Minimal length maximal green sequences

Al Garver
(joint with Thomas McConville and Khrystyna Serhiyenko)
arXiv: 1702.07313

Maurice Auslander Distinguished Lectures and International Conference

April 27, 2017
- Maximal green sequences
- Main result and application
- Techniques for proving these
\(Q \) – a \(2 \)-acyclic quiver (i.e., \(Q \) has no loops or 2-cycles).
Add **frozen vertices** to \(Q \).

\[
Q = \begin{array}{ccc}
1 & \rightarrow & 2 \\
\leftarrow & \rightarrow & \leftarrow \\
3 & \rightarrow & 1
\end{array}
\]

\[
\tilde{Q} = \begin{array}{ccc}
1' & \rightarrow & 2' \\
\leftarrow & \rightarrow & \leftarrow \\
3' & \rightarrow & 1'
\end{array}
\]

framed quiver

\[
\tilde{Q} = \begin{array}{ccc}
1' & \rightarrow & 2' \\
\leftarrow & \rightarrow & \leftarrow \\
3' & \rightarrow & 1'
\end{array}
\]

coframed quiver

We **mutate** \(\tilde{Q} \) at any non-frozen vertex \(k \) to obtain a quiver \(\mu_k(\tilde{Q}) \).
The quiver \(\mu_k(\tilde{Q}) \) is obtained from \(\tilde{Q} \) by

(i) inserting new arrow \(i \rightarrow j \) for each 2-path \(i \rightarrow k \rightarrow j \) in \(\tilde{Q} \)

(ii) reversing all arrows incident to \(k \)

(ii) delete any 2-cycles
Definition (Keller, 2011)

A maximal green sequence of Q is a sequence $i = (i_1, \ldots, i_k)$ of non-frozen vertices of \hat{Q} where

(i) for all $j \in [k]$ vertex i_j is **green** in $\mu_{i_{j-1}} \circ \cdots \circ \mu_{i_1}(\hat{Q})$ and

(ii) all vertices in $\mu_{i_k} \circ \cdots \circ \mu_{i_1}(\hat{Q})$ are **red**.

(1,2) and (2,1,2) are the only maximal green sequences of $Q = 1 \to 2$

← the **oriented exchange graph** of $Q = 1 \to 2$
Maximal green sequences can be identified with

- finite length maximal chains in the poset of functorially finite torsion classes of the **Jacobian algebra** of Q, [Brüstle–Yang, 2014]
- certain sequences of reachable chambers in the **consistent scattering diagram** of Q [Gross–Hacking–Keel–Kontsevich, 2014]

$Q = 1 \rightarrow 2 \rightarrow 3$
Q oriented 3-cycle
Goal: Understand combinatorial properties of the maximal green sequences of Q.

Conjecture ("No Gap Conjecture" Brüstle–Dupont–Pérotin, 2013)

For each $\ell_{\text{min}}(Q) \leq k \leq \ell_{\text{max}}(Q)$, there exists a maximal green sequence of length k where

- $\ell_{\text{min}}(Q) := \text{length of shortest maximal green sequence of } Q$
- $\ell_{\text{max}}(Q) := \text{length of longest maximal green sequence of } Q$

- True in mutation type \mathbb{A} [G.–McConville, 2015]
- True for tame hereditary algebras [Hermes–Igusa, 2016]
\(\ell_{\text{min}}(Q) := \text{length of shortest maximal green sequence of } Q \)
\(\ell_{\text{max}}(Q) := \text{length of longest maximal green sequence of } Q. \)

- If \(Q \) is Dynkin, \(\ell_{\text{min}}(Q) = |Q_0| \) and \(\ell_{\text{max}}(Q) = |\Phi^+(Q)|. \) [Brüstle–Dupont–Pérotin, 2013]
- If \(Q \) is acyclic, \(\ell_{\text{min}}(Q) = |Q_0|. \) [Brüstle–Dupont–Pérotin, 2013]
- If \(Q \) is mutation type \(A \), then \(\ell_{\text{min}}(Q) = |Q_0| + \{|3\text{-cycles of } Q\}| \) [Cormier–Dillery–Resh–Serhiyenko–Whelan, 2015]
Let \widetilde{Q} be a quiver composed of full connected subquivers Q, Q^1, Q^2, \ldots, Q^k, such that all of the following conditions hold.

- $Q^i_0 \cap Q_0 = \{x_i\}$.
- $Q^i_0 \cap Q^j_0 = \begin{cases} \{x_i\} & \text{if } x_i = x_j \\ \emptyset & \text{otherwise} \end{cases}$.
- If $\alpha \in \widetilde{Q}_1$ has an endpoint in $Q^i_0 \setminus \{x_i\}$ then the other is in Q^i_0.
- For every i the quiver Q^i is of mutation type A.

\[\ell_{\min}(\widetilde{Q}) = \ell_{\min}(Q) - k + \sum_{i=1}^{k} (|Q^i_0| + |\{3\text{-cycles in } Q^i\}|) \]
The theorem applies to quivers of mutation types \mathbb{D} [Vatne, 2008] and $\tilde{\mathbb{A}}$ [Bastian, 2009]. There are four families mutation type \mathbb{D} quivers.

Figure: Type I quivers

Figure: Type II quivers

Figure: Type III quivers

Figure: Type IV quivers

Mutation type $\tilde{\mathbb{A}}$ and Type IV quivers have the same underlying graphs.
Corollary (G.–McConville–Serhiyenko, 2017)

i) \(\ell_{\text{min}} = n + |\{3\text{-cycles in } \tilde{Q}\}| \) (\(\tilde{Q} \) is of Type I or of type \(\tilde{A}_{n-1} \))

ii) \(\ell_{\text{min}} = n + 1 + |\{3\text{-cycles in } Q^1\}| + |\{3\text{-cycles in } Q^2\}| \) (\(\tilde{Q} \) is of Type II)

iii) \(\ell_{\text{min}} = n + 2 + |\{3\text{-cycles in } \tilde{Q}\}| \) (\(\tilde{Q} \) is of Type III)

iv) \(\ell_{\text{min}} = n + k - 2 + |\{a_i : \deg(a_i) = 4\}| + \sum_{i=1}^{k} |\{3\text{-cycles in } Q^i\}|. \)
If Q^1 and Q^2 have derived-equivalent cluster-tilted algebras $\mathbb{k}Q^1/I^1$ and $\mathbb{k}Q^2/I^2$, is $\ell_{\min}(Q^1) = \ell_{\min}(Q^2)$?

- (mutation type \mathbb{A}) If $\mathbb{k}Q^1/I^1$ and $\mathbb{k}Q^2/I^2$ are derived-equivalent if and only if $|Q^1_0| = |Q^2_0|$ and $|\{3\text{-cycles of } Q^1\}| = |\{3\text{-cycles of } Q^2\}|$. [Buan–Vatne, 2007]

- (mutation type $\tilde{\mathbb{A}}$) If $\mathbb{k}Q^1/I^1$ and $\mathbb{k}Q^2/I^2$ are derived-equivalent, then $|Q^1_0| = |Q^2_0|$ and $|\{3\text{-cycles of } Q^1\}| = |\{3\text{-cycles of } Q^2\}|$. [Bastian, 2009]

- (mutation type \mathbb{D}) There are six conjectural derived equivalence classes. A quiver can be put into one of these forms using mutations that preserve $\ell_{\min}(Q)$. [Bastian–Holm–Ladkani, 2010]
To prove the theorem:

- construct a maximal green sequence of length
 \[\ell_{\min}(Q) - k + \sum_{i=1}^{k} (|Q_0^i| + |\{3-cycles in Q^i\}|) \]
- show there are no shorter maximal green sequences (*)

To address *, one uses the \textbf{c-vectors} of \(Q \). These record the arrows between non-frozen vertices and frozen vertices.
We identify maximal green sequences with their sequences of c-vectors.

\[\mathbf{i} = (i_1, \ldots, i_k) \longleftrightarrow \mathbf{c}(\mathbf{i}) = (c_1, \ldots, c_k) \]

The following was essentially proved by [Muller, 2015].

Theorem (G.–McConville–Serhiyenko, 2017)

Let \(Q \) be a 2-acyclic quiver and \(Q^\dagger \) any full subquiver. There is a map \(\text{MGS}(Q) \to \text{MGS}(Q^\dagger) \) sending \(\mathbf{i} \in \text{MGS}(Q) \) to \(\mathbf{i}^\dagger \in \text{MGS}(Q^\dagger) \) where \(\mathbf{c}(\mathbf{i}^\dagger) = (c_1^{(1)}, \ldots, c_\ell^{(\ell)}) \) is the subsequence of \(\mathbf{c}(\mathbf{i}) \) where each \(c_j^{(i)} = (c_1^{(j)}, \ldots, c_n^{(j)}) \) satisfies \(c_i^{(j)} = 0 \) if \(i \in Q_0 \setminus Q_0^\dagger \).

(The proof uses properties of the consistent scattering diagram of \(Q \).)

\[\implies \text{ Let } \mathbf{i} \in \text{MGS}(\tilde{Q}). \]

\[
\ell(\mathbf{i}) \geq \ell(\mathbf{i}_{(\tilde{Q}_0 \setminus Q_0^\dagger) \cup \{x_1\}}) + \ell(\mathbf{i}_{Q_0^\dagger}) - 1 \\
\geq \ell(\mathbf{i}_{(\tilde{Q}_0 \setminus Q_0^1 \cup Q_0^2) \cup \{x_1, x_2\}}) + \ell(\mathbf{i}_{Q_0^1}) + \ell(\mathbf{i}_{Q_0^2}) - 2 \\
\vdots \\
\geq \ell_{\text{min}}(Q) - k + \sum_{i=1}^{k} \ell_{\text{min}}(Q^i)
\]
To prove the corollary, use the Theorem to reduce to calculating the $\ell_{\text{min}}(Q)$. We focus on the mutation type \mathbb{D} case.

Figure: $\ell_{\text{min}}(Q) = 3$

Figure: $\ell_{\text{min}}(Q) = 4 + 1$

Figure: $\ell_{\text{min}}(Q) = 4 + 2$

Figure: $\ell_{\text{min}}(Q) = n + k - 2 + |\{a_i : \deg(a_i) = 4\}|$
Show that the reduced Type IV quivers have
\[\ell_{\min}(Q) = n + k - 2 + |\{a_i : \deg(a_i) = 4\}|. \] (not quite easy)

- These quivers arise from triangulations of a punctured disk.
When Q is defined by a triangulation, one keeps track of red and green by adding a **lamination** to the triangulation. [Fomin–Thurston, 2012]
Show that the reduced Type IV quivers have
\[\ell_{\min}(Q) = n + k - 2 + |\{a_i : \deg(a_i) = 4\}|. \] (not quite easy)

- One keeps track of red and green by adding a **lamination** to the triangulation. [Fomin–Thurston, 2012]

- We construct a maximal green sequence \(i = i_1 \circ i_2 \circ i_3 \circ i_4 \circ i_5 \) of the desired length. (*)
Thanks!