W.M. Wonham, Decentralized control and coordination of discrete-event systems
with partial observation, IEEE Trans. on Automatic Control, V. 35, Dec. 1990.

87

[RW92] K. Rudie, W.M. Wonham Think globally, act locally: decentralized supervisory control,
IEEFE Trans. on Automatic Control, V. 37, Nov. 1992.

[ZW] H. Zhong and W.M. Wonham, On the consistency of hierarchical supervision in discrete-event
systems, IEEE Trans. on Automatic Control, 35(10) Oct. 1990.

89

Une approche relationnelle
a la décomposition parallele

Brahim Chaib-draa, Jules Desharnais, Ridha Khédri,
Imed Jarras, Slim Sayadi, Fairouz Tchier

Département d’informatique, Université Laval
Québec, QC, G1K 7P4 Canada

1 Introduction

Schmidt et Strohlein [10, 11] définissent de maniére relationnelle un concept qu'’ils appel-
lent diagramme de programme. lls utilisent ensuite ce concept pour I’étude des programmes
séquentiels. Nous partons de cette notion de diagramme de programme pour définir la
sémantique d’un opérateur de composition paralléle (section 3). Bien que la définition
s’applique de maniére générale aux programmes avec des variables, nous nous restreignons,
a la section 4, au cas des systémes de transitions afin d’illustrer comment ’opérateur décrit
leur produit synchronisé [1]. Finalement, & la section 5, nous présentons un exemple de
résolution de I’équation Q || X = P (décomposition parallele de P).

La prochaine section débute par une exposition de ’axiomatique des algébres de relations.
Mais par la suite, nous utilisons le modéle usuel de telles algebres (celui des relations sur des
ensembles), afin d’éviter un traitement completement axiomatique qui allongerait ind{iment
cet article.

2 Algebres de relations

L’origine du calcul des relations remonte au siécle dernier avec les travaux de De Morgan,
Peirce, Dedekind et Schroder. Leur étude a été ravivée par les articles de Chin et Tarski
[4, 12], qui axiomatisent la notion d’algebre de relations homogenes. La définition suivante

est tirée de [11].

2.1 Définition. Une algébre de relations homogéne est une structure (R,U,N,~,0,7) sur
un ensemble R non vide dont les éléments sont appelés relations. Les conditions suivantes
sont satisfaites :

1. (R,U,N,”) est une algebre booléenne complete, avec élément 2éro @ et élément uni-
versel L. Les éléments de R sont ordonnés par inclusion, notée C. '

2. La composition est associative et a pour identité I : Po (Qo R) = (PoQ)o R et
IocR=RolI=R

90

3. PoQCRe®PoRCQ&eRoQOCP (régle de Schrider).
4. Si R# @, alors Lo Ro L = L (régle de Tarski). 0

Le modele usuel de ces axiomes est celui des relations sur un ensemble. Dans ce modéle, les
opérations d’union (U), d’intersection (N) et de complémentation () sont les opérations en-
semblistes habituelles, I'inverse d’une relation est & = {(z,%) | (y,z) € R} et la composition
est donnée par Qo R = {(z,2) | 3y : (z,y) € Q A (¥, 2) € R}. Nous utilisons ci-dessous des
algebres hétérogenes, dont le modele usuel est celui de relations entre ensembles différents.
Leur définition est essentiellement semblable & la définition 2.1 (voir [11]); toutefois, il faut
introduire la notion de type et d’opérations partielles. Ainsi, si Q,R C S x T, alors les
opérations Q U R et @ N R sont définies. De méme, si Q C S x T et R C T x U, alors
la composition @ o R est définie. Quand il y a plusieurs ensembles impliqués, il peut y
avoir plusieurs relations relations universelles, zéros et identités (par exemple, I C S x S
et I C T x T); par simplicité, elles sont toutes dénotées par L, D, I, respectivement. La
précédence des opérateurs relationnels, de la plus élevée & la plus faible, est la suivante : ~
et ~ ont la méme priorité, suivis par o, suivi par N et finalement par U. Par la suite, nous
omettons le symbole de composition o et nous écrivons simplement QR pour Qo R. De plus,
nous écrivons (R) plutét que (R) pour les expressions munies de parenthéses.

De cette définition, on dérive les régles habituelles du calcul des relations (voir, par
exemple, [4, 11]). Nous supposons ces régles connues et nous en rappelons quelques-unes,
incluant quelques lois booléennes.

2.2 Soient P, Q, R des relations. Alors,

1. QUR=QNR, 10. QC R = PQ C PR,
2. ONR=0UR, 11. PCQ = PRCQR,
3. R=R, 12.Qc R < QCHR,
4 PNQCR& PCQUR, 13. (QUR"=QUR,

5. QCR & RcCTQ, 14. (QNR)"=QnNR,

6. P(QNR) C PQN PR, 15. (QR)~ = RQ,

7. (PNQ)RcC PRNQR, 16. R =R,

8. P(QUR) = PQU PR, 17. RE=R

9. (PUQ)R=PRUQR,

2.3 Définition. Une relation R est déterministe ssi RRC I;elle est totale ssi L = RL (ou
encore, I C RR); elle est injective ssi R est déterministe (i.e. RR C I); elle est surjective
ssi R est totale (i.e. LR =L, ou I C RR).]

91

2.4 Soient P,Q et R des relations. Alors,

1. P déterministe = P(Q N R) = PQ N PR,
P injective = (Q N R)P = QPN RP;

2. P déterministe = (Q N RP)P=QPnNR,
P injective == P(PQ N R) = QN PR.

2.5 Définition. Un n-uplet de relations (7, ...,7,) est un produit direct ssi
n
7?i7ri=I (7,=1n), n7T,771=I

i=1

On dit que le produit est plein sii # j = Tm; =L (5,7 =1...n). Les relations 7; sont
appelées projections. O

Cette définition implique, entre autres, qu'une projection est une relation totale, déterministe
et surjective. Par exemple, soient les ensembles S,T et U. On vérifie facilement que les
projections m; : SXT XU = SxT et my: SxT xU — T x U forment un produit direct
(notons que m; = {((s,%,u),(s,t)) [s€ SAt€e TAu€c U} et mo = {((s,t,), (t,u)) | s €
SNt e T AueU}). De méme, les projections ms : SXT xU — S, mp: SXT x U — T et
my : S X T x U — U forment un plein produit direct. La définition de plein produit direct
donnée ci-dessus est appelée produit direct dans [11]; nous avons tiré de [7] la distinction
entre le produit direct et le plein produit direct.

2.6 Proposition. Soit (my,...,m,) un plein produst direct et soient R, # & (i =1...n)
des relations. Ces relations satisfont la loi #;("-, 7 RiT;)m; = Ry (i =1...n). O

Pour des relations sur des ensembles et un plein produit direct (71, 72), cette proposition est
facile & vérifier en remarquant que

T R N maRoTe = {((21, 72), (¥1,%2)) | (Z1,91) € R1 A (Z2,%2) € Ry}

3 Diagrammes de programmes et composition paral-
lele

Dans cette section, nous présentons la notion de diagramme de programme, puis nous
définissons un opérateur de composition paralléle pour combiner deux diagrammes.

3.1 Définition. Soient les ensembles S (I’ensemble des états), et V (I’ensemble des points
de contréole). Un diagramme de programme sur S et V est une relation P sur S x V (i.e.

PC(SxV)x(8xV)). m]

92

Donnons un exemple qui illustre cette définition et qui justifie par la méme occasion le
terme diagramme de programme. Considérons la boucle tant que x>5 faire x:=x-1, ol
la variable z prend ses valeurs sur l’ensemble des naturels N, qui est I’ensemble des états
(plus généralement, ’ensemble des états est le produit cartésien des ensembles sur lesquels les
variables du programme prennent leur valeur). Un tel programme est conventionnellement
représenté par le diagramme suivant sur I’ensemble des points de contréle {1,2,3} :

z>5NT' =z L 2 3
1)< - — =@ 1 @ T>5N2'=2 z<5Az' =2
r=z-1 2| '=z-1 @ 1)

- 3)] @
r<5AZ ==z '@

Le sommet 1 est le point d’entrée et le sommet 3 est le point de sortie. Chaque arc est
étiqueté par un prédicat qui décrit la relation calculée par le programme entre les sommets
reliés par cet arc; ainsi, la relation calculée par le corps de boucle entre les points 2 et 1
est {(z,2') | £ € NAz' =z — 1}. Un tel diagramme peut étre représenté par la matrice
adjacente au diagramme ou par la relation suivante sur N x {1,2,3} :

{((z,1),(z',2)) |z >5A2" =z} U
{((z,1),(,3)) [z <5AL =z} U
{((13, 2)1 (CC’, 1)) ' r=z— 1}

Dans la notation matricielle, une entrée @ correspond & ’absence d’arc entre deux sommets
(ou encore & la présence d’un arc étiqueté par @). Notons qu’avec la représentation matricielle
ou la représentation ensembliste nous avons perdu les notions de point d’entrée et de point
de sortie. Comme nous n’en avons pas besoin dans cette présentation, nous n’indiquerons
pas comment en tenir compte. Pour une définition relationnelle compléte, axiomatique, de la
notion de diagramme de programme, il faut consulter [10, 11]. Par la suite, nous adoptons un
point de vue sémantique et nous utilisons simplement le terme programme pour diagramme
de programme, bien qu’en toute rigueur, un programme soit le texte auquel est associé le
diagramme. De plus, la correspondance entre les lignes ou colonnes des matrices et les points
de controle sera omise (contrairement & 1'exemple ci-dessus) lorsque le contexte permet de
la déterminer.

Un ensemble de matrices de dimensions appropriées constitue une algébre de relations
[11], en définissant les opérateurs relationnels comme suit (R;; désigne Ventrée i, de la
matrice R) :

(QUR);; = Qi URyj, (E)ij = R;j, (QR)ij = Uk QirRij,
(@ N R)i; = Qi N Ryj, (R)ij = (Rj)™
Par exemple, considérons la composition

(Ru R12) (Ru R12) _ (RnRu URi2Ro1 RuiRipU R12R22)
Ro1 Ry) \Ra1 Roo Ry1R1y U RypaRy1 RoiRi2U RooRes /-

3.2

93

Remarquons comment le produit matriciel fait & la fois la composition usuelle des graphes
et la composition des relations sur les chemins traversés. Ainsi, il y a deux chemins possibles
pour passer du sommet 1 au sommet 2 par la composition ci-dessus :

e Du sommet 1 au sommet 1 par la premiére matrice et du sommet 1 au sommet 2 par
la deuxiéme. La composition des relations sur ce chemin est R;;R;s.

e Du sommet 1 au sommet 2 par la premiére matrice et du sommet 2 au sommet 2 par
la deuxieme. La composition des relations sur ce chemin est R;oRao.

Ceci explique le contenu de l'entrée (1,2) de la matrice résultant de la composition. Fi-
nalement, remarquons, & titre d’exemple, que pour les matrices 2 x 2, les relations zéro,

. . " . 0 0 L L I O . .
universelle et identité sont respectivement (@ @) , (I L) et (G I) , ce qui conduit

S o . L L
a écrire des expressions comme L = L L)

Nous sommes maintenant préts & définir la composition paralléle de programmes.

3.3 Définition. Soient les programmes P; et P, tels que P, est une relation sur 7' x S; x V;
et P, est une relation sur T" x Sy x V; (I’ensemble des états de P; est T x S; et I’ensemble de
ses points de contréle est V;, pour 4 = 1,2). Les composantes S; et S, sont les composantes
propres a P, et P,, respectivement, alors que T est une composante partagée. Soit le produit
direct (my,72), ol m; et mo sont les projections

7r1:T><Slx,S'2><V1xV2-->T><Sl><V1,
Mo : T XS XSy x Vi xVop—T xSy x V.

La composition paralléle de P, et Py, notée P, || P,, est la relation sur T'x S; x Sy x V; x V,
définie par
P1 ” P2 dgﬂ'lpﬂ?l N 7T2P27Al'2 U 7T1?f1 N 7T2P27T’2 U 7I'1P17T'1 N 7'('2%2. a
Afin d’expliquer cette définition, supposons que P; et P, soient définis par les prédicats
pret pg:

Pl = {((ta Slavl), (t,, Si,vi)) Ipl(t7 517U1,t,: 8&,'0/1)},
PZ = {((t,82,'02), (t’a 3,21 'Ué)) I p2(t1 S2, v27t,7 3/27’0&)}'

11 est facile de vérifier que

7T1P17?1 ﬂ7r2P27?2
= {((¢, 51, 52, v1,02), (¥', 51, 83,01, 03)) | P1(2, 51,01, %', 81, v1) A pa(t, 52,02, ¢, 85, v3) }-

Le premier terme de la définition de P, | P, représente donc les transitions simultanées de
P, et P,. Ces transitions sont possibles & la condition que P, et P, traitent la composante
commune T de la méme maniére; en effet, les conditions imposées & la composante T sont
définies par la conjonction de p; et p;. De méme, on montre que

94

7'('17?1 N 7r2P2?r2

= {((t, 51, 52,v1,02), (', 81, 85, v}, vh))|[t' =t A s} = s, AV} = vy A po(t, 82,09, ¢, Sh, vh)}.

Le deuxi¢me terme de P, || P, est donc I’ensemble des transitions effectuées par P, alors que
P, est inactif (ou fait la transition identité I). Ces transitions sont possibles & la condition
que le programme P, ne modifie pas la valeur de la composante T. Le troisiéme terme de
P, || P; a une interprétation symétrique.

Les lois 2.2(8,9) nous permettent de donner une expression alternative pour P, || P, :

3.4 Pl " P2 = 7T1(P1 U I)ﬁ'l ﬂﬁgpgﬁg U7I'1P17?1 ﬂ1r27?2;

c’est cette formulation que nous utiliserons par la suite.

Notons que la définition 3.3 se généralise facilement au cas ot 'une (ou plusieurs) des
composantes T, S, S, est absente.

La prochaine section donne un exemple concret de produit paralléle. On y montre
aussi comment les projections utilisées dans la définition du produit paralléle peuvent &tre
représentées par des matrices, comme le sont les programmes.

4 Composition parallele de systémes de transitions

Dans cette section, nous montrons comment associer une relation & un systéme de transitions
de sorte que celui-ci soit vu comme un programme simple; puis nous donnons un exemple
de composition paralléle de systemes de transitions.

Soient les systémes de transitions P; et P, suivants (nous omettons de désigner un état

intial) :
a C
P: (LR —====(2 B: (D=——=(2)

Afin de considérer ces systémes de transitions comme des diagrammes de programmes, il
suffit d’indiquer quelles sont les relations qui correspondent aux événements a,b et c. Une
premiere approche serait de considérer que tous ces événements sont des relations sur un
méme ensemble S. Nous adoptons une approche différente et nous considérons que a,b et ¢
sont des relations sur des ensembles A, B et C, respectivement, de sorte que P; et P, sont
des relations sur A x B x V; et A x C' x V,, respectivement, avec V; = V, = {1,2}. Ceci
permet, d’une part, de définir la notion de projection sur certains événements en utilisant des
projections conventionnelles (qui éliminent des composantes cartésiennes) et, d’autre part,
d’illustrer la définition 3.3 dans toute sa généralité, puisque P, a une composante propre (B),
ainsi que P, (la composante C) et qu’ils partagent la composante A. Les seules contraintes
que nous imposons ici a a,bet csont aNI =@, bNI =@, cNI =D,a # D,b+# D et c # O;
les trois premiéres contraintes signifient que a, b et ¢ ne peuvent jamais étre confondues avec
I'identité I. Par exemple, nous pourrions choisir A=B=C={0,1}eta=b=c=1.
Les relations P; et P, sont les suivantes :

Ai-(p %)y (a2 B

95

Les entrées de la matrice P, sont des relations sur A x B et celles de P; des relations sur A xC
(c’est ce que rappellent les indices de ces matrices). Soient les projections M, AXB —
Aetm, : Ax B — B. La notation zy est une abréviation qui vise & 11m1ter la taille des

matnces cette abréviation est définie par a:y My Ty, N T YTy . Par exemple, l'entrée al,
dans la matrice P, est la relation sur A x B telle que la composante A change selon la
relation a, alors que la composante B ne change pas; dans le cas de I’entrée af de la matrice
Ps, c’est la composante C qui ne change pas (pour P, la relation al est construite avec un
produit direct différent). Les relations al et Ib de la matrice P; (par exemple) satisfont les

lois suivantes (voir proposition 2.6) :

41 Algiﬂ;,l-—a, Ty lom, =1, g alm, =1, i, Lo, =,
" m, af, =al, m, I7, =1L, WBIIﬁB =LI, Ty, bty = Lb.

4.2 Remarque. Ceci se généralise facilement & des projections différentes ou aux cas ot le
nombre de composantes des entrées des matrices est différent de deux.

Pour I’exemple traité ici, les relations m; et 75 de la définition 3.3 ont comme fonctionnalité

M :AXBxCxVixVo—AXxBxV,
Mgt AXBXCxVixVoag—=AxCxV,.

Ces projections peuvent se représenter par des matrices, tout comme les diagrammes de
programmes. Une paire 7y, 7o convenable est la paire suivante :

1 2 1 2

11 Wi @ 11 Wo @

_ 12 w1 @ _ 12 @ Wo
WBhm=0lo w| ™ 2a|lw o/

2\0 w1 22\ 0 Wo

olw; :AXBXC — AxBetwy: AXxBxC — AxC sont des projections qui n’impliquent
que les ensembles d’états. Ces matrices sont déterminées & une permutation prés seulement,
puisque l'ordre des étiquettes des lignes et des colonnes est arbitraire. La structure des
matrices détermine les projections de V; x V5 sur V; ou V;; par exemple, m; projette la paire
(1,2) sur 1 alors que , la projette sur 2. Les projections relatives aux ensembles d’états
sont faites par w; et wy. La paire (m1,7;) est u<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>