Course Outline

- Introduction to Sage
 - overview of the software

- Sage demonstration
 - The Sage notebook
 - Getting help
 - Interfaces
 - Matrices
 - Calculus

- Basic programming in Sage
 - Python lists
Sage is a *distribution* of open-source software.
Sage is a **distribution** of open-source software.

Software included with Sage:

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS</td>
<td>Automatically Tuned Linear Algebra Software</td>
</tr>
<tr>
<td>BLAS</td>
<td>Basic Fortan 77 linear algebra routines</td>
</tr>
<tr>
<td>Bzip2</td>
<td>High-quality data compressor</td>
</tr>
<tr>
<td>Cddlib</td>
<td>Double Description Method of Motzkin</td>
</tr>
<tr>
<td>Common Lisp</td>
<td>Multi-paradigm and general-purpose programming lang.</td>
</tr>
<tr>
<td>CVXOPT</td>
<td>Convex optimization, linear programming, least squares</td>
</tr>
<tr>
<td>Cython</td>
<td>C-Extensions for Python</td>
</tr>
<tr>
<td>F2c</td>
<td>Converts Fortran 77 to C code</td>
</tr>
<tr>
<td>Flint</td>
<td>Fast Library for Number Theory</td>
</tr>
<tr>
<td>FpLLL</td>
<td>Euclidian lattice reduction</td>
</tr>
<tr>
<td>FreeType</td>
<td>A Free, High-Quality, and Portable Font Engine</td>
</tr>
</tbody>
</table>
Sage is a *distribution* of open-source software.

Software included with Sage:

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G95</td>
<td>Open source Fortran 95 compiler</td>
</tr>
<tr>
<td>GAP</td>
<td>Groups, Algorithms, Programming</td>
</tr>
<tr>
<td>GD</td>
<td>Dynamic graphics generation tool</td>
</tr>
<tr>
<td>Genus2reduction</td>
<td>Curve data computation</td>
</tr>
<tr>
<td>Gfan</td>
<td>Gröbner fans and tropical varieties</td>
</tr>
<tr>
<td>Givaro</td>
<td>C++ library for arithmetic and algebra</td>
</tr>
<tr>
<td>GMP</td>
<td>GNU Multiple Precision Arithmetic Library</td>
</tr>
<tr>
<td>GMP-ECM</td>
<td>Elliptic Curve Method for Integer Factorization</td>
</tr>
<tr>
<td>GNU TLS</td>
<td>Secure networking</td>
</tr>
<tr>
<td>GSL</td>
<td>Gnu Scientific Library</td>
</tr>
<tr>
<td>JsMath</td>
<td>JavaScript implementation of LaTeX</td>
</tr>
</tbody>
</table>
Sage is a *distribution* of open-source software.

Software included with Sage:

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IML</td>
<td>Integer Matrix Library</td>
</tr>
<tr>
<td>IPython</td>
<td>Interactive Python shell</td>
</tr>
<tr>
<td>LAPACK</td>
<td>Fortan 77 linear algebra library</td>
</tr>
<tr>
<td>Lcalc</td>
<td>L-functions calculator</td>
</tr>
<tr>
<td>Libgcrypt</td>
<td>General purpose cryptographic library</td>
</tr>
<tr>
<td>Libgpg-error</td>
<td>Common error values for GnuPG components</td>
</tr>
<tr>
<td>Linbox</td>
<td>C++ linear algebra library</td>
</tr>
<tr>
<td>Matplotlib</td>
<td>Python plotting library</td>
</tr>
<tr>
<td>Maxima</td>
<td>Computer algebra system</td>
</tr>
<tr>
<td>Mercurial</td>
<td>Revision control system</td>
</tr>
<tr>
<td>MoinMoin</td>
<td>Wiki</td>
</tr>
</tbody>
</table>
Sage is a **distribution** of open-source software.

Software included with Sage:

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPFI</td>
<td>Multiple Precision Floating-point Interval library</td>
</tr>
<tr>
<td>MPFR</td>
<td>C library for multiple-precision floating-point computations</td>
</tr>
<tr>
<td>ECLib</td>
<td>Cremona’s Programs for Elliptic curves</td>
</tr>
<tr>
<td>NetworkX</td>
<td>Graph theory</td>
</tr>
<tr>
<td>NTL</td>
<td>Number theory C++ library</td>
</tr>
<tr>
<td>Numpy</td>
<td>Numerical linear algebra</td>
</tr>
<tr>
<td>OpenCDK</td>
<td>Open Crypto Development Kit</td>
</tr>
<tr>
<td>PALP</td>
<td>A Package for Analyzing Lattice Polytopes</td>
</tr>
<tr>
<td>PARI/GP</td>
<td>Number theory calculator</td>
</tr>
<tr>
<td>Pexpect</td>
<td>Pseudo-tty control for Python</td>
</tr>
<tr>
<td>PNG</td>
<td>Bitmap image support</td>
</tr>
</tbody>
</table>
Sage is a *distribution* of open-source software.

Software included with Sage:

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolyBoRi</td>
<td>Polynomials Over Boolean Rings</td>
</tr>
<tr>
<td>PyCrypto</td>
<td>Python Cryptography Toolkit</td>
</tr>
<tr>
<td>Python</td>
<td>Interpreted language</td>
</tr>
<tr>
<td>Qd</td>
<td>Quad-double/Double-double Computation Package</td>
</tr>
<tr>
<td>R</td>
<td>Statistical Computing</td>
</tr>
<tr>
<td>Readline</td>
<td>Line-editing</td>
</tr>
<tr>
<td>Rpy</td>
<td>Python interface to R</td>
</tr>
<tr>
<td>Scipy</td>
<td>Python library for scientific computation</td>
</tr>
<tr>
<td>Singular</td>
<td>fast commutative and noncommutative algebra</td>
</tr>
<tr>
<td>Scons</td>
<td>Software construction tool</td>
</tr>
<tr>
<td>SQLite</td>
<td>Relation database</td>
</tr>
</tbody>
</table>
Sage is a \textit{distribution} of open-source software.

Software included with Sage:

- \textbf{Sympow}: L-function calculator
- \textbf{Symmetrica}: Representation theory
- \textbf{Sympy}: Python library for symbolic computation
- \textbf{Tachyon}: Lightweight 3d ray tracer
- \textbf{Termcap}: For writing portable text mode applications
- \textbf{Twisted}: Python networking library
- \textbf{Weave}: Tools for including C/C++ code within Python
- \textbf{Zlib}: Data compression library
- \textbf{ZODB}: Object-oriented database

Plus additional optional packages
Sage is a **distribution** of open-source software.

Software included with Sage:

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sympow</td>
<td>L-function calculator</td>
</tr>
<tr>
<td>Symmetrica</td>
<td>Representation theory</td>
</tr>
<tr>
<td>Sympy</td>
<td>Python library for symbolic computation</td>
</tr>
<tr>
<td>Tachyon</td>
<td>Lightweight 3d ray tracer</td>
</tr>
<tr>
<td>Termcap</td>
<td>For writing portable text mode applications</td>
</tr>
<tr>
<td>Twisted</td>
<td>Python networking library</td>
</tr>
<tr>
<td>Weave</td>
<td>Tools for including C/C++ code within Python</td>
</tr>
<tr>
<td>Zlib</td>
<td>Data compression library</td>
</tr>
<tr>
<td>ZODB</td>
<td>Object-oriented database</td>
</tr>
</tbody>
</table>

Plus additional optional packages
Sage is a distribution of *mathematics* software.

Sage’s mission: “Creating a viable, free, open-source alternative to Magma™, Maple™, Mathematica™, and Matlab™.”
Sage is a distribution of **mathematics** software.

Sage’s mission: “Creating a viable, free, open-source alternative to MagmaTM, MapleTM, MathematicaTM, and MatlabTM.”
Sage is a distribution of **free, open-source** software.

“You can read Sylow’s Theorem and its proof in Huppert’s book in the library . . . then you can use Sylow’s Theorem for the rest of your life free of charge, but for many computer algebra systems license fees have to be paid regularly
Sage is a distribution of **free, open-source** software.

“You can read Sylow’s Theorem and its proof in Huppert’s book in the library . . . then you can use Sylow’s Theorem for the rest of your life free of charge, but for many computer algebra systems license fees have to be paid regularly

*With this situation two of the most basic rules of conduct in mathematics are violated: In mathematics information is passed on **free** of charge and everything is **laid open** for checking.*”
Sage is a distribution of **free, open-source** software.

“You can read Sylow’s Theorem and its proof in Huppert’s book in the library . . . then you can use Sylow’s Theorem for the rest of your life free of charge, but for many computer algebra systems license fees have to be paid regularly

With this situation two of the most basic rules of conduct in mathematics are violated: In mathematics information is passed on **free** of charge and everything is **laid open** for checking.”

(started GAP in 1986)
Sage is a distribution of *free, open-source* software.

You have the freedom:

- to run the program, for any purpose.
- to study how the program works, and adapt it to your needs.
- to redistribute copies so you can help your neighbour.
- to improve the program, and release your improvements to the public, so that the whole community benefits.
Sage is a distribution of **free, open-source** software.

You have the freedom:

- to run the program, for any purpose.
- to study how the program works, and adapt it to your needs.
- to redistribute copies so you can help your neighbour.
- to improve the program, and release your improvements to the public, so that the whole community benefits.

Also, you don’t have to pay for it.
The Sage programming language is Python

Python is a powerful, modern, interpreted programming-language.
The Sage programming language is **Python**

Python is a powerful, modern, interpreted programming-language.

- *Interpreted* means it works like Maple or Mathematica.

```python
python: x = 17
python: x
17
python: x**2
289
```
The Sage programming language is **Python**.

Python is a powerful, modern, interpreted programming-language.

- *Interpreted* means it works like Maple or Mathematica.

  ```python
  python: x = 17
  python: x
  17
  python: x**2
  289
  ```

- It’s *easy to learn*. Lots of free documentation.

 - http://diveintopython.org/
 - http://docs.python.org/tut/
The Sage programming language is **Python**

It's easy to read and write.

\[
x \in \{0, 1, \ldots, 9\} \text{ and } x \text{ is odd}
\]

Python:

```python
[17*x for x in range(0,10) if x%2 == 1]
```

Lots of Python libraries: databases, graphics, networking, . . .

It is easy to use C/C++ libraries from within Python.

Cython: Python code → compiled C code.
The Sage programming language is **Python**

- It's *easy to read and write*.

\[
\left\{ 17x \mid x \in \{0, 1, \ldots, 9\} \text{ and } x \text{ is odd} \right\}
\]

python: `[17*x for x in range(0,10) if x%2 == 1]`
The Sage programming language is **Python**

- It's *easy to read and write*.

\[
\left\{ 17x \mid x \in \{0, 1, \ldots, 9\} \text{ and } x \text{ is odd} \right\}
\]

```python
[17*x for x in range(0,10) if x%2 == 1]
```

- Lots of *Python libraries*: databases, graphics, networking, . . .
The Sage programming language is **Python**

- It’s *easy to read and write*.

 \[
 \left\{ 17x \mid x \in \{0,1,\ldots,9\} \text{ and } x \text{ is odd} \right\}
 \]

 python: `[17*x for x in range(0,10) if x%2 == 1]`

- Lots of *Python libraries*: databases, graphics, networking, . . .

- It is easy to use *C/C++ libraries* from within Python.
The Sage programming language is **Python**

- It’s *easy to read and write*.

\[
\left\{17x \mid x \in \{0, 1, \ldots, 9\} \text{ and } x \text{ is odd}\right\}
\]

```python
python: [17*x for x in range(0,10) if x%2 == 1]
```

- Lots of *Python libraries*: databases, graphics, networking, …

- It is easy to use *C/C++ libraries* from within Python.

- **Cython**: Python code \rightarrow compiled C code.
The Sage programming language is **Python**

“Google has made no secret of the fact they use Python a lot for a number of internal projects. Even knowing that, once I was an employee, I was amazed at how much Python code there actually is in the Google source code system.”

— Guido van Rossum
(creator of Python)
Several ways to use Sage

- A library for Python scripts.

```python
#!/usr/bin/env sage -python
import sys
from sage.all import *
```
Several ways to use Sage

- Command line interface.

```sage
sage: 17^2
289
```
Several ways to use Sage

- Graphical notebook: try it online at www.sagenb.org.
Sage plays well with \LaTeX

\LaTeX{} input:

\begin{verbatim}
\begin{sagesilent}
 var('s t')
 f = t^2*e^t-sin(t)
\end{sagesilent}

Let $f(t)=\sage{f}$. Then the Laplace transform of f is: $\sage{f.laplace(t,s)}$.
\end{verbatim}

Let $f(t)=\sage{f}$. Then the Laplace transform of f is: $\sage{f.laplace(t,s)}$.
Sage plays well with \LaTeX

\LaTeX input:

\begin{sagesilent}
var(\text{'s } t\text{'})
 f = t^2*e^t-sin(t)
\end{sagesilent}

Let $f(t)=\text{sage\{f\}}$. Then the Laplace transform of f is: $\text{sage\{f.laplace(t,s)\}}$.

\LaTeX output:

Let $f(t) = t^2 e^t - \sin(t)$. Then the Laplace transform of f is: $\frac{2}{(s-1)^3} - \frac{1}{s^2+1}$.
Sage plays well with \LaTeX

\LaTeX\ input:

% Here is an example of a tree:
% \sageplot{Graph({0:[1,2,3], 2:[5]}).plot()}

\begin{verbatim}
Here is an example of a tree:
\sageplot{Graph({0:[1,2,3], 2:[5]}).plot()}
\end{verbatim}
Sage plays well with \LaTeX

\LaTeX input:

\begin{verbatim}
Here is an example of a tree:
\sageplot{Graph({0:[1,2,3], 2:[5]}).plot()}
\end{verbatim}

\LaTeX output:

Here is an example of a tree:
Sage plays well with \LaTeX

\LaTeX\ input:

\sageplot{plot(-x^3+3*x^2+7*x-4,-5,5)}
Sage plays well with \textsc{\LaTeX}

\textsc{\LaTeX} input:

\sageplot{plot(-x^3+3*x^2+7*x-4,-5,5)}

\textsc{\LaTeX} output:
Sage plays well with \LaTeX

\LaTeX\ input:

\begin{sagesilent}
 t6 = Tachyon(camera_center=(0,-4,1), xres = 800, yres = 600, \raydepth = 12, aspectratio=.75, antialiasing = True)
 t6.light((0.02,0.012,0.001), 0.01, (1,0,0))
 t6.light((0,0,10), 0.01, (0,0,1))
 t6.texture('s', color = (.8,1,1), opacity = .9, specular = .95, \diffuse = .3, ambient = 0.05)
 t6.texture('p', color = (0,0,1), opacity = 1, specular = .2)
 t6.sphere((-1,-.57735,-0.7071),1,'s')
 t6.sphere((1,-.57735,-0.7071),1,'s')
 t6.sphere((0,1.15465,-0.7071),1,'s')
 t6.sphere((0,0,0.9259),1,'s')
 t6.plane((0,0,-1.9259),(0,0,1),'p')
\end{sagesilent}
\sageplot{t6}
Sage plays well with \LaTeX

\LaTeX\ output:
The Sage community

- Many people have contributed to Sage (directly & indirectly).
- There are several mailing lists.
 - http://www.sagemath.org
- IRC: #sage-devel on freenode.org.
- Developers are very friendly and helpful.
Let’s use Sage