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Comité éditorial

A. ARNOLD Bordeaux I
F. BERGERON UQAM
J. BERSTEL Marne-la-Vallée
S. BRLEK UQAM
R. CORI Bordeaux I
P. FLAJOLET INRIA
D. FOATA Strasbourg
A. GARSIA UCSD
I. GESSEL Brandeis
I. GOULDEN Waterloo
G. LABELLE UQAM

J. LABELLE UQAM
C. LAM Concordia
A. LASCOUX Marne-la-Vallée
P. LEROUX UQAM
C. REUTENAUER UQAM
R. STANLEY MIT
V. STREHL Erlangen
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4 Contribution à l’étude des empilements, P. Lalonde, 1991
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15 Modèles mathématiques pour la synthèse des systèmes informatiques, S. Brlek (éd.), ACFAS’94, Actes, 1994
16 Produits et coproduits des fonctions quasi-symétriques et de l’algèbre des descentes, C. Malvenuto, 1994
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Avant-propos

La conférence WORDS 2005 était la cinquième édition d’une série qui débuta en
1997 à Rouen (France). Le sujet de la conférence est l’étude des mots avec une
emphase sur le point de vue théorique. En particulier les aspects combinatoires
algébriques et algorithmiques sont privilégiés bien que les motivations puissent
provenir d’autres domaines tels que l’informatique théorique. La conférence con-
sista en six conférences plénières et également 28 communications sélectionnées
par le comité de programme. Nous aimerions remercier leurs membres ainsi que
les arbitres qui les ont assistés dans cette tâche.

Les conférences antérieures ont eu lieu à Rouen (France, 1997 et 1999),
Palermo (Italie, 2001) et Turku (Finlande, 2003).

L’organisation a bénéficié du support financier du Centre de Recherches
Mathématiques (CRM), le programme de Chaires de recherche du Canada
(CRSNG), Pacific Institute for the Mathematical Siences (PIMS), du ministère
de l’éducation du Québec (MEQ) et de la faculté des Sciences de l’Université du
Québec à Montréal (UQAM).

Finalement, le Laboratoire de Combinatoire et d’Informatique Mathéma-
tique (LaCIM) a la chance de compter sur la secrétaire de la conférence Lise
Tourigny, sur le webmestre et TEXmestre André Lauzon, sur nos étudiantes
Annie Lacasse et Geneviève Paquin. Nous leur adressons nos remerciements
chaleureux pour leur apport inestimable à la tenue de cette conférence.

Srečko Brlek et Christophe Reutenauer
Montréal et Le Rasinel, 25 août 2005
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Foreword

The WORDS 2005 Conference was the fifth of a series initiated in 1997 in Rouen
(France). The conference topic is the study of words with a focus on the theo-
retical point of view. In particular, the combinatorial, algebraic and algorithmic
aspects are emphasized. Motivations may come from other domains such as the-
oretical computer science. The conference program included six plenary talks
and also 28 contributed communications selected by the program committee.
We would like to thank their members as well as the referees who assisted them
in this task.

Previous conferences were held in Rouen (France, 1997 and 1999), Palermo
(Italy, 2001) and Turku (FInland, 2003).

The organisation was sponsored by the “Centre de Recherches Mathéma-
tiques (CRM)”, the Canadian Research Chair program (NSERC), the Pacific
Institute for the Mathematical Siences (PIMS), the ministry of education of Que-
bec (MEQ) and the “Faculté des Sciences de l’Université du Québec à Montréal
(UQAM)”.

Finally, the “Laboratoire de Combinatoire et d’Informatique Mathématique
(LaCIM)” is fortunate to count on the conference secretary Lise Tourigny, the
webmaster and TEXmaster André Lauzon and our students Annie Lacasse and
Geneviève Paquin. Our warmest thanks for their invaluable contribution in the
organisation of the event.

Srečko Brlek and Christophe Reutenauer
Montréal and Le Rasinel, August 25, 2005
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Subwords: repetitions, frequency, uniformity

Arturo Carpi∗

∗University degli studi di Perugia, Dipartimento di Matematica e Informatica, Via Vanvitelli
1, 06123 Perugia, Italy. carpi@dipmat.unipg.it
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Constrained Coding Systems with

Unconstrained Positions

Maxime Crochemore∗

Abstract

We give a polynomial-time construction of the set of sequences that
satisfy a finite-memory constraint defined by a finite list of forbidden blocks,
with a specified set of bit positions unconstrained. Such a construction
can be used to build modulation/error-correction codes (ECC codes) like
the ones defined by the Immink-Wijngaarden scheme in which certain bit
positions are reserved for ECC parity. We give a linear-time construction
of a finite-state presentation of a constrained system defined by a periodic
list of forbidden blocks. These systems, called periodic-finite-type systems,
were introduced by Moision and Siegel. Finally, we present a linear-time
algorithm for constructing the minimal periodic forbidden blocks of a finite
sequence for a given period.

∗Institut Gaspard-Monge, Laboratoire d’informatique, Université de Marne-la-Vallée, Cité
Descartes, 5 Bd Descartes, Champs-sur-Marne, F-77454, Marne-la-Vallée, CEDEX 2 (France),
Maxime.Crochemore@univ-mlv.fr
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A survey on algebraic characterisations for

temporal logics over traces

Volker Diekert∗

∗Institut für Formale Methoden der Informatik, Universität Stuttgart, FMI Universitätsstr.
38 D-70569 Stuttgart, diekert@informatik.uni-stuttgart.de
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Cantorian Tableaux

Michel Mendès France
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The Burrows-Wheeler Transform: a new

tool in Combinatorics on Words.

Antonio Restivo∗

Abstract

Michael Burrows and David Wheeler introduced in 1994 a reversible
transformation on words (BWT from now on) that arouses considerable
interest and curiosity in the field of Data Compression.

The present contribution discusses the close relation of BWT with some
fundamental notions and results in Combinatorics on Words.

We first consider the connections between BWT and a very important
theorem of Gessel and Reutenauer that states a bijection between the words
on a given alphabet A and the multisets of the conjugacy classes of primitive
words over A. Such a connection allows to introduce an extension of BWT ,
that has several interesting applications to Data Compression and Sequence
Comparison.

We then show that BWT is a fundamental tool to investigate the close
connections between some important properties of finite binary words, ex-
pressed in terms of balance, ordering and conjugacy. This leads in partic-
ular to new characterizations of balanced words. Standard words play a
central role in this investigation.

∗University of Palermo, Dipartimento di Matematica ed Applicazioni, Via Archirafi 34,
90123 Palermo, Italy, restivo@math.unipa.it
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My Favorite Open Problems in Words

Jeffrey Shallit∗

Abstract

In this talk I will discuss some of my favorite open problems dealing
with words and automata. For some of these problems progress has been
made, but others have proven remarkably resistant to attack.

∗School of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada,
shallit@graceland.math.uwaterloo.ca

11
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An innocent-looking formula for continued

fractions

Boris Adamczewski∗, Jean-Paul Allouche†

1 Introduction

Looking for patterns in decimal expansions of real numbers is a rewarding hobby
that can lead to theorems or, even better, to intractable conjectures: knowing
whether the digit 4 occurs infinitely often in the decimal expansions of

√
7 or π

seems far out of reach. Alternatively, continued fraction expansions provide an-
other source of questions about patterns that occur in real numbers and several
still open conjectures can be stated, e.g., that continued fraction expansions of
algebraic numbers of degree at least 3 cannot have bounded partial quotients.
In the same spirit several recent papers give transcendence results for real num-
bers whose base b or continued fraction expansion contain specific patterns like
repetitions or palindromes (see for example the survey [7], and the references
therein).

In this survey paper we will focus on continued fraction expansions (for real
numbers but also for formal Laurent series with coefficients in a finite field) and
reversals of patterns or palindromic patterns that occur in such expansions.

We will use the classical notations for finite or infinite continued fractions

p

q
= a0 +

1

a1 +
1

a2 +
1

. . . +
1
an

= [a0; a1, · · · , an]

∗CNRS, Institut Camille Jordan, Université Claude Bernard Lyon 1, Bât. Bra-
connier, 21 avenue Claude Bernard, 69622 VILLEURBANNE Cedex (FRANCE),
Boris.Adamczewski@math.univ-lyon1.fr

†CNRS, LRI, Université Paris-Sud, Bât. 490, 91405 Orsay Cedex (FRANCE),
Jean-Paul.Allouche@lri.fr

13
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resp.

α = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an +
1
. . .

= [a0; a1, · · · , an, · · · ]

where p/q is a positive rational number, resp. α is a positive irrational real
number, n is a nonnegative integer, and the ai’s are positive integers for i ≥ 0.
We will also have continued fractions for formal Laurent series over a field K:
in this case, p/q is a rational function (p and q are two polynomials in K[X]),
resp. α is a Laurent series

∑
n≥t rjX

−j , n is a nonnegative integer, and the ai’s
are nonzero polynomials in K[X].

2 Two fundamental lemmas

For 0 ≤ k ≤ n, let us denote by pk/qk the k-th convergent to p/q, i.e., pk/qk =
[a0; a1, · · · , ak]. In particular, we have p/q = pn/qn = [a0; a1, · · · , an]. The
sequence of denominators of the convergents to p/q satisfies, for n such that
0 ≤ 1 ≤ n, the relation qk = akqk−1 + qk−2, with the convention that q−1 = 0
and q0 = 1.

A pleasant formalism for continued fractions is the matrix formalism that
we borrow from papers of van der Poorten (see for example [50, 53]), who says
that it goes back at least to [32]: we have that

∀n ≥ 0, [a0; a1, · · · , an] =
pn

qn
, with gcd(pn, qn) = 1

if and only if(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an 1
1 0

)
=
(
pn pn−1

qn qn−1

)
.

Taking the transpose of this equality easily yields the following lemma.

Lemma 2.1 Let a0, a1, . . . be positive integers. Let [a0; a1, · · · , an] = pn

qn
. Then

qn
qn−1

= an +
1

an−1 +
1

. . . +
1
a0

= [an; an−1, · · · , a0]· (2.1)
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Quite curiously, the innocent-looking Equality (2.1), that will be referred as
the mirror formula all along this paper, appears to be somewhat ubiquitous.
Many occurrences of this formula can be found in the combinatorial study of
Sturmian words as well as in the Diophantine property of Sturmian real num-
bers. Very recently the mirror formula has appeared as being the key point in
several studies on simultaneous rational approximation: simultaneous rational
approximation of a real number and of its square (see the nice work of Roy), re-
sults on the Littlewood conjecture in simultaneous Diophantine approximation,
and various transcendence criteria for continued fractions.

A variation on the mirror formula is known as the folding lemma (see [46,
50, 53]) whose proof is an easy consequence of the matrix formalism and of the
mirror formula.

Lemma 2.2 (Folding lemma) Let c, a0, a1, . . . be positive integers. Let

[a0; a1, · · · , an] =
pn

qn
.

Then
pn

qn
+

(−1)n

cq2n
= [a0; a1, a2, · · · , an, c,−an,−an−1, · · · ,−a1] (2.2)

Remark 2.3 In Equality (2.2) negative partial quotients occur. An easy trans-
formation permits to get rid of these forbidden partial quotients (see, e.g., [53]).
Note that the terminology “folding lemma” comes from the fact that, defin-
ing the word w := a1a2 · · · an and noting w := anan−1 · · · a1, we go from pn

qn

to pn

qn
+ (−1)n

cq2
n

(up to the first partial quotient a0) by means of the “perturbed

symmetry” w −→ w c (−w): iterating this operation in the case w = +1 and
c = +1 gives a sequence of ± symbols that is the sequence of creases in a strip
of paper repeatedly folded in half (see for example [29]).

This paper surveys various occurrences and uses of the mirror formula and of
the folding lemma in combinatorics on words and number theory. Most of them
correspond to very recent works. The article is organized as follows. The first
part, divided into three sections, is devoted to the well-known Sturmian infinite
words and some of their combinatorial properties. The recurrence function of
an infinite word is introduced in Section 2. Section 3 is devoted to the study
of asymptotic repetitions occurring in infinite words, whereas Section 4 deals
with the palindrome density in infinite words. In the second part of Section
4, we investigate Diophantine questions, with a special focus on simultaneous
Diophantine approximation, in which the mirror formula plays a central rôle.
We begin in Section 5 with rational approximations of real numbers. Section 6
is devoted to uniform simultaneous rational approximation of a real number and
of its square. Then, Section 7 deals with another old problem in simultaneous



16 Words 2005

Diophantine approximation, namely the Littlewood conjecture. Finally, we give
in Section 8 some transcendence criteria for continued fractions obtained via the
subspace Schmidt’s theorem. The last section (Section 9) will allude to the use
of mirroring and folding for continued fractions of formal Laurent series.

Part I

Sturmian sequences

Sturmian sequences can be defined in several ways. We choose the arithmetic
definition. (For a general overview on Sturmian sequences, see for example [12].)

Definition 2.4 A sequence (un)n≥0 is called Sturmian if there exists a positive
irrational number α and a real number β ∈ [0, 1) such that

either ∀n ≥ 0, un = bα(n+ 1) + βc − bαn+ βc − bαc,

or ∀n ≥ 0, un = dα(n+ 1) + βe − dαn+ βe − dαe.

The number α is called the slope of the Sturmian sequence.

A sequence (un)n≥0 is called Sturmian characteristic (or simply characteris-
tic) if it is of the form above with β = 0.

Remark 2.5 Note that, from the definition, a Sturmian sequence takes its val-
ues in {0, 1}.

The following proposition shows a link between Sturmian sequences and
continued fractions. (We denote as usual by wa, where w is a finite word and a
a positive integer, the concatenation of a copies of the word w.)

Proposition 2.6 Let α be an irrational number in [0, 1) such that

α = [0; a1, a2, · · · ] .

Define the sequence of words (sj)j≥−1 by s−1 := 1, s0 := 0, s1 := sa1−1
0 s−1, and

sj := s
aj

j−1sj−2 for j ≥ 2. Then the sequence (sj)j≥0 tends to an infinite word
which is equal to the characteristic Sturmian word of slope α.

Definition 2.7 The Fibonacci sequence (or Fibonacci word) on the alphabet
{0, 1} is the characteristic Sturmian sequence defined as limj→+∞ sj where the
words sj are defined by s−1 := 1, s0 := 0, and, for all j ≥ 1, sj := sj−1sj−2.
Hence this sequence begins as follows

0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 · · ·



17

3 Repetitions in Sturmian sequences

Several authors have studied repetitions, i.e., factors (or sub-blocks) of the form
wa) occurring in a Sturmian sequence (see in particular [13, 16, 17, 22, 47, 69]).
It happens that the mirror formula is used in these studies. We give, as an
example of repetitions in Sturmian words and the mirror formula, a (rephrasing
of a) theorem due to Vandeth ( [69, Theorem 16]). First recall that the length of
a (finite) word w is denoted by |w|, and define fractional powers of finite words
as follows: if p is a positive real number and w a finite word, then wp := wbpcu,
where u is the prefix of w of length d(p − bpc)|w|e. We also define the critical
exponent of an infinite word as the supremum of all powers occurring in this
infinite word.

Theorem 3.1 (Vandeth) Let α be the real number whose (eventually periodic)
continued fraction expansion has the form

α = [0; b0, b1, b2, · · · , bm, b1, b2, · · · , bm · · · ],

where the bi’s are positive integers and bm ≥ b0 (in particular α is a quadratic
number). Then the critical exponent of the characteristic Sturmian sequence Sα

of slope α is

max
1≤t≤m

[2 + bt; bt−1, · · · , b1, bm, · · · , b1, bm, · · · , b1, · · · ]

Sketch of the proof. Vandeth introduces three morphisms X,L,R defined by
X(0) = 1, X(1) = 0, L(0) = 0, L(1) = 01, R(0) = 0, R(1) = 10. The proof is
then divided into three steps.

– Let T be the “minimal” morphism such that T (Sα) = Sα (the existence of
this morphism is granted by [21]). Then T can be written as

T = Lb0XLb1X · · ·Lbm−1XLbm−b0

(m the period of the continued fraction expansion of α has been taken minimal).
Define the morphisms Ft, t ∈ [−1,m− 1], by F−1 := Id, and for t ∈ [0,m− 1]

Ft := Lb0XLb1X · · ·LbtX

Then, for t ∈ [−1,m− 1],

Sα =
∞∏

k=0

Ft(0)st(k)Ft(1)

where st(k) := b(k + 1)α−1
t c − bkα

−1
t c and

αt := [0; bt+1, bt+2, · · · , bm, b1, b2, · · · , bm, b1, b2, · · · , bm, · · · ].
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– Let k := 2 + max1≤i≤m bi. If the word u is such that uk is a factor of Sα,
then u is conjugate to TnFt(0) for some n ≥ 0, and some t ∈ [0,m − 1] (recall
that two words are conjugate if they can be written respectively xy and yx).

– The critical exponent of Sα is equal to

max
1≤t≤m

[2 + bt; bt−1, · · · , b1, bm, bm−1, · · · , b1, bm, bm−1, · · · , b1, · · · ].

Remark 3.2 Note that Vandeth deduces from this theorem the integer criti-
cal exponent of any characteristic Sturmian sequence Sα provided that α has
bounded partial quotients (see [69, Theorem 17]).

4 Recurrence function, the Cassaigne spectrum

The recurrence function of an infinite sequence describes the size of maximal
gaps between two occurrences of a same factor (sub-block) in the sequence. More
formally

Definition 4.1 The recurrence function Ru(n) of a sequence u = (uk)k≥0 is
defined by: R(n) is the smallest integer such that each factor of length n in the
sequence u contains all factors of length n of the sequence u.

Note that R(n) ≤ +∞. If R(n) < +∞ for all n, the sequence is said to be
uniformly recurrent.

The recurrence quotient ρ = ρu of the sequence u is defined by ρu :=

lim sup
n→+∞

Ru(n)
n

.

Remark 4.2 It is not difficult to prove that ρ = +∞ if the sequence is not
uniformly recurrent, that ρ = 1 for a periodic sequence, and that 2 ≤ ρ ≤ +∞
otherwise.

The following result, due to Cassaigne [19], makes use of the mirror formula.

Theorem 4.3 (Cassaigne) Let u be a Sturmian sequence of slope

α = [a0; a1, a2, · · · ] .

Then
ρu = 2 + lim sup

i→+∞
[ai; ai−1, · · · , a1].

Remark 4.4 The set {ρu, u Sturmian} is studied in [19] and hence called the
Cassaigne spectrum.
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5 Palindrome density

In this section, we consider palindromic prefixes of infinite words. Let us recall
that a finite word W = w1w2 · · ·wn is a palindrome if it is invariant under mirror
symmetry, i.e., if it is equal to its reversal: W = W , where W := anan−1 · · · a1.
Let w = w1w2 · · ·wn · · · be an infinite word beginning in arbitrarily long palin-
dromes. For such a word, let us denote by (ni)i≥1 the increasing sequence of
all lengths of palindromic prefixes of w. By assumption, this sequence is thus
infinite. In [31], Fischler considers the quantity

δ(w) = lim sup
i→∞

ni+1

ni
.

If the word w begins in only finitely many palindromes, then we set δ(w) = +∞.
We then define the palindrome density of w, denoted by dp(w), by

dp(w) =
1

δ(w)
.

In particular, we always have 0 ≤ dp(w) ≤ 1 and dp(w) = 0 if w begins in
only finitely many palindromes. Furthermore, if w = WWW · · · is a periodic
word, then dp(w) = 1 if there exist two (possibly empty) palindromes U and
V such that W = UV , and dp(w) = 0 otherwise. Thus the palindrome density
of periodic infinite words is either maximal or minimal. This naturally leads
to the following question: what is the maximal palindrome density that can be
attained by an non-periodic infinite word? This problem is solved in [31].

Theorem 5.1 (Fischler) Let w be an infinite non-periodic word. Then,

dp(w) ≤ 1
γ
,

where γ = 1+
√

5
2 is the golden ratio.

The bound obtained in Theorem 5.1 is optimal and reached in particular for
the Fibonacci word. More generally, it is possible to compute dp(w) when w
is a characteristic Sturmian word. Indeed, if α = [0; a1, a2, · · · ] denotes a real
number and if wα is the associated characteristic Sturmian sequence, then

dp(wα) =
σ + 1
2σ + 1

,

where σ = lim supn→∞[an, an−1, · · · , a1]. In other words, the computation of
the palindrome density of a characteristic Sturmian sequence involves the mirror
formula, via the convergents to its slope.

Remark 5.2 As suggested by a referee, it is interesting to observe that the
characteristic Sturmian words associated with irrational numbers beginning in
arbitrarily long palindromes are exactly the standard infinite harmonic word
introduced in [18].
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We introduce now a modification of the Cassaigne spectrum (see Remark 4.4).
Let S ′c be defined by

S ′c = {dp(wα), α ∈ (0, 1) \Q} =
{
σ + 1
2σ + 1

, σ ∈ Sc

}
.

We also denote by Sp the set of the real numbers that can be written dp(w)
for some infinite word w. The following interesting result is proved in [31]: if
a non-periodic word w has a palindrome density that is “too large”, then there
exists an irrational number α such that dp(w) = dp(wα). This can be formalized
as follows.

Theorem 5.3 (Fischler) We have

Sp ∩
[

1√
3
, 1
)

= S ′c ∩
[

1√
3
, 1
)
.

We end this Section by mentioning that the motivation for studying the
palindrome density of infinite words comes from a problem of uniform simulta-
neous rational approximation. This problem will be introduced in Section 7.

Part II

Diophantine approximation

Diophantine approximation is essentially devoted to the following question: how
good an approximation of a given real number by rationals p/q as a function
of q can be? Continued fractions and Diophantine approximation are of course
intimately connected, since the best rational approximations to a real number
are produced by truncating its continued fraction expansion. Thus many Dio-
phantine problems can be solved thanks to continued fractions.

It is however much less known, and quite new, that continued fractions can
be used in order to study some questions of simultaneous approximation. We
recall that simultaneous rational approximation deals with the more general
problem of approximating several real numbers by rationals having the same
denominators. Thus, given real numbers ξ1, ξ2, . . . , ξn, the task is to determine
how good an approximation by rationals p1/q, p2/q, . . . , pn/q as a function of q
can be. Mainly due to the lack of a suitable multi-dimensional continued fraction
algorithm, this kind of problems are generally considered as rather difficult.

The purpose of this second part is to review some old Diophantine questions
together with recent developments where continued fractions, thanks to the mir-
ror formula, are used to provide simultaneous rational approximations for some
real numbers. In this regard, Section 6 is an exception since it deals with ratio-
nal approximation of (only) one real number, defined by its binary expansion.
However, Section 6 is still concerned by both Diophantine approximation and
the mirror formula.
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6 Exact irrationality measure

The irrationality measure of an irrational real number α, denoted by µ(α), is
defined as the supremum of the positive real numbers τ for which the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1
qτ

has infinitely many solutions (p, q) ∈ Z2. Thus, µ(α) measures the quality of the
best rational approximations to α. Let us recall some well-known facts about
this notion. The theory of continued fractions ensures that µ(α) ≥ 2, for any
irrational number α. Algebraic irrational numbers have irrationality measure
2, as follows from Roth’s theorem [57]. This is also the case for almost all real
numbers (with respect to the Lebesgue measure). This last result is due to
Khintchine [34] (see also [36]). Let us also mention that Liouville numbers are
defined as the real numbers having an infinite irrationality measure.

It is in general a challenging problem to obtain an irrationality measure, i.e.,
to bound the irrationality measure of a given real number. In this section we
consider a particular class of irrational numbers having the spectacular property
that both their b-adic expansion and their continued fraction expansion can be
explicitly determined. We will deduce from this last representation the exact
value of their irrationality measure.

With an irrational number α and an integer b, both larger than 1, we asso-
ciate the real number Sb(α) defined by

Sb(α) = (b− 1)
+∞∑
n=1

1
bbnαc .

The following nice result can be found in [6] (see also [26]).

Theorem 6.1 (Adams and Davison) Let α := [a0; a1, a2, · · · ] be a positive
irrational number and b be an integer, both larger than 1. Let pn/qn be the n-th
convergent to 1/α. For n ≥ 1, set

tn = (bqn − bqn−2)/(bqn−1 − 1).

Then,
Sb(α) = [0; t1, t2, · · · , tn, · · · ].

We easily deduce from Theorem 6.1 and the mirror formula, the exact irra-
tionality measure for Sb(α) for any irrational α and any integer b, both larger
than 1.
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Theorem 6.2 Let α := [a0; a1, a2, · · · ] be a positive irrational number and b be
an integer, both larger than 1. Then,

µ(Sb(α)) = 1 + lim sup
n→∞

[an; an−1, · · · , a0].

Let us remark that, up to a translation, the set M = {µ(Sb(α)), α 6∈ Q}
is equal to the Cassaigne spectrum (see Remark 4.4). As a consequence, we
always have that µ(Sb(α)) ≥ 3+

√
5

2 > 2. In virtue of Roth’s theorem, Sb(α) is
thus transcendental.

Proof (of Theorem 6.2) We keep the notations of Theorem 6.1. For any
nonnegative integer, let us denote by Pn/Qn the n-th convergent to Sb(α). By
Theorem 6.1, we know that (Qn)n≥0 is the sequence defined by

Q0 = 1, Q1 = 1, and for n ≥ 2, Qn+1 = tn+1Qn +Qn−1.

We first observe that, for any nonnegative integer n, Qn = (bqn − 1)/(b− 1).
Namely, for n = 0 and n = 1, this follows from q0 = 0 and q1 = 1. For n ≥ 2,
this is implied by

tn+1

(
bqn − 1
b− 1

)
+
bqn−1 − 1
b− 1

=
(
bqn+1 − bqn−1

bqn − 1

)(
bqn − 1
b− 1

)
+
bqn−1 − 1
b− 1

=
bqn+1 − bqn−1

b− 1
+
bqn−1 − 1
b− 1

=
bqn+1 − 1
b− 1

·

On the other hand, the theory of continued fractions gives

1
2QnQn+1

<

∣∣∣∣Sb(α)− Pn

Qn

∣∣∣∣ < 1
QnQn+1

. (6.1)

This can be expressed as follows

1

Q
1+(log Qn+1/ log Qn)+(log 2/ log Qn)
n

<

∣∣∣∣Sb(α)− Pn

Qn

∣∣∣∣ < 1

Q
1+(log Qn+1/ log Qn)
n

.

Furthermore, we have that logQn = log(bqn − 1)− log(b− 1), which implies

lim sup
n→∞

logQn+1

logQn
= lim sup

n→∞

qn+1

qn
.

We thus can precisely estimate the quality of approximations of Sb(α) by the
rationals Pn/Qn. From (6.1) and the mirror formula, we deduce that the in-
equality ∣∣∣∣Sb(α)− Pn

Qn

∣∣∣∣ < 1
Qτ

n



23

has infinitely many solutions as soon as

τ < 1 + lim sup
n→∞

[an; an−1, · · · , a0],

whereas it has only finitely many solutions if

τ > 1 + lim sup
n→∞

[an; an−1, · · · , a0].

Since the rationals Pn/Qn are by definition the best rational approximations to
Sb(α), we get that µ(Sb(α)) = 1 + lim supn→∞[an; an−1, · · · , a0], concluding the
proof. �

7 Simultaneous approximation for a number and its
square

The study of approximations to a real number by algebraic numbers of bounded
degree was initiated in 1960 by Wirsing [70]. He proved that if n is an integer
at least equal to 2 and if ξ is not an algebraic number of degree at most n, there
are infinitely many algebraic numbers α of degree at most n satisfying

|ξ − α| � H(α)−(n+3)/2 (7.1)

where H(α) denotes the height of α. (Recall that the height of an algebraic
number is defined as the sum of its degree and of the absolute values of the
coefficients of its minimal polynomial with relatively prime integer coefficients.)
The constant implied by the notation � depends here on n and ξ. A famous
conjecture, due to Wirsing [70] and generally referred as Wirsing’s conjecture,
claims that the right exponent in (7.1) is equal to n + 1 instead of (n + 3)/2.
Up to now, the Wirsing conjecture is only known to be true for n = 2; this is a
result of Davenport and Schmidt [24].

In 1969, Davenport and Schmidt [25] investigated the similar question where
algebraic numbers are replaced by algebraic integers. In the rest of this section,
we will focus on the approximation to a real number by cubic integers, i.e., on
a question related to the case n = 3 in (7.1). In this direction, Davenport and
Schmidt [25] proved the following result.

Theorem 7.1 (Davenport and Schmidt) Let γ = 1+
√

5
2 . Let ξ be a real

number that is neither rational nor quadratic. Then, there exist a positive con-
stant c1 and infinitely many algebraic integers α of degree at most 3 such that

|ξ − α| ≤ c1H(α)−γ2
,

where H(α) denotes the height of the algebraic number α.
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By duality, approximation to a real number by algebraic numbers of bounded
degree is also intimately connected with simultaneous uniform rational approx-
imation to successive powers of a real number. In particular, approximation to
a real number ξ by algebraic cubic integers is related to simultaneous uniform
rational approximation to ξ and ξ2, and the authors of [25] derive Theorem 7.1
from the following result.

Theorem 7.2 (Davenport and Schmidt) Let γ = 1+
√

5
2 . Let ξ be a real

number that is neither rational nor quadratic. Then, there exist a positive con-
stant c2 and arbitrarily large values of X such that the inequalities

|x0| ≤ X, |x0ξ − x1| ≤ c2X−1/γ , |x0ξ
2 − x2| ≤ c2X−1/γ ,

do not have any nonzero solution (x0, x1, x2) ∈ Z3.

For a long time it was believed that the value γ2 in Theorem 7.1 could be
improved to 3. This is however not true, as recently discovered by Roy [59].
Actually, Roy proves that the value γ2 in Theorem 7.1 is optimal.

Theorem 7.3 (Roy) Let γ = 1+
√

5
2 . There exist a positive constant c3 and a

real number ξ that is neither rational nor quadratic, such that for any algebraic
integer α of degree at most 3, we have

|ξ − α| ≥ c3H(α)−γ2
.

To obtain this result, Roy [58,60] proves that the value γ is in fact optimal in
Theorem 7.2, against the natural conjecture that the value γ could be improved
to 2.

Theorem 7.4 (Roy) Let γ = 1+
√

5
2 . There exist a positive constant c4 and a

real number ξ that is neither rational nor quadratic, such that the inequalities

|x0| ≤ X, |x0ξ − x1| ≤ c4X−1/γ , |x0ξ
2 − x2| ≤ c4X−1/γ ,

have a nonzero solution (x0, x1, x2) ∈ Z3 for any real number X > 1.

Following Roy, a real number satisfying the exceptional Diophantine condi-
tions of Theorem 7.4 is called an extremal number. It is proved in [60] that the
set of extremal numbers is countable. Surprisingly, Roy provides the following
“natural” example of an extremal real number. Let a and b be two distinct
positive integers. Let

ξ := [a; b, a, a, b, a, b, a, a, b, · · · ],

where abaababaab · · · denotes the Fibonacci word over the alphabet {a, b} (see
Definition 2.7 in Part I). Then, Roy proves [60] that ξ is an extremal number.
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Of course the attractive work of Roy lead to many stimulating questions. For
a real number ξ we define, following [14], the exponent λ̂2(ξ) as the supremum
of the real numbers λ such that the inequalities

|x0| ≤ X, |x0ξ − x1| ≤ c4X−1/λ, |x0ξ
2 − x2| ≤ c4X−1/λ,

have a nonzero solution (x0, x1, x2) ∈ Z3 for any large enough real number X.
Bugeaud and Laurent [14] showed how to use Roy’s construction to provide
explicit real numbers for which the exponent λ̂2 takes values beetwen 2 (the
expected value) and γ (the optimal value).

Theorem 7.5 (Bugeaud and Laurent) Let m and n be two distinct positive
integers. Let α := [0; a1, a2, · · · ] be an irrational real number and let (bn)n≥1 be
the characteristic Sturmian sequence of slope α defined on the alphabet {m,n}.
Let ξ be the non-quadratic and irrational real number defined by

ξ := [0; b1, b2, · · · ].

Then,

λ̂2(ξ) =
σ + 1
2σ + 1

,

where σ = lim supn→∞ [an, an−1, · · · , a1].

We end this section with a focus on the main steps of the proof of Theo-
rem 7.3. Our purpose is principally to make clear the central rôle played here
by the mirror formula. In this respect, our presentation is quite far from the
one of the original proof in [60].

Proof (of Theorem 7.3) The proof can essentially be divided into three steps.
In the first and more important step, we show how continued fractions can be
used for finding simultaneous rational approximations to a real number and its
square, via palindromes.

Let ξ = [0; a1, a2, · · · ] be a positive real irrational number, and denote by
pn/qn its convergents, i.e., pn/qn = [0; a1, · · · , an]. If the word a1 · · · an is a
palindrome, then the mirror formula implies that

qn−1

qn
= [0; an, an−1, · · · , a1] = [0; a1, · · · , an] =

pn

qn
.

In this case, we have pn = qn−1. By the theory of continued fractions, we get∣∣∣∣ξ − pn

qn

∣∣∣∣ < 1
q2n

and
∣∣∣∣ξ − pn−1

qn−1

∣∣∣∣ < 1
q2n−1

.

We then infer from 0 < ξ < 1, a1 = an and qn ≤ (an + 1)qn−1 that
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∣∣∣∣ξ2 − pn−1

qn

∣∣∣∣ ≤ ∣∣∣∣ξ2 − pn−1

qn−1
× pn

qn

∣∣∣∣ ≤ ∣∣∣∣ξ +
pn−1

qn−1

∣∣∣∣× ∣∣∣∣ξ − pn

qn

∣∣∣∣+
1

qnqn−1

≤ 2
∣∣∣∣ξ − pn

qn

∣∣∣∣+
1

qnqn−1
<
a1 + 3
q2n

.

Consequently, if the word a1a2 · · · an is a palindrome, then

|qnξ − pn| <
1
qn

and |qnξ2 − pn−1| <
a1 + 3
qn

. (7.2)

Let us summarize our first step. Each time we will find a palindromic con-
vergent pn/qn to the real ξ (i.e., pn/qn = [0; a1, · · · , an] and a1 · · · an is a palin-
drome), this will provide very good simultaneous rational approximations to ξ
and ξ2, respectively given by pn/qn and pn−1/qn.

An important feature of the problem we are studying is that we have to
prove a uniform statement, that is, it deals with uniform simultaneous rational
approximation. In the second step, which will now appear as very natural, we
show how the palindrome density of the continued fraction expansion of a real
ξ is related to such a uniform statement.

First, let us assume that the infinite word a = a1a2 · · · an · · · begins in in-
finitely many palindromes. We will use the notation introduced in Section 5.
We thus denote by (ni)i≥1 the increasing sequence of all lengths of palindromic
prefixes of a, and by dp(a) the palindrome density of the word a. Let us assume
that the palindrome density of a is large enough to ensure that qni+1 ≤ cqτ

ni
, for

some real number τ larger than one and for a positive constant c independent
of i. Then, it easily follows from (7.2) that for any real number X > 1, the
inequalities

|x0| ≤ X, |x0ξ − x1| ≤ cX−1/τ , |x0ξ
2 − x2| ≤ cX−1/τ , (7.3)

have a nonzero solution (x0, x1, x2) ∈ Z3. Indeed, given X there always exists
a positive integer n such that qn ≤ X < qn+1, and the triple (qn, pn, pn−1) is a
nonzero solution for (7.3).

Thus, if ξ is a real number whose continued fraction expansion begins in many
palindromes, then ξ and ξ2 are uniformly and simultaneously well approximated
by rationals. In view of Section 5, the Fibonacci continued fraction thus appears
as a natural candidate for our problem. This ends our second step.

From now on, we assume that a = abaab · · · denotes the Fibonacci word over
the alphabet {a, b} and that ξ := [a; b, a, a, b, · · · ]. We want to prove that ξ is
an extremal number. We thus have first to estimate the growth of the sequence
(ni)i≥1. Actually, the value of ni can be computed exactly (see Section 5 for a
proof of this result) and we get that

ni = Fi+1 − 2, (7.4)
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where Fi denotes the i-th Fibonacci number.
To end the proof, it now suffices (in view of (7.3)) to prove that there exists

a positive constant c independent of i such that

qni+1 ≤ cqγ
ni
, (7.5)

where γ = 1+
√

5
2 denotes as previously the golden ratio. Lemma 10.2 and Equal-

ity (7.4) imply that

c5 <
qni+1

qniqni−1

< c6,

for any i ≥ 2 and for some positive constants c5 and c6. We set

c7 = max

{
c6,

(c5qn1)γ

qn2

,
(c5qn2)1/γ

qn1

}
.

Since c7 ≥ c6, we obviously get that

c5 <
qni+1

qniqni−1

< c7. (7.6)

We set c8 = cγ5/c7 and c9 = cγ7/c5, and we are now going to prove by induction
on i that

c8q
γ
ni
≤ qni+1 ≤ c9qγ

ni
(7.7)

holds for any i ≥ 2. For i = 2, this follows from (7.6) and from the definition of
c7. Let us assume that (7.7) holds for a fixed integer i ≥ 2. By (7.6), we have

c5q
γ
ni

(
q1−γ
ni

qni−1

)
< qni+1 < c7q

γ
ni

(
q1−γ
ni

qni−1

)
and since γ(γ − 1) = 1, we obtain

c5q
γ
ni

(
qniq

−γ
ni−1

)1−γ
< qni+1 < c7q

γ
ni

(
qniq

−γ
ni−1

)1−γ
.

We thus deduce from (7.7) that(
c5c

1−γ
9

)
qγ
ni
< qni+1 <

(
c8c

1−γ
5

)
qγ
ni
.

By definition of c8 and c9, and since γ(γ − 1) = 1, this gives

c8q
γ
ni
< qni+1 < c9q

γ
ni
.

We thus have shown that (7.7) holds for any integer i ≥ 2. In virtue of (7.5) and
(7.3), ξ is an extremal number, which concludes the proof of Theorem 7.3. �
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8 The Littlewood conjecture

It follows from the theory of continued fractions that, for any real number α,
there exist infinitely many positive integers q such that

q · ‖qα‖ < 1, (8.1)

where ‖ · ‖ denotes the distance to the nearest integer. In particular, for any
given pair (α, β) of real numbers, there exist infinitely many positive integers q
such that

q · ‖qα‖ · ‖qβ‖ < 1.

A famous open problem in simultaneous Diophantine approximation, called the
Littlewood conjecture (see for example [42]), claims that in fact, for any given
pair (α, β) of real numbers, a stronger result holds.

Littlewood’s conjecture. For any given pair (α, β) of real numbers,

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0. (8.2)

Let us denote by Bad the set of badly approximable numbers, i.e.,

Bad := {α ∈ R : inf
q≥1

q · ‖qα‖ > 0}.

The set Bad is intimately connected with the theory of continued fractions. In-
deed, a real number lies in Bad if, and only if, it has bounded partial quotients
in its continued fraction expansion. It then follows that the Littlewood conjec-
ture holds true for the pair (α, β) if α or β has unbounded partial quotients in
its continued fraction expansion. It also holds when the numbers 1, α, and β
are linearly dependent over the rational integers, as follows from (8.1).

The first significant contribution towards the Littlewood conjecture goes back
to Cassels and Swinnerton-Dyer [20] who showed that (8.2) holds when α and
β belong to the same cubic field. However, since it is still not known whether
cubic real numbers have bounded partial quotients or not (see the discussion
at the beginning of Section 9), their result does not yield examples of pairs of
badly approximable real numbers for which the Littlewood conjecture holds.

In view of the above discussion, it is natural to restrict our attention to
independent parameters α and β, both lying in Bad. This naturally leads to
considering the following problem:

Question 8.1 Given α in Bad, is there any independent β in Bad so that the
Littlewood conjecture is true for the pair (α, β)?

Apparently, Question 8.1 remained unsolved until 2000. It has then been
answered positively by Pollington and Velani [49], who established the following
stronger result.
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Theorem 8.2 (Pollington and Velani) Given α in Bad, there exists a sub-
set A(α) of Bad with Hausdorff dimension one, such that, for any β in A(α),
there exist infinitely many positive integers q with

q · ‖qα‖ · ‖qβ‖ ≤ 1
log q

. (8.3)

In particular, the Littlewood conjecture holds for the pair (α, β) for any β in
A(α).

The proof of this result depends on sophisticated tools from metric number
theory. At the end of [49], Pollington and Velani give an alternative proof of a
weaker version of Theorem 8.2, namely with (8.3) replaced by (8.2). However,
even for establishing this weaker version, deep tools from metric number theory
are still needed, including in particular a result of Davenport, Erdős and LeVeque
on uniform distribution [23] and the Kaufman measure constructed in [33].

Very recently, Einsiedler, Katok and Lindenstrauss [30] proved the following
remarkable statement.

Theorem 8.3 (Einsideler, Katok and Lindenstrauss) The set of pairs of
real numbers for which the Littlewood conjecture does not hold has Hausdorff
dimension zero.

Obviously, this gives a positive answer to Question 1. Actually, the authors
established part of the Margulis conjecture on ergodic actions on the homoge-
neous space SLk(R)/SLk(Z), for k ≥ 3 (see [44]). It was previously known that
such a result would have implications to Diophantine questions, including the
Littlewood conjecture. Their sophisticated proof used, among others, deep tools
from algebra and from the theory of dynamical systems, involving in particular
the important work of Ratner (see for example [56]).

De Mathan gave in [45] an explicit construction of pairs of real numbers
(α, β) with bounded partial quotients, such that 1, α, β are linearly independent
over the rationals and satisfy Littlewood’s conjecture. We do not resist to give a
particular case of De Mathan’s result ( [45, p. 264]). Recall that the Thue-Morse
sequence on the alphabet {1, 2} is the sequence (an)n≥0 defined by an = 1 (resp.
an = 2) if the sum of the binary digits of n is even (resp. odd).

Theorem 8.4 (De Mathan) Let A := [1; 2, 2, 1, 2, 1, 1, 2, 2, · · · ] be the real
number whose continued fraction expansion is the Thue-Morse sequence on the
alphabet {1, 2}. Then, 1, A, 1/A are linearly independent on the rationals, and
(A, 1/A) satisfies the Littlewood conjecture.

We are now going to show how our favorite formula allows the authors of [3]
to provide a short and elementary positive answer to Question 8.1, and even
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a stronger form of it. Their approach rests on the basic theory of continued
fractions.

Theorem 8.5 (Adamczewski and Bugeaud) Let ϕ be a positive and non-
increasing function defined on the set of positive integers such that ϕ(1) = 1,
limq→+∞ ϕ(q) = 0 and limq→+∞ qϕ(q) = +∞. Given α in Bad, there exists
an uncountable subset Bϕ(α) of Bad such that, for any β in Bϕ(α), there exist
infinitely many positive integers q with

q · ‖qα‖ · ‖qβ‖ ≤ 1
q · ϕ(q)

. (8.4)

In particular, the Littlewood conjecture holds for the pair (α, β) for any β in
Bϕ(α). Furthermore, the set Bϕ(α) can be effectively constructed.

It is of interest to compare this result with Theorem 8.2. Regarding the
Littlewood conjecture, Theorem 8.2 is stronger since the set A(α) has Hausdorff
dimension one whereas the set Bϕ(α) has only the power of the continuum. On
the other hand, one can remark that the Diophantine property in Theorem 8.5 is
really stronger than the one of Theorem 8.2. In particular, one can doubt on the
truth of a statement analogous to Theorem 8.2, with the Diophantine condition
of Theorem 8.5. However that may be, the main interest of Theorem 8.5 surely is
that the proof is elementary and gives a generic way to provide explicit examples
for the Littlewood conjecture.

Proof (of Theorem 8.5) Let α = [0; a1, a2, · · · , ak, · · · ] be in Bad, and let M
be an integer at least equal to 2 such that ak ≤ M , for any positive integer k.
We first construct inductively a rapidly increasing sequence (nj)j≥1 of positive
integers. We set n1 = 1 and we proceed with the inductive step. Assume that
j ≥ 2 is such that n1, . . . , nj−1 have been constructed. Then, we choose nj

sufficiently large in order that

ϕ(2(mj−1)/2) ≤ 1
4
·
(

1
(M + 3)mj−1+1

)2

, (8.5)

where mj = n1 + n2 + · · ·+ nj + (j − 1). Such a choice is always possible since
ϕ tends to zero at infinity and since the right hand side of (8.5) only depends
on n1, n2, . . . , nj−1.

Our sequence (nj)j≥1 being now constructed, for an arbitrary integer se-
quence t = (tk)k≥1 with values in {M + 1,M + 2}, we set

βt = [0; b1, b2, · · · ]
= [0; an1 , · · · , a1, t1, an2 , · · · , a1, t2, an3 , · · · , a1, · · · , a1, tj−1, anj , · · · ].

Then, we introduce the set

Bϕ(α) =
{
βt, t ∈ {M + 1,M + 2}Z≥1

}
.
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Clearly, the set Bϕ(α) has the power of the continuum.
Let βt = β lie in Bϕ(α). It remains to prove that (8.4) holds for the pair

(α, β). Denote by (pj/qj)j≥1 (resp. by (rj/sj)j≥1) the sequence of convergents
to α (resp. to β).

The key point in this proof is again a right use of the mirror formula. Namely,
it gives

smj−1

smj

= [0; a1, · · · , anj , tj−1, a1, · · · , anj−1 , tj−2, · · · , t1, a1, · · · , an1 ],

which implies that ‖smjα‖ is small. More precisely, using Lemma 10.1, we
obtain:

‖smjα‖ ≤ smj q
−2
nj
.

On the other hand, we have

‖smjβ‖ ≤
1
smj

,

as follows from the theory of continued fractions. We thus derive that

smj · ‖smjα‖ · ‖smjβ‖ ≤ smj q
−2
nj
.

In order to satisfy (8.4), it is enough to have

smj q
−2
nj
≤ s−1

mj
ϕ(smj )−1,

that is,
s2mj

ϕ(smj ) ≤ q2nj
.

We infer from Lemma 10.2 that

smj ≤ 2Kmj−nj (b1, . . . , bmj−nj )Knj (bmj−nj+1, . . . , bmj ),

and
Knj (bmj−nj+1, . . . , bmj ) = Knj (a1, . . . , anj ) = qnj .

Consequently, (8.4) holds as soon as

4ϕ(smj ) ≤ Kmj−nj (b1, . . . , bmj−nj )−2 = Kmj−1+1(b1, . . . , bmj−1+1)−2. (8.6)

Since the partial quotients of β are bounded by M+2, we obtain by Lemma 10.3

Kmj−1+1(b1, . . . , bmj−1+1) < (M + 3)mj−1+1. (8.7)

On the other hand, Lemma 10.3 also implies that

smj ≥
√

2
(mj−1)

(8.8)

It thus follows from (8.5) that (8.6) holds, since ϕ is a non-increasing function.
This completes the proof. �
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9 Transcendental continued fractions

It is widely believed (the question was first asked by Khintchine [35] cited in [62])
that the continued fraction expansion of any irrational algebraic number α is ei-
ther eventually periodic (and this is the case if and only if α is a quadratic
irrational) or it contains arbitrarily large partial quotients; but we seem to be
very far away from a proof (or a disproof). A first step consists in provid-
ing explicit examples of transcendental continued fractions. The first result of
this type is due to Liouville [41], who constructed real numbers whose sequence
of partial quotients grows very fast, too fast for the numbers to be algebraic.
Subsequently, various authors used deeper transcendence criteria from Diophan-
tine approximation to construct other classes of transcendental continued frac-
tions. Of particular interest is the work of Maillet [43] (see also Section 34 of
Perron [48]), who was the first to give examples of transcendental continued
fractions with bounded partial quotients. Further examples were provided by
Baker [9, 10], Shallit [61], Davison [27], M. Queffélec [55], Allouche, Davison,
Queffélec and Zamboni [8] and Adamczewski and Bugeaud [1], among others.
Note that the folding lemma is used by Shallit in [61] (see also Section 11).

In the previous two sections, we have shown how the mirror formula can
be used to find simultaneous rational approximations for some real numbers.
On the other hand, algebraic numbers cannot be “too well” simultaneously
approximated by rationals. This is a multi-dimensional Roth’s principle (see
Theorem 9.1 below). Such considerations give naturally rise to transcendence
statements, as we will see in this section. We will first be interested in a familly
of “quasi-periodic” continued fractions introduced by Maillet [43] and studied
later by Baker in [9] and [10]. Then, we will investigate real numbers whose
sequence of partial quotients enjoys another combinatorial property, namely is
“symmetrical”, in the sense that it begins in arbitrarily long palindromes or
quasi-palindromes.

The transcendence criteria presented in this section rest on the powerful
Subspace Schmidt Theorem [64] (see also [65]) that we state now, as well as on
a heavy use of the mirror formula.

Theorem 9.1 (W. M. Schmidt) Let m ≥ 2 be an integer. Let L1, . . . , Lm be
linearly independent linear forms in x = (x1, . . . , xm) with algebraic coefficients.
Let ε be a positive real number. Then, the set of solutions x = (x1, . . . , xm) in
Zm to the inequality

|L1(x) . . . Lm(x)| ≤ (max{|x1|, . . . , |xm|})−ε

lies in the union of finitely many proper subspaces of Qm.

As an example of a by-product of the Subspace Theorem, we mention a
result concerning the simultaneous rational approximation of a real number and
its square. It was originally proved in [63].
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Theorem 9.2 (W. M. Schmidt) Let ξ be a real number, which is neither ra-
tional, nor quadratic. If there exist a real number w > 3/2 and infinitely many
triples of integers (p, q, r) such that

max
{∣∣∣∣ξ − p

q

∣∣∣∣, ∣∣∣∣ξ2 − r

q

∣∣∣∣} <
1
|q|w

,

then ξ is transcendental.

A direct consequence of this result is that the extremal numbers considered
in Section 7 are transcendental. The following dual form of Theorem 9.2, also
proved in [63], which limits the approximation of an algebraic non-quadratic
number by quadratic numbers, can also be derived from the Suspace Theorem.

Theorem 9.3 (Schmidt) Let ξ be a real number, which is neither rational,
nor quadratic. If there exist a real number w > 3 and infinitely many quadratic
numbers α such that

|ξ − α| < H(α)−w,

then ξ is transcendental (as previously H(α) is the height of α).

9.1 Maillet-Baker’s continued fractions

As already mentioned, the first examples of transcendental real numbers with
bounded partial quotients were constructed by Maillet [43]. More precisely,
Maillet proved that if a = (an)n≥1 is a non-eventually periodic sequence of
positive integers, and if there are infinitely many positive integers n such that

an = an+1 = . . . = an+λ(n),

then the real number ξ = [0; a1, a2, · · · ] is transcendental provided that λ(n) is
larger than a certain function of qn, the denominator of the nth convergent to ξ.
Actually, the result of Maillet is more general and also includes the case of rep-
etitions of a block of consecutive partial quotients. His proof is based on a gen-
eral form of the Liouville inequality which limits the approximation of algebraic
numbers by quadratic irrationals. Indeed, under the previous assumption, the
quadratic irrational real numbers ξn = [0; a1, a2, · · · , an−1, an, an, · · · , an, · · · ]
are “too good” approximations to ξ.

It is not very surprising that the breaktrough made by Roth [57] in 1955
lead to an improvement of this result. Thus, Baker [9] used in 1962 the Roth
theorem for number fields obtained by LeVeque [38] to strongly improve the
results of Maillet and make them more explicit. His main idea was to see that if
the quadratic approximations found by Maillet lie in a same quadratic number
field, then one can favorably replace the use of the Liouville inequality by the
Roth theorem for number fields. In particular, Baker proved the following result.
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Theorem 9.4 (Baker) Let A be a positive integer. Let a = (an)n≥1 be a non-
eventually periodic sequence of positive integers, all bounded by A. Let (nk)k≥1

be an increasing sequence of positive integers and let (λk)k≥1 be a sequence of
positive integers satisfying

lim sup
k→∞

λk

nk
> B = B(A),

where B is defined by

B = 2

 log
((
A+
√
A2 + 4

)
/2
)

log
(
(1 +

√
5)/2

)
− 1.

Let us assume that for any positive integer k, we have

ank
= ank+1

= . . . = ank+λk
.

Then, the real number ξ := [a0; a1, a2, · · · ] is transcendental.

In order to improve this result, it is quite tempting to apply the Subspace
Theorem instead of LeVeque’s theorem. We first mention that a direct use
of Theorem 9.3 in Baker’s approach leads to a weaker form of Theorem 9.4.
It seems however possible to reach a smaller bound than the one obtained in
Theorem 9.4 by using the quadratic approximations previously considered by
Maillet or by Baker and the ideas of [1], see [28]. In [4], the authors show how
the method introduced in Section 9.2 can also be used to improve Theorem 9.4
in some particular cases.

Quite surprisingly, a tricky use of the Subspace Theorem based on the mirror
formula allows to considerably relax the transcendence criterion obtained by
Baker. In particular, the following result, obtained in [2], does not depend on
the values of the partial quotients of the real number under consideration.

Theorem 9.5 (Adamczewski and Bugeaud) Under the assumptions of
Theorem 9.4, the real number ξ is transcendental if

lim sup
k→∞

λk

nk
> 0. (9.1)

Proof By assumption, for any positive integer k, the following equalities hold:
ank

= ank+1
= . . . = ank+λk

. Let us denote by a(k) the positive integer satis-
fying a(k) = ank

. Since the partial quotients of ξ are bounded, the pigeon-hole
principle implies that infinitely many of the a(k) take the same value that we
denote by a.

Without loss of generality, we thus assume that ank
= ank+1

= . . . =
ank+λk

= a, for any positive integer k. Now, let us introduce the real α =
[a; a, a, a, · · · ], whose partial quotients are all equal to a. Then, α is a quadratic



35

number, root of the polynomial X2 − aX − 1. For the reader’s convenience, we
introduce some more notation. Let us denote by pn/qn (resp. by rn/sn) the n-th
convergent to ξ (resp. to α). Then, we set Pk = pnk+λk

, Qk = qnk+λk
, P ′

k =
pnk+λk−1, Q

′
k = qnk+λk−1 and Sk = sλk

.
By assumption, we already know that ξ is irrational and not quadratic.

Therefore, we assume that ξ is algebraic and we aim at deriving a contradiction.
By the theory of continued fractions, we have

|Qkξ − Pk| <
1
Qk

and |Q′
kξ − P ′

k| <
1
Q′

k

. (9.2)

On the other hand, since by assumption

Pk

Qk
= [a0; a1, · · · , ank−1, a, a, · · · , a],

we get from the mirror formula that

Qk

Q′
k

= [a; a, a, · · · , a, ank−1, · · · , a0].

Then, Lemma 10.1 implies

∣∣Q′
kα−Qk

∣∣ < Q′
k

S2
k

. (9.3)

Consider now the four linearly independent linear forms with algebraic coef-
ficients:

L1(X1, X2, X3, X4) = ξX1 −X3,
L2(X1, X2, X3, X4) = ξX2 −X4,
L3(X1, X2, X3, X4) = αX2 −X1,
L4(X1, X2, X3, X4) = X1.

Evaluating them on the quadruple (Qk, Q
′
k, Pk, P

′
k), it follows from (9.2) and

(9.3) that ∏
1≤j≤4

|Lj(Qk, Q
′
k, Pk, P

′
k)| < 1

S2
k

. (9.4)

By assumption the ak are bounded by A and Lemma 10.3 implies that Qk ≤
Ank+λk for any positive integer k. On the other hand, Lemma 10.3 also gives
that Sk ≥ (

√
2)λk−1, for any positive integer k. It thus follows that

Sk ≥ A
“

log
√

2
log M

”
(λk−1)

,

for any positive integer k. We infer from (9.4) and (9.1) that∏
1≤j≤4

|Lj(Qk, Q
′
k, Pk, P

′
k)| ≤ Q−ε

k
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holds for some positive real number ε and for k large enough.
It then follows from Theorem 9.1 that the points (Qk, Q

′
k, Pk, P

′
k) lie in the

union of a finite number of proper subspaces of Q4. Thus, there exist a nonzero
integer quadruple (x1, x2, x3, x4) and an infinite set of distinct positive integers
N such that

x1Qk + x2Q
′
k + x3Pk + x4P

′
k = 0, (9.5)

for any k in N . Dividing (9.5) by Q′
k, we obtain

x1
Qk

Q′
k

+ x2 + x3
Pk

Qk
· Qk

Q′
k

+ x4
P ′

k

Q′
k

= 0. (9.6)

By letting k tend to infinity along N in (9.6), we obtain

x1α+ x2 + (x3α+ x4)ξ = 0.

Since ξ is not quadratic, it does not in particular lie in Q(α). This implies that
x3α + x4 = 0 and, since α is irrational, it follows that x3 = x4 = 0. Then,
x1 = x2 = x3 = x4 = 0, wich is a contradiction. �

9.2 Palindromic continued fractions

A common feature of the results mentioned at the beginning of this section
is that they apply to real numbers whose continued fraction expansions are
‘quasi-periodic’, in the sense that they contain arbitrarily long blocks of partial
quotients which occur precociously at least twice. We now consider real num-
bers whose sequence of partial quotients enjoys another combinatorial property,
namely is ‘symmetrical’, in the sense that it begins in arbitrarily long palin-
dromes or quasi-palindromes. The results stated below are proved in [4] (see
also [5]) and rest on the Subspace Theorem.

We first mention the following simple transcendental criterion for palin-
dromic continued fractions.

Theorem 9.6 (Adamczewski and Bugeaud) Let a = (an)n≥1 be a sequence
of positive integers. If the word a begins in arbitrarily long palindromes, then
the real number ξ := [0; a1, a2, · · · , an, · · · ] is either quadratic or transcendental.

As shown in [5], given two distinct positive integers a and b, Theorem 9.6 eas-
ily implies the transcendence of the real number [0; a1, a2, · · · ], whose sequence
of partial quotients is the Thue-Morse sequence on the alphabet {a, b}, i.e., with
an = a (resp. an = b) if the sum of the binary digits of n is odd (resp. even).
This result is originally due to M. Queffélec [55] who used a different approach.
We also point out that, quite surprisingly, there is no assumption on the growth
of the sequence (an)n≥0 in Theorem 9.6.

Proof (of Theorem 9.6) We have to prove that if ξ is algebraic, then it is
quadratic irrational. Clearly, ξ is not rational. Therefore, we assume that ξ is a
non-quadratic algebraic number and we aim at deriving a contradiction.
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Let us denote by pk/qk the k-th convergent to ξ. By assumption there
exists an infinite set of positive integers N such that the word a1a2 · · · an is a
palindrome for any n ∈ N . By the mirror formula, we get for such an integer n
that

qn−1/qn = [0; an, an−1, · · · , a1] = [0; a1, a2, · · · , an] = pn/qn.

This implies pn = qn−1. Recalling that

|qnξ − pn| <
1
qn

and |qn−1ξ − pn−1| <
1

qn−1
,

we thus obtain

|qnξ − qn−1| <
1
qn

and |qn−1ξ − pn−1| <
1

qn−1
. (9.7)

Consider now the three linearly independent linear forms with algebraic coeffi-
cients:

L1(X1, X2, X3) = ξX1 −X2,
L2(X1, X2, X3) = ξX2 −X3,
L3(X1, X2, X3) = X2.

Evaluating them on the quadruple (qn, qn−1, pn−1), we derive from (9.7) that∏
1≤j≤3

|Lj(qn, qn−1, pn−1)| < 1
qn
.

It then follows from Theorem 9.1 that the points (qn, qn−1, pn−1), n ∈ N , lie
in the union of a finite number of proper subspaces of Q4. Thus, there exist a
nonzero integer triple (x1, x2, x3) and an infinite set of distinct positive integers
N1 ⊂ N such that

x1qn + x2qn−1 + x3pn−1 = 0, (9.8)

for any n ∈ N1. Dividing (9.8) by qn and letting n tend to infinity along N1, it
thus follows from pn = qn−1 that

x1 + x2
1
ξ

+ x3ξ = 0.

Since (x1, x2, x3) is a nonzero triple of integers, we obtain that ξ is either a
quadratic or a rational number, hence a contradiction. �

Let us introduce some more notation. As we have already shown, a palin-
drome is a finite word invariant under mirror symmetry. In order to relax this
property of symmetry, we now introduce the notion of quasi-palindrome. Let U
and V be two finite words. The word UV U is called a quasi-palindrome of order
w, where w = |V |/|U |. Following this definition, the larger w, the weaker the
symmetry property. In particular, a palindrome is a quasi-palindrome of order
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0. We now give a transcendence criterion in which occurrences of arbitrarily long
palindromes are replaced by occurrences of arbitrarily long quasi-palindromes
of a fixed and finite order. Of course, an extra assumption on the growth of
the partial quotients is then needed. This assumption is not very restrictive. In
particular, it is always satisfied by real numbers with bounded partial quotients.

Let a = (an)n≥1 be a sequence over A. Let w be a rational number with
w > 1. We say that a begins in arbitrarily long quasi-palindromes of finite order
if there exist a nonnegative real number w, and two sequences of finite words
(Un)n≥1 and (Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnVnUn is a prefix of the word a;

(ii) The sequence (|Vn|/|Un|)n≥1 is bounded by w;

(iii) The sequence (|Un|)n≥1 is increasing.

Then, Theorem 9.6 can be extended in the following way.

Theorem 9.7 (Adamczewski and Bugeaud) Let a = (an)n≥1 be a sequence
of positive integers. Let (pn/qn)n≥1 denote the sequence of convergents to the
real number

ξ := [0; a1, a2, · · · , an, · · · ].

Assume that the sequence (q1/`
` )`≥1 is bounded, which is in particular the case

when the sequence a is bounded. If a begins in arbitrarily long quasi-palindromes
of finite order, then ξ is either quadratic or transcendental.

In the statements of Theorems 9.6 and 9.7 the palindromes or the quasi-
palindromes must appear at the very beginning of the continued fraction under
consideration. We mention that the ideas used in their proofs also allow to deal
with the more general situation where arbitrarily long quasi-palindromes occur
not too far from the beginning (see [4]).

Proof Keep the notation and the hypothesis of this theorem. Assume that the
parameter w is fixed, as well as the sequences (Un)n≥1 and (Vn)n≥1. Set also
rn = |Un| and sn = |UnVnUn|, for any n ≥ 1. Let us also assume that the
sequence a is not eventually periodic. It thus follows that that the real number

ξ := [0; a1, a2, · · · ]

is neither rational nor quadratic. We want to prove that it is transcendental.
Therefore, we assume that ξ is algebraic of degree at least three and we aim at
deriving a contradiction.

Let (p`/q`)`≥1 denote the sequence of convergents to ξ. The key fact for the
proof of Theorem 9.7 is “of course” the mirror formula. Indeed, if W` denotes the
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prefix of length ` of the sequence a, then q`−1/q` = [0;W`]. Since, by assumption,
we have

psn

qsn

= [0;UnVnUn],

we get from the mirror formula that

qsn−1

qsn

= [0;UnVn Un],

and it follows from Lemma 10.1 that

|qsnξ − qsn−1| < qsnq
−2
rn
. (9.9)

This shows in particular that

lim
n→+∞

qsn−1

qsn

= ξ. (9.10)

Furthermore, we have

|qsnξ − psn | < q−1
sn

and |qsn−1ξ − psn−1| < q−1
sn−1. (9.11)

Consider now the four linearly independent linear forms with algebraic coef-
ficients:

L1(X1, X2, X3, X4) = ξX1 −X3,
L2(X1, X2, X3, X4) = ξX2 −X4,
L3(X1, X2, X3, X4) = ξX1 −X2,
L4(X1, X2, X3, X4) = X2.

Evaluating them on the quadruple (qsn , qsn−1, psn , psn−1), it follows from (9.9)
and (9.11) that ∏

1≤j≤4

|Lj(qsn , qsn−1, psn , psn−1)| < q−2
rn
. (9.12)

By assumption, there exists a real number M such that

q
1/`
` ≤M

for any positive integer `. Thus, Lemma 10.3 implies that for any positive integer
n, we have

qrn ≥
√

2
(rn−1) ≥ (M sn)((rn−1) log

√
2)/(sn log M) ≥ q((rn−1) log

√
2)/(sn log M)

sn

and we infer from (9.12) and from (ii) that∏
1≤j≤4

|Lj(qsn , qsn−1, psn , psn−1)| � q−ε
sn

holds for some positive real number ε.
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It then follows from Theorem 9.1 that the points (qsn , qsn−1, psn , psn−1) lie
in the union of a finite number of proper subspaces of Q4. Thus, there exist a
nonzero integer quadruple (x1, x2, x3, x4) and an infinite set of distinct positive
integers N1 such that

x1qsn + x2qsn−1 + x3psn + x4psn−1 = 0, (9.13)

for any n in N1. Dividing (9.13) by qsn , we obtain

x1 + x2
qsn−1

qsn

+ x3
psn

qsn

+ x4
psn−1

qsn−1
· qsn−1

qsn

= 0. (9.14)

By letting n tend to infinity along N1 in (9.14), it follows from (9.10) that

x1 + (x2 + x3)ξ + x4ξ
2 = 0.

Since, by assumption, ξ is not a quadratic number, we have x1 = x4 = 0 and
x2 = −x3. Then, (9.13) implies that

qsn−1 = psn . (9.15)

Consider now the three linearly independent linear forms with algebraic coeffi-
cients:

L′1(Y1, Y2, Y3) = ξY1 − Y2, L′2(Y1, Y2, Y3) = ξY2 − Y3, L′3(Y1, Y2, Y3) = Y1.

Evaluating them on the triple (qsn , psn , psn−1), we infer from (9.11) and (9.15)
that ∏

1≤j≤3

|L′j(qsn , psn , psn−1)| < q−1
sn−1 � q−0.9

sn
,

since we have
q`+1 � q1.1

` , for any ` ≥ 1,

by Roth’s Theorem. Here, the constants implied by � depend only on ξ.
It then follows from Theorem 9.1 that the points (qsn , psn , psn−1), with n in

N1, lie in the union of a finite number of proper subspaces of Q3. Thus, there
exist a nonzero integer triple (y1, y2, y3) and an infinite set of distinct positive
integers N2 such that

y1qsn + y2psn + y3psn−1 = 0, (9.16)

for any n in N2. Dividing (9.16) by qsn , we get

y1 + y2
psn

qsn

+ y3
psn−1

qsn−1
· qsn−1

qsn

= 0. (9.17)

By letting n tend to infinity along N2, it thus follows from (9.15) that

y1 + y2ξ + y3ξ
2 = 0.

Since (y1, y2, y3) is a nonzero triple of integers, we have reached a contradiction.
Consequently, the real number ξ is transcendental, concluding the proof. �
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10 Auxiliary results on continued fractions

For the reader’s convenience, we recall some classical results from the theory
of continued fractions, whose proofs can be found for example in the book of
Perron [48].

Lemma 10.1 Let ξ = [0; a1, a2, · · · ] and β = [0; b1, b2, · · · ] be real numbers. Let
n ≥ 1 such that ai = bi for any i = 1, . . . , n. We then have |ξ − β| ≤ q−2

n , where
qn denotes the denominator of the n-th convergent to ξ.

For positive integers a1, . . . , am, we denote by Km(a1, . . . , am) the denomi-
nator of the rational number [0; a1, · · · , am], usually called continuant.

Lemma 10.2 For any positive integers a1, . . . , am and any integer k with 1 ≤
k ≤ m− 1, we have

Km(a1, . . . , am) = Km(am, . . . , a1).

Furthermore, the following inequalities hold

Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am) ≤ Km(a1, . . . , am)

and
Km(a1, . . . , am) ≤ 2Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am).

Lemma 10.3 Let (ai)i≥1 be a sequence of positive integers at most equal to M .
For any positive integer n, we have

√
2
(n−1) ≤ Kn(a1, . . . , an) ≤ (M + 1)n.

11 Continued fractions of formal Laurent series

As mentioned above formal Laurent series can be expanded into continued frac-
tions whose partial quotients are polynomials. The mirror formula and the
folding lemma still hold in this context.

We will only give a theorem due to van der Poorten and Shallit (see [54], see
also [39] from a remark of Shallit given in [53]).

Theorem 11.1 Let F be the formal Laurent series given by

F (X) := X
∑
h≥0

X−2h
.

Then its continued fraction expansion is equal to

[1, X,−X,−X,−X,X,X,−X, · · · ]

where the sequence of partial quotients starting from the first X is obtained by
repeatedly iterating the folding rule: W0 := X, Wj+1 := Wj(−X)(−Wj) for
j ≥ 0.
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Remark 11.2 As previously W stands for the reversal of W , so that W1 =
X − X − X, W2 = X − X − X − X X X − X. Note that the same
folding trick permitted to Shallit [61] and independently to Kmošek [37] to give
the continued fraction expansion of real numbers with explicit g-adic expansion
such as

∑
2−2n

. Also note that van der Poorten studies precisely how and when
continued fraction expansions of Laurent formal series can be “specialized” (see
in particular [50]) or “reduced” modulo a prime number (see in particular [51]
where the folding lemma is also alluded to).

12 Conclusion

Several other beautiful results about continued fraction expansions where either
the mirror formula or the folding lemma are used can be found in the literature:
we refer the reader in particular to papers of van der Poorten, Tamura, Liardet-
Stambul, Berstel-de Luca... ( [11,40,52,53,66–68]...).

We do not resist to ending this survey by citing a very nice paper on
palindromes and continued fractions by Burger [15], that studies when a real
quadratic irrational is a linear fractional transformation of its conjugate.

References

[1] B. Adamczewski, Y. Bugeaud, On the complexity of algebraic numbers II. Contin-
ued fractions, Acta Math., to appear.

[2] B. Adamczewski, Y. Bugeaud, On the Maillet-Baker continued fractions. Preprint,
Institut Camille Jordan, 2005.

[3] B. Adamczewski, Y. Bugeaud, On the Littlewood conjecture in simultaneous Dio-
phantine approximation, J. London Math. Soc., to appear.

[4] B. Adamczewski, Y. Bugeaud, Palindromic continued fractions, Preprint, Institut
Camille Jordan, Lyon, 2005.

[5] B. Adamczewski, Y. Bugeaud, A short proof of the transcendence of the Thue-
Morse continued fraction, Preprint, Institut Camille Jordan, Lyon, 2005.

[6] W. W. Adams, J. L. Davison, A remarkable class of continued fractions, Proc.
Amer. Math. Soc. 65 (1977) 194–198.

[7] J.-P. Allouche, Nouveaux résultats de transcendance de réels à développement non
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Sci. Paris 336 (2003) 1–6.

[59] D. Roy, Approximation to real numbers by cubic algebraic integers, II, Ann. of
Math. (2) 158 (2003) 1081–1087.

[60] D. Roy, Approximation to real numbers by cubic algebraic integers, I, Proc. London
Math. Soc. (3) 88 (2004) 42–62.

[61] J. Shallit, Simple continued fractions for some irrational numbers, J. Number The-
ory 11 (1979) 209–217.

[62] J. Shallit, Real numbers with bounded partial quotients: a survey, Enseign. Math.
38 (1992) 151–187.

[63] W. M. Schmidt, On simultaneous approximations of two algebraic numbers by
rationals, Acta Math. 119 (1967) 27–50.

[64] W. M. Schmidt, Norm form equations, Ann. of Math. (2), 96 (1972) 526–551.

[65] W. M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785,
Springer, Berlin, 1980.

[66] J.-i. Tamura, Symmetric continued fractions related to certain series, J. Number
Theory 38 (1991) 251–264.

[67] J.-i. Tamura, Transcendental numbers having explicit g-adic and Jacobi-Perron
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Abstract

A new method for representing positive integers and real numbers in a
rational base is considered. It amounts to computing the digits from right
to left, least significant first. Every integer has a unique such expansion.
The set of expansions of the integers is not a regular language but neverthe-
less addition can be performed by a letter-to-letter finite right transducer.
Every real number has at least one such expansion and a countable infinite
set of them have more than one. We explain how these expansions can
be approximated and characterize the expansions of reals that have two
expansions.

These results are not only developped for their own sake but also as
they relate to other problems in combinatorics and number theory. A first
example is a new interpretation and expansion of the constant K(p) from
the so-called “Josephus problem”. More important, these expansions in the
base p

q allow us to make some progress in the problem of the distribution
of the fractional part of the powers of rational numbers.

Extended Abstract

In this paper1, we introduce and study a new method for representing positive
integers and real numbers in the base p

q , where p > q > 2 are coprime integers.2

The idea of non-standard representation systems of numbers is far from being
original and there have been extensive studies of these, from a theoretical stand-
point as well as for improving computation algorithms. It is worth first (briefly)
recalling the main features of these systems in order to clearly put in perspective
and in contrast the results we have obtained on rational base systems.
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Many non-standard numeration systems have been considered, [13, Vol. 2,
Chap. 4] or [14, Chap. 7], for instance, give extensive references. Representa-
tion in integer base with signed digits was popularized in computer arithmetic
by Avizienis [3] and can be found earlier in a work of Cauchy [6]. When the base
is a real number β > 1, any non-negative real number is given an expansion on
the canonical alphabet {0, 1, . . . , bβc} by the greedy algorithm of Rényi [19];
a number may have several β-representations on the canonical alphabet, but
the greedy one is the greatest in the lexicographical order. The set of greedy
β-expansions of numbers of [0, 1[ is shift-invariant, and its closure forms a sym-
bolic dynamical system called the β-shift. The properties of the β-shift are well
understood, using the so-called “β-expansion of 1”, see [14,17].

When β is a Pisot number3, the β number system shares many properties
with the integer base case: the set of greedy representations is recognizable by a
finite automaton; the conversion between two alphabets of digits (in particular
addition) is realized by a finite transducer [10].

Here, we first define the p
q -expansion of an integer N : it is a way of writingN

in the base p
q by an algorithm which produces the digits from right to left, that

is least significant digits first. We prove:

Theorem 0.1 Every non-negative integer N has a p
q -expansion which is an

integer representation. It is the unique finite p
q -representation of N .

The p
q -expansions are not the p

q -representations that would be obtained by
the classical “greedy algorithm” in base p

q . They are written on the alpha-
bet A = {0, 1, . . . , p − 1} , but not every word of A∗ is admissible. These
p
q -expansions share some properties with the expansions in an integer base —
digit set conversion is realized by a finite transducer for instance — and are
completely different as far as other aspects are concerned. Above all, the set L p

q

of all p
q -expansions is not a regular language (not even a context-free one). To

some extend, the study and understanding of this set of words L p
q

is what this
paper is about.

By construction, the set L p
q

is prefix-closed and any of its elements can be
extended (to the right) in L p

q
. Hence, L p

q
is the set of labels of the finite paths

in an infinite subtree T p
q

of the infinite full p-ary tree of the free monoid A∗.
The tree T p

q
contains a maximal infinite word t p

q
— maximal in the lexicographic

ordering — whose numerical value is ω p
q
. We define the admissible p

q -expansions
of real numbers to be the set W p

q
of infinite words that label the infinite paths

of T p
q

and we prove:

Theorem 0.2 Every real in [0,ω p
q
] has exactly one p

q -expansion, but for an
infinite countable number of them which have more than one such expansion.

3An algebraic integer whose Galois conjugates are all less than 1 in modulus
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If p > 2q−1, then no real has more than two p
q -expansions. It is noteworthy

as well that no p
q -expansion is eventually periodic and thus in particular — and

in contrast with the expansion of reals in an integer base — no p
q -expansion ends

with 0ω or, which is the same, is finite. This is a very remarkable feature of the
p
q number system for reals and we explain how the p

q -expansion of a real number
can be computed (in fact approximated).

We shall give here two examples of the relations of the p
q -expansions of reals

with other problems in combinatorics and number theory. The first one is the
so-called “Josephus problem” in which a certain constant K(p) is defined (cf.
[11,16,22]) which is a special case of our constant ω p

q
(with q = p− 1) and this

definition yields a new method for computing K(p).
The connection with the second problem, namely the distribution of the

powers of a rational number modulo 1, is even more striking. It requires to
be presented that the framework of this long standing and deeply intriguing
problem be set.4

Koksma proved that for almost every real number θ > 1 the sequence {θn}
is uniformely distributed in [0, 1] , but very few results are known for specific
values of θ. One of these is that if θ is a Pisot number, then the above sequence
converges to 0 if we identify [0, 1) with R/Z.

The distribution of
{

(p
q )n
}

for coprime positive integers p > q > 2 remains
an unsolved problem. Experimental results show that this distribution looks
more “chaotic” than the distribution of the fractional part of the powers of a
transcendental number like e or π (cf. [24]). Vijayaraghavan [23] showed that
the sequence has infinitely many limits points.

The next step in attacking this problem has been to fix the rational p
q and

to study the distribution of the sequence

fn(ξ) =
{
ξ

(
p

q

)n}
according to the value of the real number ξ. Once again, the sequence fn(ξ) is
uniformely distributed for almost all ξ > 0 , but nothing is known for specific
value of ξ.

In the search for ξ’s for which the sequence fn(ξ) is not uniformely dis-
tributed, Mahler considered those for which the sequence is eventually contained
in [0, 1

2 [. Mahler’s notation is generalized as follow: let I be a (strict) subset
of [0, 1[ — indeed I will be a finite union of semi-closed intervals — and write:

Z p
q

(I) = {ξ ∈ R
∣∣ {ξ (p

q

)n}
n∈N

belongs eventually to I } .

Mahler [15] proved that Z 3
2

(
[0, 1

2 [
)

is at most countable but left open the prob-
lem to decide whether it is empty or not. Mahler’s work has been developped

4This presentation is based on the introduction of [5]. The fractional part of a number x is
denoted by {x}.
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in two directions: the search for subsets I as large as possible such that Z p
q

(I)
is empty — which amounts to proving that fn(ξ) is never too much unevenly
distributed — and conversely the search for subsets I as small as possible such
that Z p

q
(I) is non-empty — which corresponds to establish the existence of ξ

for which fn(ξ) is as unevenly distributed as possible.
Along the first line, a remarkable progress has been made by Flatto et al.

( [8]) who proved that the set of reals s such that Z p
q

(
[s, s+ 1

p [
)

is empty

is dense in [0, 1 − 1
p ], and this has been even improved by Bugeaud [5] who

proved that its complement is of Lebesgue measure 0. Along the other line,
Pollington [18] showed that Z 3

2

(
[ 4
65 ,

61
65 [
)

is non-empty.

Our contribution to the problem can be seen as an improvement of this
result.

Theorem 0.3 If p > 2q − 1 , there exists a subset Y p
q

of [0, 1[, of Lebesgue

measure q
p , such that Z p

q

(
Y p

q

)
is countable infinite.

The elements of Z p
q

(
Y p

q

)
are indeed the reals which have two p

q -expansions
and this is the reason why the consideration of the p

q number system allowed to
make some progress in Mahler’s problem.

∗

In conclusion, we have introduced and studied here a fascinating family of
sets of words which can be seen from many sides, which raises still many diffi-
cult questions and whose further study will certainly mix techniques from word
combinatorics, automata theory, and number theory.

In order to keep the proceedings into reasonable length bounds we do not
include in this extended abstract any preliminary for definition nor notation
on (infinite) words and automata but rather follow [7, 12, 14] and we only give
sketch of proofs, when we give any. A more complete version will be to be found
elsewhere in a journal ( [2]).

1 The p
q number system

Let p > q > 1 be two co-prime integers and let U be the sequence defined by:

U = {ui =
1
q

(
p

q

)i ∣∣ i ∈ Z}.

We will say that U , together with the alphabet A = {0, . . . , p − 1} , is the
p
q number system. If q = 1 , it is exactly the classical number system in base p.
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A representation in the system U of a non-negative real number x on a finite
alphabet of digits D is an infinite sequence of digits in D indexed by a section
of Z: (di)k>i>−∞, such that:

x =
i=k∑
−∞

diui, an equation that is written as 〈x〉 p
q

= dk · · · d0.d−1d−2 · · · ,

most significant digit first. When a representation ends in infinitely many ze-
roes, it is said to be finite, and the trailing zeroes are omitted. When all the di

with negative index are zeroes, the representation is said to be an integer rep-
resentation. Conversely, the numerical value in the system U of a word on an
alphabet of digits D is given by the evaluation map π:

π : DZ −→ R , d = {di}k>i>−∞ 7−→ π(d) =
i=k∑
−∞

diui .

It is important to remark that this definition is not the classical one for the
numeration system in base p

q : U is not the sequence of powers of p
q but rather

these powers divided by q and the digits are not the integers smaller than p
q but

rather the integers whose quotient by q is smaller than p
q . These two differences

compensate each other and make the developments that follow possible.

2 Representation of the integers

2.1 The p
q
-expansion of an integer

Let N be any positive integer. Write N0 = N and, for i > 0, write

qNi = pNi+1 + ai

where ai is the remainder of the Euclidean division of qNi by p, and thus belongs
to A. This is an algorithm that produces the digits of N from right to left, that
is to say least significant digit first, and stops for some k when Nk+1 = 0 . It
holds N =

∑k
i=0 aiui and thus the word ak · · · a0 is a p

q -representation of N ;
it will be called the p

q -expansion of N and written 〈N〉 p
q
. By convention the

p
q -expansion of 0 is the empty word.

It can be further proved that 〈N〉 p
q

is the unique finite p
q -representation of

N (under the condition that ak 6= 0). We have thus established:

Theorem 2.1 Every non-negative integer N has a p
q -expansion which is an

integer representation. It is the unique finite p
q -representation of N .

Example 2.1 ex1 Let p = 3 and q = 2, then A = {0, 1, 2} — this will be our
main running example. Table 1 in Fig.1 gives the 3

2 -expansions of the twelves
first integers (cf. Appendix A as well).
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Remark 2.2 If q = 1 , i.e. the base is an integer, the above algorithm gives
the same representation as the one given by the classical greedy (left-to-right)
algorithm (see [19] or [14, Chapter 7]). On the contrary, if q 6= 1 , the p

q -
expansion of n is not the representation obtained by the greedy algorithm
but for n = 0, 1, . . . , bpq c . It follows then from Theorem 2.1 that no integer
(but 0, 1, . . . , bpq c ) is given a finite representation by the greedy algorithm.

2.2 The set of p
q
-expansions

Let us denote by L p
q

the set of p
q -expansions of the non-negative integers. If

q = 1 then L p
q

is the set of all words of A∗ which do not begin with a 0; if we
release this last condition, we then get the whole A∗. If q 6= 1, L p

q
is prefix-closed

by construction and the observation of Table 1 shows that it is not suffix-closed.
For each a in A, we define a partial map τa from N into itself: for z in N,

τa(z) = 1
q (pz + a) if the latter is an integer, τa(z) is undefined otherwise. The

labelled tree T p
q

is then constructed as follows: the root is labelled by 0, the
children of a node labelled by z are nodes labelled by the (defined) τa(z), the
edge from z to τa(z) being labelled by a. Let us call word label of a node s, and
write w(s), the label of the path from the root to s. By construction the label
of s is π(w(s)) . Let us denote I p

q
the subtree of T p

q
made of nodes whose word

label does not begin with a 0. See Fig. 1 for (a part of) T 3
2

and I 3
2
.

0
2 1

21 2
210 3
212 4

2101 5
2120 6
2122 7

21011 8
21200 9
21202 10
21221 11

Table 1.

Figure 1: The tree T 3
2

, the tree I 3
2

in grey and double edge, and a table

Among the digits that label the edges that start from a node with label N ,
there is a minimum one, minDigit(N), which belongs to {0, . . . , q−1}— and this
is characteristic of a minimum digit — and there is a maximal one, MaxDigit(N),
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which belongs to {p − q, . . . , p − 1} — and this is characteristic of a maximal
digit. If D = MaxDigit(N) and d = minDigit(N + 1) , then D = d + (p − q)
and τd(N + 1) = τD(N) + 1 .

It follows that for every integer k, there exists an integer Mk such that the
nodes of depth k in T p

q
are labelled by the integers from 0 to Mk (see Section 3

for the computation of the Mk’s). And the labelling of nodes (in N) gives the
ordering in the radix order on I p

q
. Closer investigations give the following (under

the hypothesis that q 6= 1):

Proposition 2.3 No two subtrees of I p
q

are isomorphic.

Corollary 2.4 L p
q

is not a regular language.

Lemma 2.5 For any words x and y in A∗ \ 0∗, y 6= ε, there exists an integer
constant K(x, y) such that, if xyn belongs to L p

q
, then n ≤ K(x, y).

Corollary 2.6 L p
q

is not a context-free language.

Proposition 2.7 Every w in Ak is the suffix of the p
q -expansion of a unique

integer n, 0 6 n < pk.

2.3 Conversion between alphabets

Let D be a finite alphabet of (positive or negative) digits that contains A. The
digit-set conversion is a map χD : D∗ → A∗ which commutes to the evaluation
map π, that is a map which preserves the numerical value:

∀w ∈ D∗ π(χD(w)) = π(w) .

Proposition 2.8 For any alphabet D the conversion χD is realizable by a finite
letter-to-letter sequential right transducer CD.

The states of CD are integers, the state 0 is initial, and the final function of
a state h (with h positive) is the p

q -expansion of h. A transition labelled by d |a,
with d in D and a in A, goes from h to k if and only if

q h+ d = pk + a . (2.1)

The set of accessible states is finite and this establishes Proposition 2.8.

The integer addition may be seen — after digit-wise addition — as a partic-
ular case of a digit-set conversion χD with D = {0, 1, . . . , 2(p− 1)} and Figure 2
shows the converter that realizes addition in the 3

2 -system.

Remark 2.9 Let us stress that χD is defined on the whole set D∗ even for word
v such that π(v) is not an integer, and also that, if π(v) is in N, then χD(v) is
the unique p

q -expansion of π(v).
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Figure 2: A converter for addition in the 3
2 number system

Remark 2.10 As p
q is not a Pisot number (when q 6= 1), the conversion from

any representation onto the expansion computed by the greedy algorithm is not
realized by a finite transducer (see [14, Ch. 7]).

Remark 2.11 The conversion χD may also be extended to left infinite words
and it follows from Proposition 2.8 that it is a continuous fonction. In particular,
the odometer is continuous.

3 A remarkable set of infinite words

Let W p
q

be the set of labels of infinite paths starting from the root 0 in T p
q
.

It follows from the construction of T p
q

by the partial functions {τa
∣∣ a ∈ A}

that two nodes with the same label are the root of the same subtree and from
Proposition 2.3 that these subtrees are characteristic of the label (in fact, any
infinite path from a node is characteristic of the label of the node).

This set W p
q

will be used in the next section in order to define the represen-
tations of real numbers. We first try to describe it and to present some of its
properties. In the previous sections, digits in a p

q -representation where indexed
from left to right by decreasing nonnegative integers for the “integer” part and
by decreasing negative integers for the “decimal” part; as we shall now deal
mainly with the “decimal” part of the representations, we find it much more
convenient to change the convention of indexing and use the positive indices
after the decimal point, in the increasing order.

We denote by MaxWord(N) (resp. minWord(N) ) the label of the infinite
path that starts from a node with label N and that follows always the edges with
the maximal (resp. minimal) digit label. From our observation in Section 2.2,
it follows that for every N , the digit-wise difference between minWord(N + 1)
and MaxWord(N) is (p− q)ω .

Let us note t p
q

= MaxWord(0) and g p
q

= minWord(1) . The word t p
q

=

(ti)i>1 belongs to {p− q, . . . , p− 1}N and is the maximal word in T p
q

(or I p
q
) in

the lexicographic ordering. The word g p
q

= (gi)i>1 belongs to {0, . . . , q − 1}N
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and the word qg p
q

is the minimal word of I p
q

in the lexicographic ordering.
Remark that when q = 1, MaxWord(N) = (p− 1)ω, and minWord(N) = 0ω for
every N .

Example 3.1 G For p
q = 3

2 , g 3
2

= 101100011010011010100110 . . . .

For n > 1 let Gn = π(qg1 · · · gn−1) (if n = 1, G1 = π(q) = 1), and Mn =
π(t1 · · · tn) . Of course Mn = Gn+1 − 1 . Let ω p

q
= π(.t p

q
) the numerical value

of the maximal infinite word and it holds γ p
q

= π(.qg p
q
) = π(.0t p

q
) = q

p ω p
q
. We

then have the following results.

Proposition 3.2 The sequence (Gn)n>1 satisfies the recurrence Gn = dp
q
Gn−1e

with G1 = 1, and for n > 1 there exists an integer en, 0 6 en < (q − 1)/(p− q),
such that

Gn = bγ p
q

(p
q

)nc − en .
Corollary 3.3 If p > 2q − 1 then, for n > 1, Gn = bγ p

q

(p
q

)nc.
Remark 3.4 If p > 2q − 1 then for each n > 1, the digit gn is obtained as
follows:

(i) compute Gn+1 = dpq Gne (ii) gn = qGn+1 mod p .

The definition of the sequence Gn and the computation of g p
q

have been
developped not only because they are important for the description of T p

q
but

also as they relate to a classical problem in combinatorics.
Inspired by the so-called “Josephus problem”, Odlyzko and Wilf consider,

for a real α > 1, the iterates of the function f(x) = dαxe : f0 = 1 and
fn+1 = dαfne for n > 0. They show (in [16]) that if α > 2 , or α = 2−1/q for
some integer q > 2, then there exists a constant H(α) such that fn = bH(α)αnc
for all n > 0.

We have thus obtain the same result as in [16] for rational α = p
q , with

p > 2q − 1, and we find H(p
q ) = p

q γ p
q

= ω p
q
. Our method does not yield an

“independent” way of computing this constant, as was called for in [16], but the
writing of ω p

q
in the p

q -system gives at least an easy algorithm.
In the case where q = p − 1 (the Josephus case), the constant ω p

q
is the

constant K(p) in [16]. In this case the integer en of Proposition 3.2 is less than
p− 2, and this is the same bound as in [16].

Example 3.5 gam For p
q = 3

2 , the constant ω 3
2

is the constant K(3) already dis-
cussed in [11,16,22]. Its decimal expansion 1.622270502884767315956950982 · · ·
is recorded as Sequence A083286 in [21]. Observe that, in the same case, the
sequence (Gn)n>1 is Sequence A061419 in [21].
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As a consequence of Lemma 2.5, we have:

Proposition 3.6 If q > 1 then no element of W p
q

is eventually periodic, but
0ω.

4 Representation of the reals

In order to distinguish between the integer and the real numerical values of some
finite word, we put a decimal point . indicating the position of the index 0.

4.1 The p
q
-expansions of reals

We take as a definition that the p
q -expansions of the real numbers are the ele-

ments of W p
q
. That is, an infinite word a = {ai}i>1 in W p

q
is a p

q -expansion of
the real number x:

x = π(.a) =
1
q

∑
i>1

ai

(
q

p

)i

.

Let X p
q

= π(W p
q
). The elements of X p

q
are non-negative real numbers less

than or equal to ω p
q
. Note that ω p

q
6 p−1

p−q . The fact that the p
q number system

may be used for representing the reals is expressed by the following statement.

Theorem 4.2 Every real in [0,ω p
q
] has exactly one p

q -expansion, but for an
infinite countable number of them which have more than one such expansion.

The proof of the first part of Theorem 4.2, that is to say the proof that
X p

q
= [0,ω p

q
] , relies on three facts. First, W p

q
is closed in the compact set AN,

hence is compact. Second, the map π : W p
q
→ X p

q
is continuous and order-

preserving. Hence X p
q

is a closed subset of the interval [0,ω p
q
]. And finally,

properties of the tree T p
q

imply that [0,ω p
q
]\X p

q
cannot contain any non-empty

open interval. From the same properties we deduce that real numbers having
more than one expansion correspond to the branching nodes of T p

q
, hence the

second part of Theorem 4.2.

Remark 4.1 In contrast with the classical representations of reals, the finite
prefixes of a p

q -expansion of a real number, completed by zeroes, are not p
q -

expansions of real numbers (though they can be given a value by the function π
of course), that is to say, if a finite word w is in L p

q
\0∗, then the word w0ω does

not belong to W p
q
.

Corollary 4.2 If p > 2q − 1 then no real number can have three different ex-
pansions.
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4.2 The companion p
q
-representation and the co-converter

A feature of the p
q -expansion of the integers is that it is computed least significant

digit first, or from right to left. This is quite an accepted process for integers,
that becomes problematic when it comes to the reals and that you have to
compute from right to left a representation which is infinite to the right5. This
difficulty is somewhat overcome with the definition of another p

q -representation
for the reals; it can be computed with any prescribed precision (provided we
can compute in Q with the same precision) and somehow from left to right. The
price we have to pay for this is that we use a larger alphabet of digits, containing
negative digits, exactly as the Avizienis representation of reals allows to perform
sequentially addition from left to right [3].

Let h : R+ → Z be the function defined by

h(z) = q b(p
q

)zc − pbzc .

The function h is periodic of period q and for all z in R+, h(z) belongs to the
digit alphabet

C = {−(q − 1), . . . , 0, 1, . . . , (p− 1)} .

(If q = 1 , then C = A ; C = A ∪ {−(q − 1), . . . ,−1} otherwise.)
Let us write now, for every n in N, cn = h

(
(p

q )n−1z
)

which, in turn, defines

a map ϕ(z) : R+ → CN by ϕ(z) = c = .c1c2 · · · cn · · · . If q = 1 , cn is precisely
the n-th digit after the decimal point in the expansion of z in base p.

We call the sequence ϕ(z) the companion representation of z, and we have:

Proposition 4.3 For all z in R+, ϕ(z) is a p
q -representation of {z} = z−bzc ,

the fractional part of z.

Let x be in [0,ω p
q
]. Let 〈x〉 p

q
= a = .a1a2 · · · be a p

q -expansion of x and let
ϕ(x) = c = .c1c2 · · · its companion representation. Let us denote by ρn(x) the
integer part bπ(.an+1an+2 · · · )c; easy calculation then shows:

cn + pρn−1(x) = an + q ρn(x) . (4.1)

There are a finite number of possible values for ρn(x) since 0 ≤ ρn(x) < p−1
p−q ,

and (4.1) can be seen as the definition of a (left) transducer A p
q
: a transi-

tion labelled by (cn, an) goes from the state ρn−1(x) to the state ρn(x). We
recognize, by comparison with (2.1), that A p

q
is the transposed automaton of

the converter CC that we have described at Section 2.3. The transducer A p
q

is
co-sequential (that is input co-deterministic) and in substance we have proved:

5As W. Allen said: “The infinite is pretty far, especially towards the end”.
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Proposition 4.4 Let x be a real in [0,ω p
q
], c its companion representation and

a a p
q -expansion of x. Then (c,a) is the label of an infinite path that begins in

the state ρ0(x) in the transducer A p
q
.

If p > 2q − 1 , the interesting case which we have already considered, A p
q

has then only two states. The transducer A 3
2

is drawn at Figure 3.

Figure 3: The transducer A 3
2

The computation of the companion representation is the first step of the
“algorithm” for the computation of p

q -expansions of the real numbers.
Let x be in [0,ω p

q
], and let c be its companion representation. Let n be a

fixed large) positive integer and w be the prefix of length n of c. When w is
read from right to left by the converter CC — which is the transposed of A p

q
—

and taking a state s as initial state, the output is a word f (s) of length n on
the alphabet A and which depends upon s. The maximal common prefix of all
these words f (s) is the beginning of all the p

q -expansions of x.
To get longer prefixes one has to make again the computation with an n′

larger than n, but it is not possible to know in advance how large has to be this
n′ in order to get a better approximation.

5 On the fractional part of the powers of rational
numbers

We are now in a position to give at least a sketch of the proof of the results we
have announced in the introduction. In what follows, we suppose, once again,
that p > 2q − 1 .

For a fixed rational pq we define the subset Y p
q

of [0, 1[ to be the union of q

intervals of length 1
p by

Y p
q

=
⋃

06c6q−1

[
1
p
kc,

1
p

(kc + 1)[
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where the kc are such that kc ∈ {0, . . . , p−1} and q kc = c mod p. For instance:

Y 3
2

= [0,
1
3

[∪[
2
3
, 1[ .

Theorem 0.3 is then a direct consequence of the following:

Theorem 5.1 A positive real ξ belongs to Z p
q

(
Y p

q

)
if and only if ξ has two

p
q -expansions.

As one can consider arbitrarily large rationals pq , it then comes:

Corollary 5.2 For any ε > 0 , there exists a rational p
q and a subset Y p

q
⊆ [0, 1[

of Lebesgue measure smaller than ε such that Z p
q

(
Y p

q

)
is infinite countable.

The proof of Theorem 5.1 first relies on the characterization of reals with
double p

q -expansions (Lemma 5.3).

Lemma 5.3 Let x be in [0,ω p
q
]. The following are equivalent:

(i) x has more than one expansion;

(ii) x has an expansion which is an eventually minimal word;

(iii) x has an expansion which is eventually written on the alphabet {0, . . . , q−
1};

(iv) x has an expansion which is an eventually maximal word;

(v) x has an expansion which is eventually written on the alphabet {p−q, . . . , p−
1}.

The next step in the proof of Theorem 5.1 is a characterization of the com-
panion representation of the reals that have multiple p

q -expansions (and thus
two p

q -expansions because of the assumption on p and q).
Let us write the digit alphabet C = {−(q − 1), . . . , 0, 1, . . . , (p − 1)} , the

image of the function h, as the union C = C1 ∪ C2 ∪ C3 with C1 = {−(q −
1), . . . ,−1} , C2 = {0, . . . , q − 1} and C3 = {q, . . . , p− 1} .

Proposition 5.4 A real x has two p
q -expansions if and only if its companion

representation is eventually in C2
N.

Proof The condition is necessary for if x has two p
q -expansions a′ and a′′,

then (c, (a′,a′′)) must be the label of an infinite path in the square of the
transducer A p

q
that goes outside of the diagonal. Indeed, if A is an automaton

over an alphabet C, two distinct paths inA with the same label give a path in the
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Figure 4: The square of A 3
2

(outside of the diagonal)

square of A that goes outside of the “diagonal”. If T is a transducer, the square
T 2 is obtained by constructing the square of the underlying automaton of T
and by giving as output label of each transition of T 2 the pairs of corresponding
output labels in T , see [4] or [20].

This implies, as A p
q

has only two states under the current hypothesis, that c

is eventually in C2 — this can be easily seen on Figure 4 for the case p
q = 3

2 .
Let c and a be the companion representation and a p

q -representation respec-
tively of a real x. By Proposition 4.4, (c,a) is the label of an infinite path
starting in s in A p

q
. Suppose that cn is the last digit of c not in C2 and, by

way of example, that it belongs to C3. Then (cn, an) is the label of a transition
that leaves state 0. If an = cn, then the infinite word a′ defined by a′i = ai

for 0 6 i < n, a′n = an−q, and a′i = ai +p−q for n < i, is such that (c,a′) is the
label of an infinite path in A p

q
with s as initial state — which implies that a′ is

a p
q -representation of x — and it can be verified that a′ belongs to W p

q
, which

shows that it is a second p
q -expansion of x. �

The final step consists in the description of the inverse of the function h. For
every c in C2 = {0, . . . , q−1} let us define the integer kc in A, i.e. 0 6 kc 6 p−1,
by q kc = c mod p .

Lemma 5.5 For every c in C2, h(x) = c if and only if
{

x
q

}
∈ [1pkc,

1
p(kc +1)[ .

From Proposition 5.4 follows that a real x has two p
q -expansions if and only

if there exists M > 0 such that for any n > M ,

{
(
p

q

)n x

q
} ∈ Y p

q
=

⋃
06c6q−1

[
1
p
kc,

1
p

(kc + 1)[
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and this concludes the proof of Theorem 5.1.
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appendix

A The first words in L 3
2

0
2 1

21 2
210 3
212 4

2101 5
2120 6
2122 7

21011 8
21200 9
21202 10
21221 11

210110 12
210112 13
212001 14
212020 15
212022 16
212211 17

2101100 18
2101102 19
2101121 20
2120010 21
2120012 22
2120201 23
2120220 24
2120222 25
2122111 26

21011000 27
21011002 28
21011021 29
21011210 30
21011212 31
21200101 32
21200120 33
21200122 34
21202011 35
21202200 36
21202202 37
21202221 38
21221110 39
21221112 40

3/2-expansions of the 41 first integers
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B Another view on T 3
2



Modular and Threshold Subword Counting

and Matrix Representations of Finite

Monoids

Jorge Almeida∗, Stuart Margolis†, Benjamin Steinberg‡, Mikhail Volkov §

1 Background and motivation

Recall that a word u over a finite alphabet Σ is said to be a subword of a word
v ∈ Σ∗ if, for some n ≥ 1, there exist words u1, . . . , un, v0, v1, . . . , vn ∈ Σ∗ such
that u = u1u2 · · ·un and

v = v0u1v1u2v2 · · ·unvn. (1.1)

The subword relation reveals interesting combinatorial properties and plays
a prominent role in formal language theory. For instance, recall that languages
consisting of all words over Σ having a given word u ∈ Σ∗ as a subword serve
as a generating system for the Boolean algebra of so-called piecewise testable
languages. It was a deep study of combinatorics of the subword relation that
led Simon [20, 21] to his elegant algebraic characterization of piecewise testable
languages. Further, the natural idea to put certain rational constraints on the
factors v0, v1, . . . , vn that may appear in a decomposition of the form (1.1) gave
rise to the useful notion of a marked product of languages studied from the
algebraic viewpoint by Schützenberger [18], Reutenauer [10], Straubing [23],
Simon [22], amongst others.

Yet another natural idea is to count how many times a word v ∈ Σ∗ contains
a given word u as a subword, that is, to count different decompositions of the
form (1.1). Clearly, if one wants to stay within the realm of rational languages,
one can only count up to a certain threshold and/or modulo a certain number.
For instance, one may consider Boolean combinations of languages consisting of
all words over Σ having t modulo p occurrences of a given word u ∈ Σ∗ (where
p is a given prime number). This class of languages also admits a nice algebraic
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characterization, see [5, Sections VIII.9 and VIII.10] and also [25]. Combining
modular counting with rational constraints led to the idea of marked products
with modular counters explored, in particular, by Weil [27] and Peladeau [7].

The most natural version of threshold counting is formalized via the notion
of an unambiguous marked product in which one considers words v ∈ Σ∗ hav-
ing exactly one decomposition (1.1) with a given subword u and given rational
constraints on the factors v0, v1, . . . , vn. Such unambiguous marked products
have been investigated by Schützenberger [19], Pin [8], Pin, Straubing, and
Thérien [9], amongst others.

Many known facts on marked products rely on rather difficult techniques
from finite monoid theory, namely, on bilateral semidirect product decomposi-
tion results of Rhodes et al. [14, 16]. These results are proved using Rhodes’s
classification of maximal proper surmorphisms [6,11,15] via case-by-case analy-
sis of the kernel categories of such maps [14, 16]. The aim of the present paper
is to give easier and – we hope – more conceptual proofs of several crucial facts
about marked products by using matrix representations of finite monoids as a
main tool. In particular, we are able to prove the results of Peladeau and Weil
in one step, without any case-by-case analysis and without using the machinery
of categories. Rather we adapt Simon’s analysis of the combinatorics of multi-
plying upper triangular matrices [22] from the case of Schützenberger products
to block upper triangular matrices. We failed to obtain such a purely combi-
natorial argument for the case of unambiguous products; we still need to use
a lemma on kernel categories. Nevertheless we have succeeded in avoiding the
decomposition results and case-by-case analysis.

In Section 2 we collect a few facts from the theory of matrix representa-
tions of finite monoids. Some of these facts are new; their proofs can be found
in the forthcoming paper by the authors [3]. The announced applications to
marked products with modular counters and unambiguous marked products are
presented in Section 3.

2 Results from Representation Theory

The reader is referred to [4, Chapter 5] and [17] for the basic results of monoid
representation theory. All monoids in this paper are assumed to be finite except
for the monoid of matrices over an infinite field.

Let M be a monoid and K a field. A (matrix) representation of M over K
of degree n is a homomorphism ρ : M → Mn(K), where Mn(K) is the monoid
of all n× n matrices over K. Set V = Kn. Then a subspace W of V is said to
be M -invariant if (Mρ)W ⊆ W . The representation ρ is said to be irreducible
if the only M -invariant subspaces are {0} and V .

We denote by K[M ] the monoid algebra of M , that is, the K-algebra with
basis M , whose multiplication extends the multiplication of M . Clearly, any
representation ρ : M →Mn(K) uniquely extends to a K-algebra homomorphism
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K[M ]→Mn(K). This homomorphism defines a K[M ]-module structure on the
space V = Kn. The representation ρ is irreducible if and only if the associated
K[M ]-module is simple. Thus, by choosing a composition series of V , considered
as a K[M ]-module, one can choose a basis for V such that Mρ consists of block
upper triangular matrices where the monoids formed by the diagonal blocks are
images of M under certain irreducible representations. These irreducible blocks
are uniquely determined by ρ and are called the irreducible constituents of ρ.

The regular representation of M is the representation ρM : M → M|M |(K)
on the vector space K[M ] extending the homomorphism that maps each ele-
ment m ∈ M to the left translation λm : m′ 7→ mm′ of the set M . This is a
faithful representation (meaning ρM is injective). Moreover, every irreducible
representation of M is an irreducible constituent of ρM .

IfM is a monoid andK is a field, then we define the Rhodes radical RadK(M)
to be the congruence on M associated to the direct sum of all the irreducible
representations of M over K. Equivalently, it is the restriction to M of the
congruence on K[M ] associated to the Jacobson radical. Alternatively, if we
consider the regular representation, placed in block upper triangular form, then
the Rhodes radical is the congruence associated to the projection to the block
diagonal.

Recall that a pseudovariety of monoids (semigroups) is a class of finite mon-
oids (semigroups) closed under the formation of finite direct products, sub-
monoids (subsemigroups) and homomorphic images [1,5]. If V is a pseudovariety
of monoids, then LV denotes the pseudovariety of semigroups S such that, for
each idempotent e ∈ S, the monoid eSe belongs to V. Let I denote the trivial
pseudovariety and Gp denote the pseudovariety of p-groups for p prime. If V
is a pseudovariety of semigroups, a homomorphism ϕ : M → N of monoids is
called a V-morphism if, for each idempotent f ∈ N , one has fϕ−1 ∈ V.

With this notation, Rhodes showed [12, 17] that if K has characteristic 0,
then RadK(M) is the largest congruence≡ onM such that the quotient ϕ : M →
M/≡ is an LI-morphism. The authors have generalized this [3] to show that if K
has characteristic p > 0 (a prime), then RadK(M) is the largest congruence ≡
on M such that the quotient ϕ : M →M/≡ is an LGp-morphism. Two proofs of
these results are given in [3]. The first proof uses the Wedderburn theory of finite
dimensional algebras; the second proof uses classical semigroup representation
theory and follows along the lines of [12, 17]. One of the key algebraic results
used in the first proof, and that we shall use later, is the following, whose proof
we include to give the flavor of things. We shall use the fact that a semigroup S is
locally a group (in LG for G the pseudovariety of groups) if and only if it does not
contain a copy of the two element semilattice {e, f | e = e2 = ef = fe, f = f2};
in this case S is a nilpotent extension of a simple semigroup. By E(S) we denote
the set of all idempotents of a semigroup S.

Lemma 2.1 Let ϕ : A→ B be a morphism of K-algebras with kerϕ nilpotent.
Let S be a finite subsemigroup of A. Then if charK = 0, respectively p, then
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ϕ|S is an LI-morphism, respectively LGp-morphism.

Proof Without loss of generality, we may assume that S spans A and hence
that A is finite dimensional. Let e0 ∈ E(B) and U = e0ϕ|−1

S . First we show
that U does not contain a copy of the two element semilattice. Indeed, suppose
that e, f ∈ E(U) and ef = fe = e. Then

(f − e)2 = f2 − ef − fe+ e2 = f − e.

Since f − e ∈ kerϕ, a nilpotent ideal, we conclude f − e = 0, that is, f = e.
As observed before the formulation of the lemma, this means that U is locally
a group.

Now let G be a maximal subgroup of U with identity e. Then g− e ∈ kerϕ.
Since g and e commute, if the characteristic is p, then, for large enough n,

0 = (g − e)pn
= gpn − e

and so G is a p-group. Thus U ∈ LGp.
If the characteristic is 0, then we observe that (g−e)n = 0 for some n. So by

taking the regular representation ρ of G, we see that gρ is a matrix with minimal
polynomial of the form (x− 1)n; that is gρ is unipotent. A quick consideration
of the Jordan canonical form for such gρ shows that if gρ is not the identity
matrix, then it has infinite order. It follows that g = e and so G is trivial. Thus
U ∈ LI. �

We remark that if A is an algebra of block upper triangular matrices, B is
the diagonal block algebra, and ϕ is the projection to the diagonal block, then
the kernel is contained in the algebra of upper triangular matrices with zero
diagonal; this algebra is nilpotent and so Lemma 2.1 applies in this context.

We recall that if V is a pseudovariety of semigroups and W is a pseudovariety
of monoids, then the Malcev product V©m W is the pseudovariety generated by
all monoids M with a V-morphism to a monoid in W. Given our description of
the Rhodes radical, it follows from results of Rhodes and Tilson [6, 13, 26] that
M ∈ LI©m W if and only if M/RadQ(M) ∈W and M ∈ LGp©m W if and only
if M/RadFp(M) ∈W, where Fp is the finite field of order p.

3 Applications to Marked Products

In this section we present two applications of representation theory to studying
marked products. More can be found in [3].

Recall that Eilenberg established [5, Vol.B, Chap. VII] a correspondence
between pseudovarieties of monoids and so-called varieties of languages. If V is
a pseudovariety of monoids and Σ a finite alphabet, then V(Σ∗) denotes the set of
all languages over Σ that can be recognized by monoids in V. (Such languages
are often referred to as V-languages.) The operator V that assigns each free
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monoid Σ∗ the set V(Σ∗) is said to be the variety of languages associated to V.
The syntactic monoid [5, loc. cit.] of a rational language L will be denoted ML.
It is known that L is a V-language if and only if ML ∈ V.

3.1 Products with Counter

Our first application is to prove the results of Peladeau and Weil [7, 27] on
products with counter.

Let L0, . . . , Lm ⊆ Σ∗, a1, . . . , am ∈ Σ and let n be an integer. Then
the marked product with modulo n counter L = (L0a1L1 · · · amLm)r,n is the
language of all words w ∈ Σ∗ with r factorizations modulo n of the form
w = u0a1u1 · · · amum with each ui ∈ Li. One can show that L is rational [27]
(see also the proof of Theorem 3.2 below). Using a decomposition result of
Rhodes and Tilson [14] (see also [16]) based on case-by-case analysis of kernel
categories of maximal proper surmorphisms (see [6, 11, 15]), Weil characterized
the closure of a variety V under marked products with modulo p counter. This
required iterated usage of the so-called “block product” principle. But Weil
missed that the Boolean algebra generated by V(Σ∗) and marked products with
modulo p counters of members V(Σ∗) is already closed under marked products
with modulo p counters; this was later observed by Peladeau [7]. The difficulty
arises because it is not so clear how to combine marked products with modulo
p counters into new marked products with modulo p counters.

We use representation theory to prove the result in one fell swoop. Our
approach is inspired by a paper of Simon [22] dealing with marked products and
the Schützenberger product of finite monoids.

Lemma 3.1 Let V be a pseudovariety of monoids, ϕ : Σ∗ →M be a morphism
with M finite. Let K be a field of characteristic p and suppose that M can
be represented faithfully by block upper triangular matrices over K so that the
monoids formed by the diagonal blocks of the matrices in the image of M all
belong to V. Let F ⊆M . Then L = Fϕ−1 is a Boolean combination of members
of V(Σ∗) and of marked products with modulo p counter (L0a1L1 · · · anLn)r,p with
the Li ∈ V(Σ∗).

Proof Suppose M ≤ Mt(K) and t = t1 + · · · + tk is the partition of t giving
rise to the block upper triangular form. Let Mi be the monoid formed by the
ti × ti matrices over K arising as the ith diagonal blocks of the matrices in the
image of M . Given w ∈ Σ∗ and i, j ∈ {1, . . . , k}, define ϕi,j : Σ∗ → Mti,tj (K)
by setting wϕi,j to be the ti× tj matrix that is the i, j-block of the block upper
triangular form. So in particular wϕi,j = 0 for j < i. Also ϕi,i is a morphism
ϕi,i : Σ∗ →Mi for all i.

First we observe that we may take F to be a singleton {uϕ}. For each
1 ≤ i ≤ j ≤ k, let

Li,j = {w ∈ Σ∗ | wϕi,j = uϕi,j}.
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Then clearly
uϕϕ−1 =

⋂
1≤i≤j≤k

Li,j .

Since Li,i is recognized by Mi, it suffices to show Li,j , where 1 ≤ i < j ≤ k, can
be written as a Boolean combination of marked products with modulo p counter
of languages recognized by the Ml. Changing notation, it suffices to show that
if 1 ≤ i < j ≤ k and C ∈Mti,tj (K), then

L(C) = {w ∈ Σ∗ | wϕi,j = C} (3.1)

is a Boolean combination of marked products with modulo p counter of languages
recognized by the Mi.

The following definitions are inspired by [22], though what Simon terms an
“object”, we term a “walk”. A walk from i to j is a sequence

w = (i0,m0, a1, i1,m1, . . . , ar, ir,mr) (3.2)

where i = i0 < i1 < · · · < ir = j, al ∈ Σ and ml ∈ Mil . There are only finitely
many walks. The set of walks will be denoted W. Given a walk w, we define its
value to be

v(w) = m0(a1ϕi0,i1)m1 · · · (arϕir−1,ir)mr ∈Mti,tj (K).

If w is a walk, we define the language of w to be the marked product

L(w) = (m0ϕ
−1
i0,i0

)a1(m1ϕ
−1
i1,i1

) · · · ar(mrϕ
−1
ir,ir

).

If w ∈ Σ∗ and w is a walk of the form (3.2), we define w(w) to be the mul-
tiplicity of w in L(w), that is, the number of factorizations w = u0a1u1 · · · arur

with ulϕil,il = ml; this number is taken to be 0 if there are no such factorizations.
If 0 ≤ n < p, we establish the shorthand

L(w)n,p =
(

(m0ϕ
−1
i0,i0

)a1(m1ϕ
−1
i1,i1

) · · · (armrϕ
−1
ir,ir

)
)

n,p
.

Notice that L(w)n,p consists of all words w with w(w) ≡ n mod p and is a
marked product with modulo p counter of V(Σ∗) languages.

The following is a variant of [22, Lemma 7].

Claim 3.1 Let w ∈ Σ∗. Then

wϕi,j =
∑
w∈W

w(w)v(w). (3.3)

Proof Let w = b1 · · · br be the factorization of w in letters. Then the formula
for matrix multiplication gives

wϕi,j =
∑

(b1ϕi0,i1)(b2ϕi1,i2) · · · (brϕir−1,ir) (3.4)
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where the sum extends over all il such that i0 = i, ir = j and il ∈ {1, . . . , k}
for 0 < l < r. Since vϕl,n = 0 for l > n, it suffices to consider sequences such
that i = i0 ≤ i1 ≤ · · · ≤ ir = j. For such a sequence, we may group together
neighboring indices that are equal. Then using that the ϕn,n are morphisms, we
see that each summand in (3.4) is the value of a walk w and that w appears
exactly w(w) times in the sum. �

To complete the proof, we observe that L(C) (defined in (3.1)) is a Boolean
combination of languages of the form L(w)n,p. Let X be the set of all functions
f : W→ {0, . . . , p− 1} such that∑

w∈W

f(w)v(w) = C.

It is then immediate from (3.3) and charK = p that

L(C) =
⋃

f∈X

⋂
w∈W

L(w)f(w),p

completing the proof. �

Theorem 3.2 Let L ⊆ Σ∗ be a rational language, V be a pseudovariety of
monoids and K be a field of characteristic p. Then the following are equivalent.

(1) ML ∈ LGp©m V;

(2) ML/RadK(ML) ∈ V;

(3) ML can be faithfully represented by block upper triangular matrices over
K so that the monoids formed by the diagonal blocks of the matrices in the
image of ML all belong to V;

(4) L is a Boolean combination of members of V(Σ∗) and languages
(L0a1L1 · · · anLn)r,p with the Li ∈ V(Σ∗).

Proof The equivalence of (1) and (2) follows from the results of [3] cited in
Section 2.

For (2) implies (3), take a composition series for the regular representation
of ML over K: it is then in block upper triangular form and, by (2) and the
comments from Section 2, the monoids formed by diagonal blocks of matrices in
the image of ML all belong to V.

(3) implies (4) is immediate from Lemma 3.1.
For (4) implies (1), it suffices to deal with a marked product with counter

L = (L0a1L1 · · · anLn)r,p. Let Ai be the minimal deterministic automaton for
Li. Let A be the non-deterministic automaton obtained from the disjoint union
of the Ai by attaching an edge labelled ai from each final state of Ai−1 to the
initial state of Ai. To each letter a ∈ Σ, we associate the matrix aϕ of the
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relation that a induces on the states. Since aϕ is a 0, 1-matrix, we can view it
as a matrix over Fp. In this way we obtain a morphism ϕ : Σ∗ →Mk(Fp) where
k is the number of states of A. Let M = Σ∗ϕ. Trivially, M is finite. We observe
that M is block upper triangular with diagonal blocks the syntactic monoids
MLi (the partition of k arises from taking the states of each Ai). Notice that
M recognizes L, since L consists of all words w such that (wϕ)s,f = r where s
is the start state of A0 and f is a final state of An. Applying Lemma 2.1 to the
projection to the diagonal blocks gives that M and its quotient ML belong to
LGp©m V. �

The proof of (4) implies (1) gives a fairly easy argument that marked products
of rational languages with mod p counter are rational.

Since the operator LGp©m ( ) is idempotent, we immediately obtain the fol-
lowing result of [7, 27].

Corollary 3.3 Let V be a pseudovariety of monoids and W = LGp©m V. Then

1. W(Σ∗) is the smallest class of languages containing V(Σ∗), which is closed
under Boolean operations and formation of marked products with modulo
p counters.

2. W(Σ∗) consists of all Boolean combinations of elements of V(Σ∗) and
marked products with modulo p counters of elements of V(Σ∗).

Some special cases are the following. If V is the trivial variety of monoids,
then LGp©m V = Gp and we obtain Eilenberg’s result [5, Section VIII.10] that
the Gp languages consist of the Boolean combinations of languages of the form
(Σ∗a1Σ∗ · · · anΣ∗)r,p. Notice that Gp consists of the groups unitriangularizable
over characteristic p. The languages over Σ∗ associated to LGp©m Sl (as ob-
served in [2], this pseudovariety consists of the unitriangularizable monoids over
characteristic p) are the Boolean combinations of languages of the forms

Σ∗aΣ∗ and (Σ∗
0a1Σ∗

1 · · · anΣ∗
n)r,p

where Σi ⊆ Σ.
We remark that Weil shows [27] that closing V(Σ∗) under marked products

with modulo pn counters, for n > 1, does not take you out of the LGp©m V-
languages.

3.2 Unambiguous Products

Our next application is to recover results of Schützenberger, Pin, Straubing, and
Thérien concerning unambiguous products. Our proof of one direction is along
the lines of [9] but our usage of representation theory allows us to avoid using
results relying on case-by-case analysis of maximal proper surmorphisms and
the block product principle.
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Let Σ be a finite alphabet, L0, . . . , Ln ⊆ Σ∗ be rational languages and
a1, . . . , an ∈ Σ. Then the marked product L = L0a1L1 · · · anLn is called un-
ambiguous if each word w ∈ L has exactly one factorization of the form

u0a1u1 · · · anun ,

where each ui ∈ Li. We also allow the degenerate case n = 0.
We shall need to use a well-known and straightforward consequence of the

distributivity of concatenation over union (cf. [9]), namely, that if L0, . . . , Ln

are disjoint unions of unambiguous marked products of elements of V(Σ∗), then
the same is true for any unambiguous product L0a1L1 · · · anLn. We also need a
lemma about languages recognized by finite monoids of block upper triangular
matrices in characteristic 0.

Lemma 3.4 Let V be a pseudovariety of monoids, ϕ : Σ∗ →M be a morphism
with M finite. Let K be a field of characteristic 0 and suppose that M can
be represented faithfully by block upper triangular matrices over K so that the
monoids M1, . . . ,Mk formed by diagonal blocks of matrices in the image of M all
belong to V. Let F ⊆ M . Then L = Fϕ−1 is a disjoint union of unambiguous
marked products L0a1L1 · · · anLn with the Li ∈ V(Σ∗).

Proof We induct on the number k of diagonal blocks. If there is only one block
we are done.

Now let k > 1. We can repartition n into two blocks, one corresponding to
the union of the first k − 1 of our original blocks and the other corresponding
to the last block. The first diagonal block, call it N , is block upper triangular
with diagonal blocks M1, . . . ,Mk−1; the second is just Mk. By induction, any
language recognized by N is a disjoint union of unambiguous marked products
L0a1L1 · · · arLr with the Li ∈ V(Σ∗). Thus to prove the result, it suffices to show
that L is a disjoint union of unambiguous marked products L0a1L1 · · · anLn with
the Li recognized by N ×Mk. It is shown in [3] that the projection from M to
N ×Mk has locally trivial kernel category (see [14] for the definition). Then [9,
Proposition 2.2] shows us that L is a disjoint union of such unambiguous marked
products. �

We ask whether there is a simple combinatorial proof of this lemma that
avoids the use of [9, Proposition 2.2] along the lines of the proof of Lemma 3.1.

Theorem 3.5 Let L ⊆ Σ∗ be a rational language, V be a pseudovariety of
monoids and K a field of characteristic 0. Then the following are equivalent.

(1) ML ∈ LI©m V;

(2) ML/RadK(ML) ∈ V;
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(3) ML can be faithfully represented by block upper triangular matrices over
K so that the monoids formed by the diagonal blocks of the matrices in the
image of ML all belong to V.

(4) L is a disjoint union of unambiguous products L0a1L1 · · · anLn with the
Li ∈ V(Σ∗).

Proof The equivalence of (1) and (2) follows from the results of [3] quoted in
Section 2.

For (2) implies (3), take a composition series for the regular representation
of ML over K: it is then in block upper triangular form and by (2) monoids
formed by diagonal blocks of matrices in the image of ML all belong to V.

(3) implies (4) is immediate from Lemma 3.4.
For (4) implies (1), it suffices to deal with a single unambiguous marked

product L = L0a1L1 · · · anLn. Let Ai be the minimal trim [5] deterministic
automaton for Li and let A be the non-deterministic automaton obtained from
the disjoint union of the Li by attaching an edge labelled ai from each final
state of Ai−1 to the initial state of Ai. To each letter a ∈ A, we associate the
matrix aϕ of the relation that a induces on the states. In this way we obtain a
morphism ϕ : Σ∗ →Mk(Q) where k is the number of states of A. Let M = Σ∗ϕ.
We observe that M is block upper triangular with diagonal blocks the syntactic
monoids MLi (the partition of k arises from taking the states of each Ai). Notice
that M recognizes L, since L consists of all words w such that (wϕ)s,f > 0 where
s is the start state of A0 and f is a final state of An. First we show that M
is finite. In fact, we claim M contains only 0, 1-matrices (and hence must be
finite). Indeed, suppose (wϕ)i,j > 1 some i, j. Since each MLi consists of 0, 1-
matrices, we must have that i is a state of some Al and j a state of some Ar

with l < r. But (wϕ)i,j is the number of paths labelled by w from i to j in A.
Thus if u, v are words reading respectively from the start state of A0 to i and
from j to a final state of An (such exist since the Ai are trim), then uwv has at
least two factorizations witnessing membership in L, contradicting that L was
unambiguous. Since the collection of all block upper triangular matrices is an
algebra over Q, as is the collection of block diagonal matrices, an application of
Lemma 2.1 to the projection to the diagonal blocks gives that M ∈ LI©m V and
so, since M � ML, we have ML ∈ LI©m V. �

Since the operator LI©m ( ) is idempotent, we immediately obtain the follow-
ing result of [8, 9].

Corollary 3.6 Let V be a pseudovariety of monoids and W = LI©m V. Then

1. W(Σ∗) is the smallest class of languages containing V(Σ∗), which is closed
under Boolean operations and formation of unambiguous marked products.

2. W(Σ∗) consists of all finite disjoint unions of unambiguous marked prod-
ucts of elements of V(Σ∗).
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Recall that the Malcev product of the pseudovariety LI with the pseudovari-
ety Sl of semilattices (idempotent-commutative monoids) is equal to the famous
pseudovariety DA of all finite monoids whose regular D-classes are idempotent
subsemigroups (see [24] for a nice survey of combinatorial, logical and automata-
theoretic characterizations of DA). Applying the above corollary, one obtains
the classical result of Schützenberger [19] that DA(Σ∗) consists of disjoint unions
of unambiguous products of the form Σ∗

0a1Σ∗
1 · · · anΣ∗

n with Σi ⊆ Σ for all i. It
is shown in [3], using representation theory, that DA consists of precisely those
monoids that can be faithfully represented by upper triangular matrices with
zeroes and ones on the diagonal over Q.
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On the tau-adic expansions of real numbers

Petr Ambrož ∗

1 Introduction

The most usual way of representation of numbers are the positional numeration
systems, that is, the representation of numbers in the form of finite or infinite
words over a given alphabet of digits. Several different concepts of these systems
have been studied in the past, e.g. usual representations in an integer base (and
its generalizations such as p-adic numeration or systems using signed digits),
representations in a real base, based on the so-called beta-expansions (introduced
by Rényi [13]), or representations with respect to a sequence of integers. A survey
of most of these concepts was given by Frougny in Chapter 7 of [9].

In this paper we study another way of representation of numbers, strongly
connected with the representations based on β-expansions, when β is an al-
gebraic integer. In a general sense it could be called either β-adic or α-adic
expansion – where α is an algebraic conjugate of β of modulus less than 1 –
however we deal in the whole paper only with the “simplest” irrational base,
namely with the golden mean τ = (1+

√
5)/2, and hence we use the term τ -adic

expansion.
The term τ -adic expansion itself reveals our sources of inspiration – the τ -

numeration system on one hand and p-adic numbers (representations of numbers
in the form of left infinite power series in a prime p) on the other hand. In fact
the τ -adic expansion is a representation of a real number x in the form of a
(possibly) left infinite power series. However, contrary to p-adic numbers the
base of the τ -adic system is not the number τ itself but its algebraic conjugate τ ′.
This difference implies an important advantage over the usual p-adic expansions.
Since the number τ ′ is in modulus smaller than one we do not have to introduce
any special valuation for the series to converge.

Although our use of τ -adic expansions may be new, the deployment of left
infinite power series in an irrational number β is not new at all. It has been used
by several authors for different purposes. Vershik [17] (probably the first use of
the term fibadic expansion) and Sidorov and Vershik [16] use two-sided expan-
sions to show a connection between symbolic dynamics of toral automorphisms
and arithmetic expansions associated with their eigenvalues and for study of
the Erdös measure (more precisely two-sided generalization of Erdös measure).

∗Department of Mathematics, FNSPE, Czech Technical University, Prague and LIAFA,
CNRS UMR 7089, Paris, ampy@linux.fjfi.cvut.cz
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Two-sided beta-shifts have been studied in full generality by Schmidt in [15]. Ito
and Rao [8], and Berthé and Siegel [4] use representations of two-sided β-shift
in their study of purely periodic expansions with Pisot unit and non-unit base.

Left-sided extensions of numeration systems defined by a sequence of inte-
gers, like the Fibonacci numeration system, have been introduced by Grabner,
Liardet and Tichy [7], and studied from the point of view of the odometer func-
tion. The use (at least implicit) of representations infinite to the left is contained
in every study of the Rauzy fractal [12], especially in a study of its border, see
e.g. Akiyama [1], Akiyama and Sadahiro [2] or Messaoudi [10].

This contribution is organized as follows. In the first part we recall known
facts about the τ -numeration, we define τ -adic expansions, and show a connec-
tion between these two notions. Further on, we give an algorithm for computing
the τ -adic expansion of an integer. As a consequence we show that every integer
has its τ -adic expansion eventually periodic to the left with a finite fractional
part (Corollary 3.5). Then we study τ -adic expansions of rational numbers.
We give an algorithm for computing the τ -adic expansion of a rational num-
ber, which implies that any rational number has its τ -adic expansion eventually
periodic to the left with a finite fractional part (Corollary 4.6).

Recall that, by the results of Bertrand [5] and Schmidt [14], a positive real
number belongs to the field Q(τ) if and only if its τ -expansion (which is right
infinite) is eventually periodic. Thus it is natural to try to get a similar result
for τ -adic expansions. We prove that a real number belongs to the field Q(τ ′)
if and only if its τ -adic expansion is eventually periodic to the left with a finite
fractional part (Theorem 5.5). Note that the fields Q(τ) and Q(τ ′) are identical,
but our result includes also negative numbers that means one can represent by
τ -adic expansions with positive digits also negative numbers without utilization
of the sign.

2 Tau-expansions

Let β > 1 be a real number. A representation in base β (or simply β-represen-
tation) of a real number x ∈ R+ is an infinite sequence (xi)n≥i>−∞, xi ∈ Z such
that x = xnβ

n + xn−1β
n−1 + · · · + x1β + x0 + x−1β

−1 + · · · for certain n ∈ Z.
It is denoted by (x)β = xnxn−1 . . . x1x0 • x−1x−2 . . ., most significant digit first.

Among all β-representations of a number x there is one particular – called
β-expansion – for which the coefficients xi are non-negative integers and

N∑
i=−∞

xiβ
i < βN+1 for all −∞ < N < n .

Every x ∈ R+ has a unique β-expansion which is found by the greedy algo-
rithm [13]. The β-expansion of a number x is denoted by 〈x〉β .

The normalization is the function ν which maps an infinite sequence of digits
(xi)n≥i>−∞ onto the β-expansion 〈π((xi)n≥i>−∞)〉β .
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If the β-expansion of x ends in infinitely many zeros, it is said to be finite
and the ending zeros are omitted. The set of all real numbers x for which the
β-expansion of |x| is finite is denoted by Fin(β). Moreover, if the β-expansion
of |x| is of the form |x| =

∑n
i=0 xiβ

i we say that x is a β-integer. The set of all
beta-integers is denoted by Zβ.

A sequence of coefficients which corresponds to some β-expansion is some-
times called admissible in the beta-numeration system. For the characterization
of admissible sequences of coefficients one needs to introduce the so-called Rényi
expansion of 1,

dβ(1) := t1t2t3 . . . , where t1 = bβc and
∞∑

n=2

tn
βn

is the β-expansion of 1− t1
β
.

The β-expansions (or β-admissible sequences) are then characterized by the
Parry condition [11]: the sequence (xi)n≥i≥m with xi ∈ Aβ ≡ {0, 1, . . . , bβc} is a
β-expansion of some x > 0 if and only if xn−pxn−p−1 . . . xm is lexicographically
smaller than dβ(1) for all 0 ≤ p ≤ n−m.

Recall that Pisot number is an algebraic integer β > 1 with all its algebraic
conjugates in modulus smaller than 1. The golden mean τ is the smallest one
among all totally real Pisot numbers, i.e. Pisot numbers with all their algebraic
conjugates real. It is the root of the polynomial x2 − x − 1, its conjugate is
denoted τ ′. Obviously τ ′ = − 1

τ .
The Rényi development of one in the τ -numeration system is dτ (1) = 11,

hence admissible τ -expansions are sequences over the alphabet Aτ = {0, 1} not
containing the word 11 as a factor.

From now on the symbol τ will stand for the golden mean and τ ′ for its
algebraic conjugate.

3 Tau-adic expansions of integers

Definition 3.1 A τ -adic representation of a real number x ∈ R is a left-infinite
sequence (di)−n≤i<∞, di ∈ Z, n ∈ Z+ such that

x =
∞∑

−n≤i

di(τ ′)i .

It is denoted τ ′(x) := · · · d1d0 •d−1 · · · d−n. The value of a τ -adic representation
is obtained by the function π : Z∗ 7→ R given by π((di)−n≤i<∞) :=

∑∞
i=−n di(τ ′)i.

If all finite factors of the sequence (di)−n≤i<∞ are admissible in the τ -
numeration system, the sequence (di)−n≤i<∞ is said to be the τ -adic expansion
of the number x, and it is denoted τ ′〈x〉.

In this section we are concerned with the τ -adic expansions of integers. We
know [6] that Fin(τ) = Z[τ ] = {a + bτ | a, b ∈ Z}. Hence for any z ∈ Z+ there
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exist m,n ∈ Z, m ≤ n such that z =
∑n

i=m ziτ
i thus z =

∑n
i=m zi(τ ′)i, i.e.

for each z ∈ Z+ the τ -adic expansion τ ′〈z〉 = 〈z〉τ is a finite word with some
possible fractional part.

Example 3.2 The number −1 has two τ -adic expansions

ω(10)10 • 0 = τ ′〈−1〉 and ω(01)00 • 1 = τ ′〈−1〉 , (3.1)

but the number 1 has only one τ -adic expansion which is the same as its expan-
sion in the τ -numeration system, obviously it is 1.

One can easily see that τ -adic expansions of the number −2 are

ω(01)000 • 1 = τ ′〈−2〉 and ω(10)010 • 1 = τ ′〈−2〉 ,

whereas the number 2 has only one expansion (τ -adic expansion as well as ex-
pansion in the τ -numeration system), 〈2〉τ = τ ′〈2〉 = 10 • 01.

Using the fact that the set Fin(τ) forms a ring [6], the following proposition
can be proved by the induction.

Proposition 3.3 Let z ∈ Z− be a negative integer. Its τ -adic expansion τ ′〈z〉
is a left infinite, eventually periodic word of the form τ ′〈z〉 = ω(10)v, where
v = 〈x〉τ , x ∈ Fin(τ).

The proof of Proposition 3.3 gives us an algorithm for the computation of
the τ -adic expansion of an integer z ∈ Z− by successively subtracting 1 from the
τ -adic expansion of −1. Indeed, this is not a very efficient algorithm. We give
here another one, based on the τ -expansion of the number −z obtained by the
greedy algorithm.

Algorithm. Let z ∈ Z− be an integer. We find its τ -adic expansion by the
following algorithm.

1. Use the greedy algorithm to find the τ -expansion of the number −z.

2. Let us assume 〈−z〉τ =
∑l

i=−k diτ
i such that dl 6= 0 and d−k 6= 0. Then

τ ′〈−z〉 =
∑l

i=−k di(τ ′)i.

3. By the transformation di 7→ −di for i = −k, . . . , l we obtain a τ -adic
representation of z in the form of a finite word over the alphabet {−1, 0}.

4. Replace the rightmost occurrence of a coefficient −1 by its own τ -adic
expansion ω(10). Afterward, the representation has a periodic part ω(10)
(to the left) and a pre-period – a finite word over the alphabet {−1, 0, 1}.

5. Finally, the τ -adic expansion of −z is simply found by the normalization
of the pre-period.
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Example 3.4 We will find the τ -adic expansion of −4. The τ -expansion of the
number 4 is 101 • 01, so we have1 1̄01̄ • 01̄ as a τ -adic representation of the
number −4. After replacing the rightmost coefficient −1 according to the step
4, we obtain τ ′(−4) = ω(10)11̄11̄ • 10. Finally, by normalizing the pre-period
(recall that 11̄1̄ is a representation of 0)

1 1̄ 1 1̄ • 1 0 0
1̄ 1 1

1̄ 1 • 1
0 0 1 0 • 2 0 0

1 • 1̄ 1̄
1 1̄ 1̄ 1̄ 1 1

0 1 0 0 • 0 0 1

we find the wanted expansion τ ′〈−4〉 = ω(10)0100 • 001.

Since most of the expansions we will be dealing with will be left infinite
eventually periodic, we define the following two sets of numbers.

Iep(τ ′) :=
{
x ∈ R

∣∣
τ ′〈x〉 = ω(dk+l . . . dk+1)dk . . . d1d0•} ,

Fep(τ ′) :=
{
x ∈ R

∣∣
τ ′〈x〉 = ω(dk+l . . . dk+1)dk . . . d1d0 • d−1 . . . d−m} ,

where k, l,m ∈ N.

Corollary 3.5 Since any integer z ∈ Z has its τ -adic expansion τ ′〈z〉 eventually
periodic to the left with a finite fractional part, we have Z ⊂ Fep(τ ′).

4 Tau-adic expansions of rational numbers

In this section we will inspect the τ -adic expansions of rational numbers. At first,
we restrict ourselves to the case where the number is in modulus smaller than
one – we give an algorithm to find the τ -adic expansion of such rational number
q ∈ Q, |q| < 1. The given algorithm is a sort of a right to left normalization.

After each step the so far obtained representation of the number q is of
the form 0x2x1v such that π(x2x1v) = q, v = 〈y〉τ , y ∈ Fin(τ) and x1 is
not an integer. The algorithm modifies the prefix 0x2x1 of this representation
by adding to it or subtracting from it the word (1)(−1)(−1) multiplied by a
suitable rational number. Note that the value of (1)(−1)(−1) is zero. In each
step this transformation shifts the last non-integer coefficient more far to the
left. Since the starting point of the whole process is a single rational number,
after each step there will be at most two non-integer coefficients in the front of
the representation.

There are six possible combinations (with the respect to the sign and to the
size) of those non-integer coefficients and thus also six possible transformations
of the prefix of the so far obtained representation:

1the symbol 1̄ is sometimes used to denote the number −1.
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1. x1 < 0, x2 ≤ 0. Then the prefix (0)(x2)(x1) is transformed into the prefix
(x1)(x2 − x1)(0) by adding the word (x1)(−x1)(−x1).

2. x1 < 0, x2 > 0. The prefix (0)(x2)(x1) is transformed into (x1)(x2 −
x1)(0) by adding the word (x1)(−x1)(−x1).

3. x1 > 0, x2 < 0. The prefix (0)(x2)(x1) is transformed into the prefix
(x1 − 1)(x2 + 1− x1)(1) by adding the word (x1 − 1)(1− x1)(1− x1).

4. x1 ∈ (0, 1/2], x2 = 0. The prefix (0)(0)(x1) is transformed into
(x1)(−x1)(0) by adding the word (x1)(−x1)(−x1).

5. x1 > 1/2, x2 = 0. The prefix (0)(0)(x1) is transformed into (x1− 1)(1−
x1)(1) by adding the word (x1 − 1)(1− x1)(1− x1).

6. x1 > 0, x2 > 0. The prefix (0)(x2)(x1) is transformed into (x1)(x2 −
x1)(0) by adding the word (x1)(−x1)(−x1).

Example 4.1 We compute the τ -adic expansion of the number q = 1
2 .

0 0 1
2

1
2 −1

2 −1
2

0 1
2 −1

2 0
−1

2
1
2

1
2

0 0 −1
2 1 0 0

−1
2

1
2

1
2

0 −1
2

1
2 0 1 0 0

−1
2

1
2

1
2

0 0 −1
2 0 1 0 1 0 0

ω(0 1 0) 1 0 0

The prefix (0)(0)(−1/2) which arose from the second step re-occurred after the
fourth step. Indeed, using the same operations will induce the reappearance
of this prefix after each even step. The periodicity of the τ -adic expansion is
obvious.

Proposition 4.2 Let q ∈ Q, |q| < 1. Then the non-integer coefficients in each
step of the algorithm generating τ ′〈q〉 are in modulus smaller than or equal to 1.

Proof We will prove the proposition by the induction on the number of steps
of the algorithm. In the first step the statement is valid due to the assumption
|q| < 1.

Let (0)(x(k)
2 )(x(k)

1 ) be the prefix of the representation before the k-th step
(i.e. before the first step we have x(1)

2 = 0, x(1)
1 = q), where |x(k)

2 | < 1, |x(k)
1 | < 1
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and x(k)
1 is the first (from the right) non-integer coefficient. The prefix after the

k-th step will be denoted (x(k+1)
3 )(x(k+1)

2 )(x(k+1)
1 ). Hence, in the six cases from

the description of the algorithm we have

1. x(k)
1 ∈ (−1, 0), x(k)

2 ∈ (−1, 0] ⇒
x

(k+1)
3 = x

(k)
1 ∈ (−1, 0), x(k+1)

2 = x
(k)
2 − x

(k)
1 ∈ (−1, 1), x(k+1)

1 = 0.

2. x(k)
1 ∈ (−1, 0), x(k)

2 ∈ (0, 1) ⇒
x

(k+1)
3 = x

(k)
1 ∈ (−1, 0), x(k+1)

2 = x
(k)
2 − x

(k)
1 ∈ (0, 2), x(k+1)

1 = 0

3. x(k)
1 ∈ (0, 1), x(k)

2 ∈ (−1, 0) ⇒
x

(k+1)
3 = x

(k)
1 − 1 ∈ (−1, 0), x(k+1)

2 = x
(k)
2 + 1− x(k)

1 ∈ (−1, 1), x(k+1)
1 = 1.

4. x(k)
1 ∈ (0, 1

2 ], x(k)
2 = 0 ⇒

x
(k+1)
3 = x

(k)
1 ∈ (0, 1

2 ], x(k+1)
2 = −x(k)

1 ∈ [−1
2 , 0), x(k+1)

1 = 0.

5. x(k)
1 ∈ (1

2 , 1), x(k)
2 = 0 ⇒

x
(k+1)
3 = x

(k)
1 − 1 ∈ (−1

2 , 0), x(k+1)
2 = 1− x(k)

1 ∈ (0, 1
2), x(k+1)

1 = 1.

6. x(k)
1 ∈ (0, 1), x(k)

2 ∈ (0, 1) ⇒
x

(k+1)
3 = x

(k)
1 ∈ (0, 1), x(k+1)

2 = x
(k)
2 − x

(k)
1 ∈ (−1, 1), x(k+1)

1 = 0.

Therefore, the only case which does not directly fulfill the proposition is the
coefficient x(k+1)

2 in Case 2. Let us inspect it more closely. Since x(k)
2 > 0 and

x
(k)
1 < 0 the step (k − 1) was either of Type 4 or 6:

a. Step (k − 1) was of Type 4. This fact gives us more accurate bounds
on the prefix before the Step k: x(k)

2 ∈ (0, 1
2 ], x(k)

1 ∈ [−1
2 , 0). Therefore

x
(k+1)
3 = x

(k)
1 ∈ [−1

2 , 0), x(k+1)
2 = x

(k)
2 − x

(k)
1 ∈ (0, 1], x(k+1)

1 = 0.

b. Step (k−1) was of Type 6. Note that the starting configuration for a step
of Type 6, i.e. x(k−1)

1 ∈ (0, 1), x(k−1)
2 ∈ (0, 1), can be only generated by

another preceding step of Type 6. Indeed the step (k − 2) was of Type
6. Consequently, all preceding steps up to the first one were of Type 6.
This is in the contradiction with the fact, that the algorithm starts in the
configuration (0)(0)(q), q ∈ (−1, 1). Therefore the step of Type 6 will
never occur in the algorithm.

�

Corollary 4.3 Since the prefix (x(k+1)
3 )(x(k+1)

2 )(x(k+1)
1 ) of the representation af-

ter the k-th step of the algorithm is uniquely determined by the prefix (x(k)
2 )(x(k)

1 )
in the previous step and since according to Lemma 4.2 the values of x(k)

2 and
x

(k)
1 have only finitely many possibilities, the τ -adic expansion generated by the

algorithm is eventually periodic. This also implies that the algorithm will stop
after finitely many steps.
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Corollary 4.4 Since any rational number q ∈ Q which is in modulus smaller
than one has its τ -adic expansion τ ′〈q〉 eventually periodic to the left starting
with the coefficient d0, we have Q ∩ (−1, 1] ⊂ Iep(τ ′).

Now, let us assume that we want to find the τ -adic expansion of a rational
number q such that |q| > 1. We will discuss separately the cases q > 1 and
q < −1.

Case q > 1. Indeed, there are numbers z ∈ Z+ and q̂ ∈ Q ∩ (0, 1) such that
q = z + q̂. We know how to find the τ -adic expansion τ ′〈z〉, which is a finite
word over the alphabet Aτ = {0, 1} admissible in the τ -numeration system, as
well as the τ -adic expansion τ ′〈q̂〉 which is a word over Aτ , eventually periodic
to the left, admissible in the τ -numeration system and with no fractional part.

Let us assume that τ ′〈z〉 =
∑l

i=−k di(τ ′)i. If the period of τ ′〈q̂〉 starts with
a power of (τ ′) less than or equal to l, we shift it to the left so is starts with the
power (τ ′)l+1 and then we decompose this τ -adic expansion in two parts – the
pre-period PreP(τ ′〈q̂〉) and the period InP(τ ′〈q̂〉).

Since Fin(τ) is a ring, the τ -adic expansion of the sum τ ′〈z〉 + PreP(τ ′〈q̂〉)
is a finite word. To obtain the final result it is enough to concatenate (or add)
the period InP(τ ′〈q̂〉) to it, with some possible normalization on the point of
concatenation.

Example 4.5 We will find the τ -adic expansion of the number 11
2 . We have

z = 5, τ ′〈5〉 = 1000 • 1001 and q̂ = 1
2 , τ ′〈12〉 = ω(010)100. Since the τ -adic

expansion of 5 and the periodic part of τ ′〈12〉 are overlapping, we have to shift
the period of τ ′〈12〉 one coefficient to the left. We obtain PreP(τ ′〈12〉) = 0100
and InP(τ ′〈12〉) = ω(001)0000. The expansion of PreP(τ ′〈12〉) + τ ′〈z〉 is equal to
10000 • 1001. Hence by adding of InP(τ ′〈12〉) to it

1 0 0 0 0 • 1 0 0 1
ω(0 0 1)0 0 0 0

ω(0 1 0)0 2 0 0 0 0 • 1 0 0 1
1 2̄ 0 1

τ ′〈11
2 〉 = ω(0 1 0)1 0 0 1 0 0 • 1 0 0 1

we obtain the wanted τ -adic expansion.

Case q < −1. In this case we can find z ∈ Z− and q̂ ∈ Q ∩ (−1, 0) such
that q = z + q̂. The τ -adic expansion τ ′〈q̂〉 is again a word over Aτ = {0, 1},
eventually periodic to the left, admissible in the τ -numeration system and with
no fractional part, whereas the τ -adic expansion τ ′〈z〉 is a word over the alphabet
Aτ admissible in the τ -numeration system, eventually periodic to the left with
the period ω(10) in this case.

We decompose τ ′〈z〉 into two parts – the pre-period PreP(τ ′〈z〉) and the
period InP(τ ′〈z〉). Then we obtain the τ -adic expansion of PreP(τ ′〈z〉) + τ ′〈q̂〉
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as in the previous Case. Let us assume that the period of τ ′〈z〉 started with the
k-th element of the expansion, then InP(τ ′〈z〉) is in fact the τ -adic expansion of
the number −(τ ′)k−1. Therefore, to find the final result it suffices to subtract
(τ ′)k−1 from τ ′〈PreP(τ ′〈z〉) + τ ′〈q̂〉〉.

Corollary 4.6 Since any rational number q ∈ Q has its τ -adic expansion even-
tually periodic to the left with only finite fractional part, we have Q ⊂ Fep(τ ′).

5 Properties of the set Fep

We have the following result concerning algebraic properties of the set Fep. The
proof consisting of the construction of an automaton performing deterministic
normalization of τ -adic representation over the alphabet {0, 1, 2} can be found
in [3].

Theorem 5.1 The set Fep(τ ′) is closed under addition of positive elements.

Corollary 5.2 The set Fep(τ ′) is closed under addition of any two elements
(hence it is closed under addition and subtraction).

Proof Indeed, it is enough to show that Fep(τ ′) is closed under subtraction of
positive elements. Let x, y ∈ Fep(τ ′), x > y > 0. We want to find the τ -adic
expansion of x− y.

The first step is the same as for the addition of positive elements – by simple
digit wise addition we find a τ -adic representation of x− y, we will denote it by
z = τ ′(x− y). Obviously, the coefficients of z are from the alphabet {−1, 0, 1}.
Without loss of generality, we can suppose that z has no fractional part.

We define a partition of the representation z into three other representations
u, vodd and veven, such that this partition preserves the numerical value π(z) =
π(u) + π(vodd) + π(veven) and

• u is obtained from z by putting all the negative coefficients equal to zero

• vodd is obtained from z by keeping only negative coefficients which belong
to the odd powers of τ ′

• veven is obtained from z by keeping only negative coefficients which belong
to the even powers of τ ′

Indeed, π(u) is a non-negative number belonging to the set Fep(τ ′). We
modify vodd and veven by v′odd = vodd + ω(10) • 11, v′even = veven + ω(01) • 011.
Hence π(v′odd) > 0, π(v′even) > 0 and π(v′odd), π(v′even) ∈ Fep(τ ′).

Finally, the τ -adic expansion of x− y is obtained by performing two consec-
utive additions (u+ v′odd) + v′even. The result is an element of Fep(τ ′) by virtue
of Theorem 5.1. �
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Example 5.3 Let z = ω(01̄1̄1)01̄011̄. Then

u = ω(0001)00010•
vodd = ω(01̄00)01̄000•
v′odd = ω(0001)00010•11
veven = ω(001̄0)00001̄•
v′even = ω(1000)10100•011

Corollary 5.4 The proof of Corollary 5.2 gives an algorithm to compute the
τ -adic expansion from a τ -adic representation over any finite alphabet of digits.

Theorem 5.5 The field Q(τ ′) (and therefore also the field Q(τ)) is equal to the
set Fep(τ ′) of all real numbers having eventually periodic τ -adic expansion with
a finite fractional part.

Proof Let x ∈ Fep(τ ′), say τ ′〈x〉 = ω(dk+p . . . dk+1)dk . . . d0 • d−1 . . . d−m. The
numerical value of τ ′〈x〉 is

π(τ ′〈x〉) = x1 +
x2

1− (τ ′)p
(5.1)

where x1, x2 ∈ Z[τ ′], x1 = d−m(τ ′)−m + · · · + dk(τ ′)k and x2 = dk+1(τ ′)k+1 +
· · ·+ dk+p(τ ′)k+p. Equation (5.1) implies x ∈ Q(τ ′) and hence Fep(τ ′) ⊂ Q(τ ′).

Conversely, let x ∈ Q(τ ′). Say x = p + qτ ′ where p, q ∈ Q. Due to Corol-
lary 4.6 we know that p, q ∈ Fep. Since the multiplication by τ ′ only shifts a τ -
adic expansion we have also qτ ′ ∈ Fep. Finally, as a consequence of Theorem 5.1
(and Corollary 5.2) we have x = p+ qτ ′ ∈ Fep(τ ′) and so Q(τ ′) ⊂ Fep(τ ′). �

Corollary 5.6 The set Fep(τ ′) is a commutative ring.
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Palindromes and Pseudo-Palindromes in

Episturmian and Pseudo-Palindromic

Infinite Words

Vyoma Anne, Luca Q. Zamboni, Ioana Zorca∗

Abstract

Let A be a finite set of cardinality greater or equal to 2. An infinite word
ω ∈ AN is called Episturmian if it is closed under mirror image (meaning
if u = u1u2 · · ·uk is a subword of ω, then so is ū = uk · · ·u2u1) and if for
every n ≥ 1 there exists at most one subword u of ω of length n which is
right special. We show that if u is a subword of an Episturmian word ω
which is a palindrome, then every first return to u is also a palindrome.
As a consequence, every Episturmian word begins in an infinite number
of distinct palindromes. Our methods extend to the context of pseudo-
palindromic infinite words: ω ∈ AN is called a pseudo-palindromic word
if there exists a bijection φ : A → A with φ2 the identity such that for
each subword u of ω we have that φ(ū) is also a subword of ω, and for
every n ≥ 1 there exists at most one subword u of ω of length n which is
right special. These words arise naturally in the context of the Fine and
Wilf Theorem on k-periods. A factor u of ω is called a pseudo-palindrome
if u = φ(ū). We deduce that if u is a subword of a pseudo-palindromic
word ω which is a pseudo-palindrome, then every first return to u is also a
pseudo-palindrome. In particular, every pseudo-palindromic infinite word
begins in an infinite number of distinct pseudo-palindromes.

1 Introduction

Given an infinite word ω = ω0ω1ω2 . . . on a finite alphabet, denote by Ln(ω) the
set of all subwords of ω of length n, that is Ln(ω) = {ωjωj+1 . . . ωj+n−1 | j ≥ 0}.
The complexity function p(n) = pω(n) is defined as the cardinality of Ln(ω). A
celebrated result of Morse and Hedlund states that an infinite word is ultimately
periodic if and only if for some n the complexity p(n) ≤ n. (See [30]). An infinite
word ω is called Sturmian if p(n) = n + 1 for all n ≥ 1. Thus amongst all ape-
riodic infinite words, Sturmian words are those having the smallest complexity.
Perhaps the most well known example is the Fibonacci word

01001010010010100101001001010010010100101001001010010 . . .
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defined as the fixed point of the morphism 0 7→ 01 and 1 7→ 0.
The study of Sturmian words was originated by M. Morse and G.A. Hedlund

in the 1930’s. They showed that Sturmian words provide a symbolic coding of
the orbit of a point on a circle under an irrational rotation (c.f. [30]). Sturmian
words have since been extensively studied from many different points of view:
(c.f. [3], [6], [4], [13], [16], [19], [27], [28], [31]). It is well known that if ω is a
Sturmian word, then for each factor u = u1u2 · · ·un with ui ∈ {0, 1} the mirror
image ū = unun−1 · · ·u2u1 is also a factor of ω, in other words the language of ω
is closed under mirror image. Also the condition p(n+1)−p(n) = 1 implies that
for each n there exists exactly one word u ∈ Ln(ω) which is a prefix (respectively
suffix) of more than one (in fact two) words in Ln+1(ω). Such a word is said to
be right special (respectively left special). A word which is both right and left
special is called bispecial.

Let A be a finite set of cardinality greater or equal to two. An infinite word
ω ∈ AN is called Episturmian if the language of ω is closed under mirror image
and for each n there exists at most one right special factor of length n. It follows
directly from the definition that ω contains at most one left special factor of
every length, and that each bispecial factor of ω is a palindrome. Also the
mirror image of every left special factor is right special, and a palindrome is left
special if and only if it is right special.

Episturmian words have been extensively studied by a number of people
including Droubay, Justin and Pirillo (cf. [17,23–26,35]). Episturmian words are
a generalization of Sturmian words, in fact the set of Sturmian words is precisely
the set of binary aperiodic Episturmian words. Episturmian words are also a
generalization of Arnoux-Rauzy infinite words (c.f. [3, 9, 14, 29, 32, 33, 36, 37]).
In fact every Arnoux-Rauzy infinite word is Episturmian but not conversely.
Although every aperiodic Episturmian word is the morphic image of an Arnoux-
Rauzy word.

Let ω be an aperiodic Episturmian word, and Xω the shift orbit closure of X.
Then Xω contains an infinite word ω̃ all of whose prefixes are left special factors.
This word is called the associated standard Episturmian word (see [24, 25]).
The bispecial prefixes of a standard Episturmian word are palindromes, and
hence every standard Episturmian word begins in an infinite number of distinct
palindromes.

Let ω be an Episturmian word on the alphabet A with |A| = k ≥ 2. Let
u ∈ L(ω). A word w ∈ L(ω) is called a first return word to u if w contains
exactly two occurrences of u, one as a prefix and one as a suffix. It is well known
that every word u ∈ L(ω) has at most k distinct first returns [26]. Our main
result is the following:

Theorem 1.1 Let ω be an Episturmian infinite word, and x ∈ L(ω) a palin-
drome. Then every first return to x is a palindrome.

As a consequence we deduce that every Episturmian infinite word begins in
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an infinite number of distinct palindromes.

2 Proof of Theorem 1.1

Let ω be an aperiodic Episturmian word on the alphabet A and X = Xω the
associated subshift. Let L(ω) =

⋃
n≥0 Ln(ω) be the set of all factors of ω. We

denote the length of a word w ∈ L(ω) by |w|. We regard the empty word, denoted
ε, as the unique word in L(ω) of length zero.

If u and v are non-empty words in L(ω) we will write u ` uv to mean that
for each word w ∈ L(ω) with |w| = |u| + |v| if u is a prefix of w then w = uv.
If it is not the case that u ` uv then we will write ¬(u ` uv). Similarly we will
write vu a u to mean that for each word w ∈ L(ω) with |w| = |u|+ |v| if u is a
suffix of w then w = vu. Otherwise we write ¬(vu a u).

Lemma 2.1 Let a ∈ A and suppose axa ∈ L(ω) where x is a bispecial factor of
ω. Then ax is a right special factor of ω.

Proof Suppose to the contrary that ax is not right special. Then ax ` axa.
If no prefix of ax is right special then a ` ax ` axa which would imply that
X contains the periodic infinite word axaxaxaxax . . . , a contradiction. Let v
(possibly the empty word) be the longest prefix of x such that av is right special.
Since v is a prefix of x it follows that v is also left special, hence bispecial.
Whence v̄ = v. Since we are assuming that ax is not right special, it follows
that |v| < |x|. Equivalently, we can write ax = avu where u is not the empty
word. Since av is right special, it follows that v̄a = va is left special and hence
the first letter of u must be a. Set u = au′. It follows by maximality of v that
ava ` avau′ ` avau′a = axa. Since av is a suffix of x we have that ava is a suffix
of axa. But this implies that ω is eventually periodic, a contradiction. �

Lemma 2.2 Let w ∈ L(ω) be bispecial and a ∈ A.

(1) Suppose aw is right special and a ` aw. Then wa ` waw and waw is
bispecial.

(2) Suppose wa is left special and wa a a. Then waw a aw and waw is
bispecial.

Proof Since L(ω) is closed under mirror image, it suffices to prove (1), and (2)
will follow. Let us assume that aw is right special and a ` aw. Clearly wa ` waw.
We show that waw is bispecial. Since wa is left special and wa ` waw, we have
waw is also left special. Since waw is a palindrome (as w is a palindrome), it
follows that waw is also right special and hence bispecial. �

Lemma 2.3 Let w ∈ L(ω) be bispecial and a ∈ A.
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(1) Suppose aw is right special and ¬(a ` aw). Let v (possibly empty) be the
longest proper prefix of w with the property that av is right special. Thus
w = vau for some u ∈ L(ω). Then wa ` wau and wau is bispecial.

(2) Suppose wa is left special and ¬(wa a a). Let v (possibly empty) be the
longest proper suffix of w with the property that va is left special. Thus
w = uav for some u ∈ L(ω). Then uaw a aw and uaw is bispecial.

Proof Again it suffices to prove (1). We suppose aw is right special, and
v (possibly empty) is the longest proper prefix of w with the property that
av is right special. Since v is bispecial it follows that v is a palindrome and
hence va is left special and hence a prefix of w. We write w = vau for some
u ∈ L(ω). The maximality of the length of v implies that ava ` avau. But
since av is right special and |av| ≤ |w| it follows that av is a suffix of w and
hence ava a suffix of wa. Thus wa ` wau. We now show wau is bispecial.
Since wa is left special and wa ` wau we have wau is also left special. But
wau = (au)w = auw = auvau = (au)vau = vauau = wau = wau, and hence
wau is a palindrome. Thus wau is also right special. �

Remark 2.4 It follows from the previous lemmas that if w ∈ L(ω) is bispe-
cial and aw is right special (with a ∈ A), then the shortest bispecial word w′

containing w as a proper prefix is of the form wau for some suffix u (possibly
empty) of w.

Lemma 2.5 Let å ∈ A be the unique bispecial factor of ω of length 1. Then the
first returns to å are contained in the set {̊ab̊a |b ∈ A, b 6= å}∪{̊åa}. In particular
all first returns to å are palindromes.

Proof Let b ∈ A with b 6= å. If åb ∈ L(ω) then it follows that b̊a ∈ L(ω) and
since b 6= å we must have that b ` b̊a. Thus åb ` åb̊a and hence åb̊a is a first
return to å. It follows that a first return to å which is not of the form åb̊a for
some b 6= å must necessarily be of the form å̊a. �

Lemma 2.6 Let å ∈ A be the unique bispecial factor of ω of length 1. Let b ∈ A
with b 6= å. Then each first return to b is a palindrome.

Proof Let w be the shortest bispecial factor of ω containing b. Then by Re-
mark 2.4 and Lemma 2.2 we deduce that w = ubu where u is the longest bispecial
not containing b. We note that b ` bu and ub a b. Thus every first return to b
begins in bu.

Let c ∈ A and suppose that buc ∈ L(ω). If c = b then bub is a first return to
b and is a palindrome. Next suppose that c 6= b. If c does not occur in w then
c ` cw and wc a c. In fact, we know that c 6= å and that c ` c̊a and åc a c.
If ¬(c ` cw) then there would be a bispecial proper prefix x of w such that
cx is right special. But then xc would be left special and hence a prefix of w
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contradicting that c did not occur in w. Thus, in case c does not occur in w we
have that buc ` bucw = bucubu, and hence bucub is a first return to b. Since u
is a palindrome, it follows that bucub is also a palindrome.

Next suppose c occurs in w and hence in u. Let x be the longest bispecial
proper prefix of w such that cx is right special. Since b ` bu it follows that x
is a prefix of u. We write u = xcy. Then by maximality of the length of x we
have that cxc ` cxcybu. Since cxc is a suffix of buc it follows that buc ` bucybu
and hence bucyb is a first return to b. To see that it is a palindrome it suffices to
show that ucy is a palindrome. Writing u = xcy with u and x both palindromes
we see that ucy = cy(u) = cyu = cyxcy = cy(x)cy = xcycy = ucy = ucy as
required. Thus all first returns to b are palindromes. �

Lemma 2.7 Let a ∈ A and suppose that axa ∈ L(ω) where x is a bispecial
factor of ω. Then there exists a bispecial factor z containing x as a proper prefix
and such that az is also right special.

Proof Let w be the shortest bispecial factor containing axa as a subword. It
follows from Remark 2.4 that w = zbz′ where z is bispecial, b ∈ A, bz is right
special, and z′ is a suffix of z. By minimality of the length of w we have that
axa is not a subword of z nor a subword of z′. If axa is a subword of bz′ then
a = b and hence az is right special and |z| ≥ |z′| ≥ |xa| > |x|. Otherwise there is
an occurrence of axa in w which begins in z and terminates in bz′. In this case
there exists u ∈ L(ω) such that ub is a prefix of x and au a suffix of z. Thus we
deduce that au is right special while ub is left special. Hence u is bispecial and
a = b. Since za is a prefix of w we have that za is left special and hence az is
right special. Finally we claim that z 6= x. Since za ` w, if z were equal to x
we would have that xa ` w which contains axa implying that ω is eventually
periodic, a contradiction. Thus |z| > |x| and hence x is a proper prefix of z. �

Lemma 2.8 Let a ∈ A and x be bispecial. Suppose that axa ∈ L(ω). Then each
first return to axa is a palindrome.

Proof Let z be the shortest bispecial factor containing x as a proper prefix and
such that az is right special. The above lemma guarantees the existence of z..
Thus we can write z = xau for some factor u ∈ L(ω). By minimality of the
length of z we have that axa ` axau = az (and za a axa) and hence axa is not
a subword of z. Hence every first return to axa begins in axau. But axa is a
suffix of za. Hence za ` zau and zau is bispecial. Thus the only occurrence of
axa in zau is as a suffix of za.

Let b ∈ A and suppose that axaub ∈ L(ω). Since za a axa it follows that
zaub ∈ L(ω). If b = a, then axaua = aza is a first return to axa (recall that
axa is both a prefix and a suffix of aza and axa does not occur in z.) Since z
is a palindrome, so is aza. Next suppose b 6= a. If b does not occur in zau then
b ` bzau, whence axaub ` axaubzau and hence axaubza is a first return to axa.
But this is a palindrome since axaubza = azbza and z is a palindrome.
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Finally suppose that b occurs in zau. Let x′ be the longest bispecial prefix of
zau such that bx′ is right special. Thus zau = x′by′ for some y′, and bx′b ∈ L(ω)
and bx′b ` bx′by′. Also, since x′ is actually a prefix of z we can write y′ = y′′au, in
other words z = x′by′′. Since bx′b is a suffix of zaub it follows that zaub ` zauby′.
Thus axauby′′a is a first return to axa. To see that it is a palindrome it suffices to
show that xauby′′ = zby′′ = (x′by′′)by′′ is a palindrome where both z and x′ are
palindromes. But zby′′ = by′′(z) = by′′z = by′′x′by′′ = by′′(x′)by′′ = x′by′′by′′ =
zby′′ = zby′′ as required. �

Proof of Theorem 1.1: It suffices to prove the result for aperiodic Episturmian
infinite words; in fact if ν is a periodic Episturmian word and u ∈ L(ν) then
there exists an aperiodic Episturmian word ω for which u ∈ L(ω). So suppose ω
is an aperiodic Episturmian word and x ∈ L(ω) a palindrome. We proceed by
induction on |x|. If |x| = 1, then the result follows from lemmas 2.5 and 2.6. If
|x| = 2, then the result follows from Lemma 2.8. So suppose x is a palindrome
and |x| ≥ 3. Let z be a first return to x. Set x = ax′a with x′ a palindrome.
If a−1za−1 is a first return to x′, then by induction hypothesis a−1za−1 is a
palindrome and hence so is z. Otherwise a−1za−1 contains other occurrences of
x′ other than the one at the beginning and at the end of the word. But since
a−1za−1 does not contain any occurrences of x = ax′a, it follows that there
exists b ∈ A, with b 6= a and a−1za−1 contains either x′b or bx′ as a subword.
Thus x′ is either right special or left special, and hence bispecial. In this case
that z is a palindrome follows from Lemma 2.8. �

It is well known that Episturmian words are linked to the so-called Fine
and Wilf words: Given {p1, p2, . . . , pk} with gcd(p1, p2, . . . , pk) = 1, the longest
non-constant word u having periods p1, p2, . . . , pk on the maximum number of
symbols is a bispecial factor of an Episturmian infinite word (see [10, 23, 35]).
In particular it is a palindrome. In [8], the authors define and study a class of
infinite words on a finite alphabet A they call pseudo-palindromic words: A word
ω ∈ AN is pseudo-palindromic if there exists a bijection φ : A→ A with φ2 equal
to the identity map on A, such that a) if u ∈ L(ω) then so is φ(ū) and b) for
each n ≥ 1, ω has at most one right special factor of length n. If φ is the identity
map, then the above definition coincides with that of Episturmian words. Thus
pseudo-palindromic words are a generalization of Episturmian words. In [8] it
is shown that given {p1, p2, . . . , pk} with gcd(p1, p2, . . . , pk) = 1, and m ≥ 1,
a non-constant word u of length m having periods p1, p2, . . . , pk on the most
number of symbols is unique up to isomorphism and is a bispecial factor of a
pseudo-palindromic word. So while the longest non-constant word with periods
p1, p2, . . . , pk (on the most number of symbols) is a palindrome, shorter words
having the requisite periods are only palindromes up to a map φ : A→ A with
φ2 equal to the identity. Given {p1, p2, . . . , pk} with gcd(p1, p2, . . . , pk) = 1, and
m ≥ 1, there exists an algorithm (arithmetic and combinatorial) similar to the
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one in [35] for generating a word u of length m on the most number of symbols
having periods p1, p2, . . . , pk (see [8]). Also in [8] the authors investigate the
sub-word complexity and pseudo-palindromic complexity of aperiodic pseudo-
palindromic infinite words. A subword u of a pseudo-palindromic infinite word
ω is called a pseudo-palindrome if u = φ(ū).
The results and proofs in this paper may be modified in a straightforward fashion
to prove the following:

Theorem 2.9 Let ω be a pseudo-palindromic infinite word on a finite alphabet
A with |A| ≥ 2. Let x ∈ L(ω) be a pseudo-palindrome. Then every first return
to x is also a pseudo-palindrome.

As a consequence we deduce that

Corollary 2.10 Every pseudo-palindromic infinite word begins in an infinite
number of distinct pseudo-palindromes.

It should be noted that in this context a symbol a ∈ A is a pseudo-palindrome if
and only if φ(a) = a. However it is easily shown that every pseudo-palindromic
infinite word begins in a pseudo-palindrome, and hence by the above theorem,
in an infinite number of pseudo-palindromes.

3 Concluding Remarks

3.1 Codings of 3-Interval Exchange Transformations

Some of the techniques used in the proof of Theorem 1.1 may be extended to
prove an analogous result for natural codings of orbits of points under a 3-
interval exchange transformation. More precisely given two real numbers α > 0
and β > 0, with α + β < 1, one considers the dynamical system I defined on
the interval [0, 1[ by

• Ix = x+ 1− α if x ∈ [0, α[,

• Ix = x+ 1− 2α− β if x ∈ [α, α+ β[,

• Ix = x− α− β if x ∈ [α+ β, 1[.

A natural coding of the orbit of a point x ∈ [0, 1[ is an infinite word (xn)
taking values {1, 2, 3} according to whether the n-th iterate In(x) lies in the
first, second, or third interval. The subword complexity of these words is known
to be p(n) = 2n + 1. As is the case of Episturmian words, they are also closed
under mirror image. However, for each n ≥ 1 there are exactly two right special
factors of length n. Various combinatorial properties of the natural codings of 3-
interval exchange transformations were studied by Ferenczi, Holton and Zamboni
in [21, 22]. In [22] a combinatorial construction is given for generating the two
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standard orbits; a standard orbit is one in which every prefix is left special. As
in the Episturmian case, there is a notion of a directive word (see [24,25]). The
directive word is obtained via an arithmetic division algorithm applied to the
lengths of the intervals. This arithmetic construction was originally introduced
by the authors in an earlier paper [20] and may be viewed as a two-dimensional
generalization of the regular continued fraction algorithm. Next a combinatorial
construction is applied to the directive word to generate the bispecial factors
of the associated symbolic subshift as a function of the arithmetic expansion.
In [22] the authors obtain a complete characterization of those sequences of
block complexity 2n+1 which are natural codings of orbits of 3-interval exchange
transformations. In [2] the authors show that every natural coding of a 3-interval
exchange transformation begins in an infinite number of distinct palindromes.

3.2 Avoidance of Large Palindromes

While every uniformly recurrent infinite word which contains arbitrarily large
palindromes is necessarily closed under mirror image, we note that Theorem 1.1
is not merely a consequence of the fact that Episturmian words are closed under
mirror image. Consider the sequence ν = r1r2r3r4 . . . ∈ {1, 2, 3}N defined by

ν = 22x̃133x̃222x̃333x̃422x̃533x̃622x̃733x̃8 . . .

where x1x2x3x4 . . . ∈ {0, 1}N is a Sturmian word and 0̃ = 11 and 1̃ = 1. Let
ω ∈ {0, 1}N be the infinite word whose run length sequence is ν, that is ω =
0r11r20r31r40r51r6 . . . . Then ω is a uniformly recurrent infinite word, closed under
mirror image, and does not contain any palindromes of length greater than five1

[12]. While there are numerous examples of uniformly recurrent binary infinite
words closed under mirror image (eg. examples generated using paperfolding
sequences), the word ω given above is of lowest complexity amongst all such
words [12]. The subword complexity of ω is of the form p(n) = 4n+ k.

References
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Generalized Substitutions and Stepped

Surfaces

Pierre Arnoux ∗, Valérie Berthé, Damien Jamet †

Abstract

A substitution is a non-erasing morphism of the free monoid. The notion
of multidimensional substitution of non-constant length acting on multidi-
mensional words introduced in [AI01, ABS04] is proved to be well-defined
on the set of two-dimensional words related to discrete approximations of
irrational planes. Such a multidimensional substitution can be associated to
any usual Pisot unimodular substitution. The aim of this paper is to try to
extend the domain of definition of such multidimensional substitutions. In
particular, we study an example of a multidimensional substitution which
acts on a stepped surface in the sense of [Jam04,JP04].

1 Introduction

Sturmian words are known to be codings of digitizations of an irrational straight
line [KR04,LOTH02]. One could expect from a generalization of Sturmian words
that they correspond to a digitization of a hyperplane with irrational normal
vector. It is thus natural to consider the following digitization scheme corre-
sponding to the notion of arithmetic planes introduced in [Rev91]: this notion
consists in approximating a plane in R3 by selecting points with integral coor-
dinates above and within a bounded distance of the plane; more precisely, given
v ∈ R3, µ, ω ∈ R, the lower (resp. upper) discrete hyperplane P(v, µ, ω) is the
set of points x ∈ Zd satisfying 0 ≤ 〈x,v〉 + µ < ω (resp. 0 < 〈x,v〉 + µ ≤ ω).
Moreover, if ω =

∑
|vi| = |v|1, then P(v, µ, ω) is said to be standard.

In this latter case, one approximates a plane with normal vector ~v ∈ R3 by
square faces oriented along the three coordinates planes; for each of the three
kinds of faces, one defines a distinguished vertex; the standard discrete plane
P(v, µ, |v|1) is then equal to the set of distinguished vertices; after projection
on the plane x+ y+ z = 0, along (1, 1, 1), one obtains a tiling of the plane with
three kinds of diamonds, namely the projections of the three possible faces. One
can code this projection over Z2 by associating to each diamond the name of the
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projected face. These words are in fact three-letter two-dimensional Sturmian
words (see e.g. [BV00]).

A generalization of the notion of stepped plane, the so-called discrete sur-
faces, is introduced in [Jam04]. Roughly speaking, a discrete surface is a union
of pointed faces such that the orthogonal projection on the plane x+ y + z = 0
induces an homeomorphism from the discrete surface to the plane. As done
for stepped planes, one provides any discrete surface with a coding as a two-
dimensional word over a three-letter alphabet. In the present paper, we call
discrete surfaces stepped surfaces, since such objects are not discrete, in the
sense, that they are not subsets of Z3.

Let us recall that a substitution is a non-erasing morphism of the free mon-
oid. A notion of multidimensional substitution of non-constant length acting
on multidimensional words is studied in [AI01, AIS01, ABI02, ABS04], inspired
by the geometrical formalism of [IO93, IO94]. These multidimensional substitu-
tions are proved to be well-defined on multidimensional Sturmian words. Such a
multidimensional substitution can be associated to any usual Pisot unimodular
substitution. The aim of the present paper is to explore the domain of defini-
tion of such generalized substitutions. For the sake of clarity, we have chosen
to work out in full details the example of [ABS04]. We prove that the image
of a stepped surface under the action of this multidimensional substitution is
well-defined. Our proofs will be based on a geometrical approach. We then use
the functionality and the projection on the plane x+ y+ z = 0 along (1, 1, 1) to
recover the corresponding results for multidimensional words.

We work here in the three-dimensional space for clarity issues but all the
results and methods presented extend in a natural way to Rn.

2 Basic notions

2.1 One-dimensional substitutions

LetA be a finite alphabet and letA? be the set of finite words overA. The empty
word is denoted by ε. A substitution is an endomorphism of the free-monoid
A? such that the image of every letter of A is non-empty. Such a definition
naturally extends to infinite or biinfinite words in AN and AZ.

We assume A = {1, . . . , d}. Let σ be a substitution over A. The incidence
matrix of σ, denoted Mσ = (mi,j)(i,j)∈{1,...,d}2 , is defined by:

Mσ = (|σ(j)|i)(i,j)∈{1,...,d}2 ,

where |σ(j)|i is the number of occurrences of i in σ(j).
Let ψ : A? → Nd, w 7→ (|w|i)i∈{1,··· ,d} be the Parikh mapping, that is, the

homomorphism obtained by abelianization of the free monoid. One has for every
w ∈ A?, ψ(σ(w)) = Mσψ(w).
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Example 2.1 Let σ : {1, 2, 3} −→ {1, 2, 3}? be the substitution defined by
σ : 1 7→ 13, 2 7→ 1, 3 7→ 2. Then,

Mσ =

1 1 0
0 0 1
1 0 0

 .

A substitution σ is said to be a Pisot substitution if the characteristic poly-
nomial of its incidence matrix Mσ admits a dominant eigenvalue λ > 1 such
that all its conjugates α satisfy 0 < |α| < 1. The incidence matrix of a Pisot
substitution is primitive [CS01], that is, it admits a power with positive entries.

Finally, a substitution is said to be unimodular if detMσ = ±1.
From now on, let σ denote a unimodular Pisot substitution over

the three-letter alphabet A = {1, 2, 3}.

2.2 Stepped planes

There are several ways to approximate planes by integer points [BCK04]. Usu-
ally, these methods consist in selecting integer points within a bounded distance
from the considered plane. Such objects are called discrete planes.

Let {e1, e2, e3} be the canonical basis of R3. We call unit cube any translate
of the fundamental unit cube with integral vertices, that is, any set x + C where
x ∈ Z3 and C is the fundamental unit cube:

C =
{
λ1e1 + λ3e3 + λ3e3 | (λ1, λ2, λ3) ∈ [0, 1]3

}
.

Let P : 〈v,x〉 + µ = 0, with v ∈ R3
+ and µ ∈ R. The stepped plane PP

associated to P, also called discrete plane in [ABS04], is defined as the union of
the faces of the integral cubes that connect the set {x ∈ Z3 | 0 ≤ 〈v,x〉 + µ <
‖v‖1 =

∑
vi}. More precisely:

Definition 2.2 ( [IO93, IO94]) We consider the plane P : 〈v,x〉 + µ = 0,
with v ∈ R3

+ and µ ∈ R. Let CP be the union of the unit cubes intersecting the
open half-space of equation 〈v,x〉+ µ < 0. The stepped plane PP associated to

P is defined by: PP = CP \
◦
CP , where CP (resp.

◦
CP) is the closure (resp. the

interior) of the set CP in R3, provided with its usual topology. The vector v
(resp. µ) is called the normal vector (resp. the translation parameter) of the
stepped plane PP .

It is clear, by construction, that a stepped plane is connected and is a union
of faces of unit cubes. In fact, by introducing a suitable definition of faces, we
can describe the stepped plane as a partition of such faces, as detailed below.

Let E1, E2 and E3 be the three following fundamental faces (see Figure 1):

E1 =
{
λe2 + µe3 | (λ, µ) ∈ [0, 1[2

}
,

E2 =
{
−λe1 + µe3 | (λ, µ) ∈ [0, 1[2

}
,

E3 =
{
−λe1 − µe2 | (λ, µ) ∈ [0, 1[2

}
.
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(a) E1. (b) E2. (c) E3.

Figure 1: The three fundamental faces.

For x ∈ Z3 and i ∈ {1, 2, 3}, the face of type i pointed on x ∈ Z3 is the set
x +Ei. Let us notice that each pointed face includes exactly one integer point,
namely, its distinguished vertex. As mentioned above we obtain:

Theorem 2.3 ( [BV00,ABI02]) A stepped plane P is partitioned by its poin-
ted faces.

Finally, an easy way to characterize the type of a pointed face included in a
stepped plane is given by:

Theorem 2.4 Let v = (v1, v2, v3) ∈ R3
+ and µ ∈ R. Let P = P(v, µ) be the

stepped plane with normal vector v and translation parameter µ. Let I1 = [0, v1[,
I2 = [v1, v1 + v2[ and I3 = [v1 + v2, v1 + v2 + v3[. Then,

∀k ∈ {1, 2, 3}, ∀x ∈ P, x+ Ek ⊂ P ⇐⇒ 〈x,v〉+ µ ∈ Ik.

Let P0 be the diagonal plane of equation x+y+z = 0 and let π be the projection
on P0 along (1, 1, 1).

Theorem 2.5 ( [ABI02]) Let P be a stepped plane. The restriction πP of π
from P onto P0 is a bijection. Furthermore, the set of points of P with integer
coordinates is in one-to-one correspondance with the lattice Zπ(e1) + Zπ(e2).

This theorem allows us to code a stepped plane P as a two-dimensional word
u ∈ {ψ, 2, 3}Z2

as follows: for all (m,n) ∈ Z2, for i = 1, 2, 3, then

u(m,n) = i⇐⇒ π−1
P (mπ(e1) + nπ(e2)) + Ei ⊂ P.

2.3 Stepped surfaces

It is thus natural to try to extend the previous definitions and results to more
general objects:

Definition 2.6 ( [Jam04]) A connected union S of pointed faces x + Ek,
where x ∈ Z3 and i ∈ {1, 2, 3}, is called a stepped surface if the restriction
πS : S −→ P0 of π is a bijection.
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Figure 2: A piece of a stepped surface and its two-dimensional coding.

A two-dimensional word u ∈ {1, 2, 3}Z2
is said to be a coding of the stepped

surface S if for all (m,n) ∈ Z2, for i = 1, 2, 3, then

u(m,n) = i⇐⇒ π−1
S (mπ(e1) + nπ(e2)) + Ei ⊂ S.

In particular, a stepped plane is a stepped surface, according to what pre-
cedes.

3 Generalized substitutions acting on faces of a step-
ped plane

The aim of this section is to recall the notion of generalized substitution acting
on faces of a stepped plane [AI01,AIS01,Pyt02].

Let σ denote a unimodular Pisot substitution over the three-letter alphabet
A = {1, 2, 3}. Let Mσ be its incidence matrix, and let α, λ1, λ2 denote its
eigenvalues with α > 1 > |λ1| ≥ |λ2| > 0. Let P be the contracting plane of
Mσ, that is, the real plane generated by the eigenvectors associated to λ1, λ2.

Since the incidence matrix of a Pisot substitution is primitive [CS01], then,
according to Perron-Frobenius Theorem, the eigenvalue α admits a positive
eigenvector v. Let us denote by Pσ the stepped plane with normal vector v
and translation parameter µ = 0.

Example 3.1 We continue Example 2.1. The characteristic polynomial of Mσ

is x3 − x2 − 1; it admits one eigenvalue α > 1 (which is known as the sec-
ond smallest Pisot number), and two complex conjugate eigenvalues of modulus
strictly smaller than 1. The contracting plane of Mσ is the plane with equation
α2x+ αy + z0.

Definition 3.2 ( [IO93, IO94,ABI02,ABS04]) Let σ be a unimodular sub-
stitution over the three-letter alphabet A = {1, 2, 3}. Let Pσ be the stepped
plane associated to σ. The generalized substitution Σσ associated to σ is defined
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as follows:

Σσ(x + Ei) =
3⋃

k=1

⋃
P

σ(k)=PiS

M−1
σ

x− ψ(P )−
i∑

j=1

ej

+
k∑

j=1

ej + Ek

Example 3.3 Let σ : 1 7→ 13, 2 7→ 1, 3 7→ 2. Then,

Σσ : x + E1 7→
(
M−1

σ x + e1 − e2 + E1

)
∪
(
M−1

σ x + e1 + E2

)
,

x + E2 7→ M−1
σ x + e1 + E3,

x + E3 7→ M−1
σ x− e2 − e3 + E1.

In combinatorial terms, Σσ can be coded as

1 7→ 2
1

2 7→ 3 3 7→ 1.

Let r = r(m,n) = −d(α2m+ αn)/(α2 + α+ 1)e+ 1. One has:

((m,n), 1) 7→ ((1− n,m− n− r(m,n)− 1), 1)
+ ((1− n,m− n− r(m,n)), 2)

((m,n), 2) 7→ ((1− n,m− n− r(m,n)), 3)
((m,n), 3) 7→ ((1− n,m− n− r(m,n)), 1).

Theorem 3.4 ( [AI01]) Let σ be a unimodular Pisot substitution over the
three-letter alphabet A = {1, 2, 3}, let Pσ be the stepped plane associated to
σ and let Σσ be the generalized substitution associated to σ.

i) Two distinct faces have disjoint images under Σσ.

ii) The generalized substitution Σσ maps any pattern of Pσ (that is, any finite
union of faces of Pσ) on a pattern of Pσ.

iii) Σσ(Pσ) ⊆ Pσ.

Since Σσ is well-defined on Pσ (according to Theorem 3.4 i)), and since Pσ is
invariant under the action of Σσ, it is natural to investigate the action of Σσ on
any stepped plane. More precisely, given a stepped plane P(v, µ), can we extend
the domain of definition of the generalized substitution Σσ to the patterns of
P(v, µ)? In fact:

Theorem 3.5 Let σ be a unimodular Pisot substitution, let Mσ be its incidence
matrix, and let Σσ be the generalized substitution associated to σ.

For any stepped plane P(v, µ) with v ∈ R3
+, one has:

i) The images of two distinct pointed faces of P(v, µ) by Σσ are disjoint.

ii) The image of P(v, µ) is included in the stepped plane P(tM · v, µ):

Σσ(P(v, µ)) ⊆ P(tM · v, µ)
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Proof (Sketch) The proof is based on the same ideas as in the proof of Lemma
2 and 3 in [AI01]. It mainly uses the following geometric interpretation of
Theorem 2.4: a pointed face x +Ei is included in P(v, µ) if and only the point
x +

∑i−1
k=1 ek is above the plane 〈v,x〉 + µ = 0 while the point x +

∑i
k=1 ek is

below the latter. �

4 Generalized substitutions acting on faces of a step-
ped surface

4.1 The general case

Since the image of a stepped plane by a generalized substitution is a subset of a
stepped plane, it is interesting to investigate the action of generalized substitu-
tions over a more general class of stepped objets, namely, the stepped surfaces.
In fact,

Theorem 4.1 Let S be a stepped surface. Let σ be a unimodular Pisot substi-
tution over the three-letter alphabet {1, 2, 3} and let Σσ be the associated general-
ized substitution. Then, the image of two distinct pointed faces of S are disjoint.
Furthermore, the restriction πΣσ(S) : Σσ(S) −→ P0 is 1-1.

Proof (Sketch) We first notice that given two faces x + Ei and y + Ej , then
there exists a stepped plane P with positive normal vector containing simulta-
neously x + Ei, y + Ej and z + Ek. We then apply Theorem 3.5. �

In other words, it remains to prove that πΣσ(S) is onto and that Σσ(S) is a
connected union of faces to deduce that Σσ(S) is a stepped surface according
to Definition 2.6. Let us investigate this problem in the particular case of the
generalized substitution Σσ associated to the substitution σ : 1 7→ 13, 2 7→
1, 3 7→ 2.

4.2 The particular case of σ : 1 7→ 13, 2 7→ 1, 3 7→ 2.

In the present section, σ denotes the substitution σ : 1 7→ 13, 2 7→ 1, 3 7→ 2
whereas Σσ is the generalized substitition associated to σ:

Σσ : x + E1 7→
(
M−1

σ x + e1 − e2 + E1

)
∪
(
M−1

σ x + e1 + E2

)
,

x + E2 7→ M−1
σ x + e1 + E3,

x + E3 7→ M−1
σ x− e2 − e3 + E1.

Let us show that for this substitution, then the image of a stepped surface is
still a stepped surface. First, given a two-dimensional word u ∈ {1, 2, 3}Z2

, we
call hook-word a factor of u with the following shape (see Fig. 3):

The set of hook-words of u with a hook-shape is called the hook-language
of u. In [Jam04,JP04], the authors reduced the recognition problem of the two-
dimensional words coding discrete surfaces to a hook recognition problem. More
precisely,
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m

n

Figure 3: Hook-shape.

Theorem 4.2 ( [Jam04,JP04]) Let u ∈ {1, 2, 3}Z2
. Then u is a coding of a

discrete surface in the sense of Definition 2.6 if and only if the hook-language of
u is included in the following set of patterns (see Fig. 4).
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Figure 4: Left: The permitted hook-words. Right: The 3-dimensional representation
of the permitted hook-words.

We conversely associate to each permitted hook-word its 3-dimensional rep-
resentation as a connected union of faces as depicted in Figure 4: the coding of
any occurrence of this 3-dimensional representation in a stepped surface is equal
to the corresponding hook-word.

Proposition 4.3 The image by Σσ of all the 3-dimensional representations of
the permitted hooks (see Fig. 5) are connected in R3.

We then deduce that:

Theorem 4.4 The image of a stepped surface S by Σσ is connected and the
restriction of the projection map π to the latter is injective. Furthermore, all the
hook-words occurring in the coding with respect to the injective projection πΣσ(S)

(see Theorem 4.1) are permitted hook-words.

Proof (Sketch) According to Theorem 4.1, the image of a stepped surface by
Σσ is well-defined. The connectedness follows from Proposition 4.3. Consider
now a union H of three faces whose coding according to the injective projection
πΣσ(S) (see Theorem 4.1) is a hook-word UH . There exist (at most) three faces
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5: The image of the permitted hooks by Σσ.

of which the union of the images by Σσ contains H. One checks that the distance
(defined as d(v,w) = |w−v|1) between the distinguished vertices of those faces
is uniformly bounded. By performing a finite case study, one checks that the
hook-word UH is permitted. �

4.2.1 Remarks.

Given a stepped surface S containing the unit cube

{e1 + E1, e1 + e2 + E2, e1 + e2 + e3 + E3, } ,

then the sequence of stepped surfaces (Σn
σ(S))n∈N seems to converge towards

the stepped plane Pσ (see Fig. 6); to be more precise, the limit points of the
sequence (Σn

σ(S))n∈N are subsets of Pσ. We will investigate these convergence
results and more generally, the possibility of extension of the domain of definition
of these multidimensional substitutions to any stepped surface in a subsequent
paper. Let us note that this study can also be applied to obtain an efficient
generation methods of stepped planes and surfaces.
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[ABI02] P. Arnoux, V. Berthé, and S. Ito. Discrete planes, Z2-actions, Jacobi-Perron
algorithm and substitutions. Ann. Inst. Fourier (Grenoble), 52(2):305–349,
2002.
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Palindromic complexity of infinite words

coding interval exchange transformations

Peter Baláži, Edita Pelantová∗

Abstract

We study palindromes of infinite words coding r-interval exchange trans-
formations. If the permutation π : {1, 2, . . . , r} → {1, 2, . . . , r} connected
with this transformation is given by π(k) = r+1−k for all k, then we prove
that there is exactly one palindrome of length n in the infinite word, if n
is even, and there are exactly r palindromes of length n, if n is odd. For
an infinite word coding an interval exchange transformation with another
permutation, the length of palindromes is bounded.

1 Introduction

The paper is devoted to palindromes of infinite words coding r-interval exchange
transformations. We are generalizing results known for r = 2 (i.e. for Sturmian
words, see [3]) and for r = 3 (see [2]). Let us recall the definition of an interval
exchange map. It can be found together with some properties in [3], [5].

Given r positive numbers α1, α2, . . . , αr such that
∑r

i=1 αi = 1. They define
a partition of the interval I = [0, 1) into r intervals

Ik =
[ k−1∑

i=1

αi,

k∑
i=1

αi

)
, k = 1, 2, . . . , r .

Let π denote a permutation of the set {1, 2, . . . , r}. The interval exchange trans-
formation associated with α1, . . . , αr and π is defined as the map T : I → I which
exchanges the intervals Ik according to the permutation π,

T (x) = x+
∑

j<π(k)

απ−1(j) −
∑
j<k

αj , for x ∈ Ik .

For x0 ∈ I, the sequence (Tn(x0))n∈Z is called the orbit of x0 under T . The
infinite bidirectional word (un)n∈Z over the alphabet A = {1, . . . , r} associated
to the orbit (Tn(x0))n∈Z is defined as

un = k ∈ A ⇔ Tn(x0) ∈ Ik .
∗Department of Mathematics, FNSPE, Czech Technical University Trojanova 13, 120 00

Praha 2, Czech Republic, peter balazi@centrum.cz
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Let (un)n∈Z be an infinite word. A finite word w = w0w1 . . . wn−1 of length n
is called a factor of (un)n∈Z, if there exists i ∈ Z such that w = uiui+1 . . . ui+n−1.
We denote by Ln the set of factors of (un)n∈Z of length n, and by L the language
of (un)n∈Z, i.e. the set L =

⋃
n∈N Ln. The function C : N → N that assigns to

an integer n the number of factors of (un)n∈Z of length n is called the subword
complexity of (un)n∈Z; we have C(n) = #Ln.

The complexity of the word corresponding to any r-interval exchange trans-
formation satisfies C(n) ≤ n(r − 1) + 1, for all n ∈ N. In this paper we focus
on mappings T for which the complexity of the word associated to the orbit of
arbitrary x0 ∈ I satisfies C(n) = n(r − 1) + 1, for all n ∈ N. This property is
ensured by additional conditions (denoted by P) on the parameters of the map
T .

(P)
1. α1, . . . , αr are linearly independent over Q,

2. π{1, . . . , k} 6= {1, . . . , k} for each k = 1, 2, . . . , r − 1.

If the conditions (P) are fulfilled, then the set {Tn(x0)}n∈Z is dense in I for each
x0 ∈ I and the dynamical system associated to the transformation T is minimal.
It implies that the infinite word corresponding to the sequence (Tn(x0))n∈Z is
uniformly recurrent, i.e. any factor of (un)n∈Z appears in (un)n∈Z with bounded
gaps.

Another important consequence of (P) is that the language of the word
(un)n∈Z corresponding to (Tn(x0))n∈Z does not depend on the position of the
starting point x0, but only on the transformation T . Therefore the notation
L(T ), which we adopt here, is justified. Also, it is not difficult to verify that
the language of the transformation T̂ , arising from T by interchanging left semi-
closed intervals by right semi-closed intervals, coincides with L(T ). We know
that L(T1) = L(T2) only if T1 and T2 coincide, up to the values in the disconti-
nuity points.

Our aim is to describe the palindromic complexity of the infinite word
(un)n∈Z coding an r-interval exchange transformation. A factor w of (un)n∈Z is
called a palindrome of (un)n∈Z if w = w0w1 . . . wn−1 coincides with its reversal
w = wn−1 . . . w1w0. The palindromic complexity of the infinite word (un)n∈Z
is a function P : N 7→ N which to an integer n assigns the number P(n) of
palindromes of length n.

2 Invariance of the language under reversal

Let us first explain why the invariance of the language under reversal is im-
portant for the study of palindromic complexity of the infinite word (un)n∈Z.
Assume that the conditions (P) are satisfied. Then, as we already seen, the in-
finite word (un)n∈Z coding the r-interval exchange transformation is uniformly
recurrent. This implies that for all n ∈ N there exists a number R(n) such that
all factors of length n (all elements of the set Ln) are included in an arbitrary
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factor of length R(n). If we suppose that the length of palindromes in the word
(un)n∈Z is not bounded, then for each n there exists a palindrome P of length
≥ R(n). Since the palindrome P contains all words of Ln, the set Ln contains
with each factor w also its reversal w. Therefore

L(T ) := {w | w ∈ L(T )} = L(T ) ,

and we say that the language of (un)n∈Z is closed under reversal. As a con-
sequence the palindromic complexity of (un)n∈Z is interesting only in the case
that language of (un)n∈Z is closed under reversal, because otherwise P(n) = 0
for sufficiently large n.

Let us therefore study the conditions under which the language L(T ) is closed
under reversal, more formally when the identity L(T ) = L(T ) holds. Consider
a factor w = w0w1 . . . wn−1 ∈ L(T ) and assume that w codes the trajectory
x, T (x), . . . , Tn−1(x). If we consider the transformation T−1 and apply it on
the starting point Tn(x) we obtain the sequence Tn(x), Tn−1(x), . . . , T (x). The
decomposition of the interval I = [0, 1) corresponding to the transformation T−1

is the following

[0, 1) = T (Iπ−1(1)) ∪ T (Iπ−1(2)) ∪ . . . ∪ T (Iπ−1(r)),

where π is the permutation associated with the transformation T . If T k(x) ∈
T (Iπ−1(j)), i.e. the k-th letter is j when coding by T−1, then T k−1(x) ∈ Iπ−1(j),
i.e. the (k−1)-st letter is π−1(j) when coding by the map T . Therefore if we use
the notation π−1(w0w1 . . . wn) = π−1(w0)π−1(w1) . . . π−1(wn), for each word w
over the alphabet A = {1, . . . , r}, we can write

L(T ) = π−1L(T−1) .

Thus in order to obtain the invariance under reversal, it suffices to study the
validity of

π−1(L(T−1)) = L(T ) . (2.1)

Let us study when there exists a permutation σ of letters {1, . . . , r} such that
σ(L(T1)) = L(T2). If we use the symmetry of the interval [0, 1) around the point
1/2, the map

T̃ (x) = 1− T (1− x) , x ∈ [0, 1) ,

is again an r-interval exchange transformation, but with the domain (0, 1].
This interval exchange transformation corresponds to the lengths of intervals
αr, . . . , α1, respectively, and hence

L(T ) = σ(L(T̃ )), (2.2)

where σ(i) = r+1−i, for all i = 1, . . . , r. From the geometrical interpretation of
the r-interval exchange transformation it is clear that any other transformations
T1 and T2 of the interval I and any other permutation σ do not fulfill the equation
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(2.2). Comparing this result with (2.1), it implies that π = σ−1 = σ and that
T−1 = T̃ , up to the discontinuity points of T−1. Let us summarize the previous
considerations into the following theorem.

Theorem 2.1 Let L(T ) be the language of the infinite word coding the r-interval
exchange transformation given by a positive vector (α1, . . . , αr) and by the per-
mutation π on the set {1, . . . , r}. Assume that the conditions (P) are satisfied.
The language L(T ) is closed under reversal if and only if

π(1) = r, π(2) = r − 1, . . . , π(r) = 1. (2.3)

Corollary 2.2 Let (un)n∈Z be an infinite word coding the r-interval exchange
transformation with parameters (α1, . . . , αr) and π be a permutation satisfying
the conditions (P). If the permutation π does not fulfill (2.3) then P(n) = 0 for
each sufficiently large n.

3 Palindromic complexity

In this section we will be dealing only with such transformations T of r-intervals
for which the permutation π satisfies (2.3). In this case the transformation has
the form of

T (x) = x+
∑
j>k

αj −
∑
j<k

αj for x ∈ Ik.

It is known that there exists an interval Iw ⊂ Iw0 for every word w =
w0w1 . . . wn−1 ∈ L(T ) such that the sequence of points x, T (x), . . . , Tn−1(x)
is coded by the same word w for each x ∈ Iw. Note that the boundaries of the
interval Iw belong to the set Z[α1, . . . , αr] = {

∑
kiαi | ki ∈ Z}.

Let us denote the decomposition of the interval I = [0, 1) by the transfor-
mation T−1 by Ĩ1, Ĩ2, . . . , Ĩr and analogously Ĩw for an arbitrary w ∈ L(T−1).
We obtain the identity Ĩπ−1(j) = T (Ij) for each j ∈ {1, . . . , r} and the following
equality holds for the interiors of the intervals for each w ∈ L(T )

Ĩ◦π−1(w) = 1− I◦w.

Note that the interval Iw is always opened from the right and closed from the
left and for the interval 1− Iw it is vice versa.

Now we have everything prepared for the proof of the main theorem of the
paper.

Theorem 3.1 Let α1, . . . , αr be positive real numbers, linearly independent over
Q and π a permutation satisfying (2.3). Then

P(n) =
{

1 for each n even ,
r for each n odd .
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Proof Consider the palindrome of even length in the form of

wn−1wn−2 . . . w0w0 . . . wn−2wn−1 ∈ L(T ).

It means that there exists x ∈ [0, 1) such that

x ∈ Iw0 , T (x) ∈ Iw1 , . . . , Tn−1(x) ∈ Iwn−1 ,
T−1(x) ∈ Iw0 , T−2(x) ∈ Iw1 , . . . , T−n+1(x) ∈ Iwn−1 .

Hence x ∈ Iw, where w = w0, . . . wn−1 and on the other side

x ∈ T (Iw0) = Ĩπ−1(w0),

T−1(x) ∈ T (Iw1) = Ĩπ−1(w1),
...

T−n(x) ∈ T (Iwn−1) = Ĩπ−1(wn−1).

It follows that x ∈ Ĩπ−1(w0w1...wn−1). Thus x ∈ Iw ∩ Iπ−1(w) because Iw and
Iπ−1(w) are intervals opened from the right and there exists y such that

y ∈ I◦w ∩ Ĩ◦π−1(w) = I◦w ∩ (1− Ĩ◦w).

Now we use the simple fact that J ∩ (s − J) 6= ∅ ⇔ s
2 ∈ J for an arbitrary

interval J . Therefore
1
2
∈ Iw ∩ Iπ−1(w). (3.1)

We have shown that every palindrome of even length arises from the coding of

T−n

(
1
2

)
, . . . , T−1

(
1
2

)
,
1
2
, T

(
1
2

)
, . . . , Tn−1

(
1
2

)
.

The proof in the case when the palindrome has an odd length uses the same
ideas. �

Note that according to the previous theorem the interval exchange transfor-
mation with a permutation satisfying (2.3) has the same palindromic complexity
and also subword complexity as Arnoux-Rauzy words over r letters [2], [4].
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Exhaustive generation of some regular

languages by using numeration systems

Elena Barcucci, Renzo Pinzani, Maddalena Poneti∗

Abstract

In this paper we determine an exhaustive generation algorithm for
classes of combinatorial objects satisfying some particular recurrence re-
lations having the form xn = axn−1 + bxn−2. In order to achieve our goal,
we code the elements of such classes in terms of some regular languages and
using numeration systems. Finally, we prove that the proposed generation
algorithm runs in constant amortized time.

1 Preliminaries

The aim of exhaustive generation is the development of algorithms to list all
the objects of a certain class. Generating algorithms find applications in various
areas such as hardware and software testing, combinatorial chemistry, coding
theory, and computational biology. Moreover, such algorithms can give more
information about the mathematical properties of the class of objects under
consideration.

Indeed many scientific and mathematical investigations begin with an ex-
haustive examination of all possible cases of small instances of a problem. These
sets often have some combinatorial structure; this means that they can be mod-
elled by simple discrete structures, as paths, graphs, words of a language or
permutations. There is a growing and maturing methodology for attacking such
problems in a systematic manner.

In the context of generating combinatorial objects, the primary performance
goal is that the amount of computation be proportional to the number of gener-
ated objects. An algorithm for the exhaustive generation will then be considered
efficient if it uses only a constant amount of computation per object, in an amor-
tized sense. Such algorithms are said to be CAT (Constant Amortized Time,
for instance see http://www.cs.uvic.ca/∼fruskey/). Many papers dealt with
regular languages related to finite state automata [L,R,S], but without consid-
ering exhaustive generation and CAT property.

In this paper we will define a CAT algorithm for the exhaustive generation
of a languages class connected with numeration systems studied by A. Fraenkel

∗Dipartimento di Sistemi e Informatica, Viale Morgagni 65, 50134 Firenze, Italy, phone:
+39 055 4237454, fax: +39 055 4237437, {barcucci, pinzani, poneti}@dsi.unifi.it
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related to several different applications (for instance [F1]). In [F], he proves the
following theorem:

Theorem 1.1 Let 1 = x0 < x1 < . . . < xn < . . . be an integer sequence. Any
nonnegative integer N has precisely one representation in the system {xn}n≥0,
of the form

N =
n∑

i=0

dixi,

where di are nonnegative integers satisfying “the greedy condition”.

d0x0 + · · ·+ dixi < xi+1, i ≥ 0.

Where d0 · · · dn is the representation of N (of length n) with respect to the
system {xn}n≥0. Notice that in such a representation, we allow leading zeroes.
So an integer can have more than one representation but at most one of a given
length.
We write w(N,n) to denote the representation of N of length n, being un-
derstood that N < xn+1 and that the system {xn}n≥0 is clearly given by the
context.

In a successive paper, Barcucci and Rinaldi [BR] apply Theorem 1.1 in order
to give a combinatorial interpretation, to some integer sequences, in terms of
regular languages. In particular they consider sequences {xn}n≥0 satisfying a
recurrence of the form:

xn = axn−1 + bxn−2, (1.1)

with initial conditions x0 = 1, x1 = c, where a, c ∈ N \ {0}, b ∈ Z, and such that
a > |b|. Assume that x−1 = 0, x0 = 1, to have x1 = c = a and Σ = {0, 1, . . . , a}.
In this case for b > 0 the digit a never compares like last digit of a code since
the sequence is 1, a, . . . so, for convenience, we assume c = a+ 1.

To ensure that {xn}n≥0 is a non negative sequence, we consider that a2+4b ≥
0 as a consequence of the first assumption a > |b|; this condition also implies that
the defined sequence is strictly increasing, except for the trivial case xn = xn−1.

Some studies on the connections between numeration systems, regular lan-
guages and linear recurrences have been presented also in [L,S].

Throughout the paper we will use the approach presented in [BR], and deal
with sequences satisfying (1.1), so let us briefly recall some basic ideas and results
from [BR]. In a few words, the authors define a language L, on the alphabet
Σ = {0, 1, 2, . . . , α}, with

α = max
{
a− 1,

⌊
a2 + b− 1

a

⌋}
.

The set L is defined as the union of the mutually disjoint sets Ln, where
L0 = {ε} (ε is the empty word), and, for n ≥ 1, Ln = {w(N,n) : m < xn} .
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Basically, Ln is the set of all n-length words in L, and by construction we have
that the cardinality of Ln (|Ln|) is xn, for all n ∈ N.

The language L is regular, and in order to characterize its words we need to
distinguish two cases:

1. a ≥ b ≥ 0. In this case the set of terminal symbols is Σ = {0, 1 . . . , a};
the language L can be described as the set of all the words w ∈ Σ?,
w = d0 · · · dr, with di ∈ Σ, and such that if di = a, then di+1 < b, for each
i = 0, . . . , r.

2. a > −b ≥ 0, c = a. In this case the set of terminal symbols is Σ =
{0, 1 . . . , a− 1}, and the language L, is the set of words w = u0 · · ·ur ∈ Σ?

such that if ui = a − 1 then ui+1 ≤ a − b − 1, and if ui+1 = ui+2 = . . . =
uj = a− b− 1, j > 0, then uj+1 ≤ a− b− 1.

To fully understand the heart of the matter, let us present the following
example.

Example 1.2 Consider the Pell numbers, 1, 3, 7, 17, 41, 99, 239, . . ., (sequence
M1413 in [SP]) defined by the recurrence relation:

xn = 2xn−1 + xn−2

x0 = 1
x1 = 3

(1.2)

According to Theorem 1.1 each nonnegative integer has its representation in
this system, as shown in Table 1. The table below will be used for examples
throughout all the paper. ¿From this recurrence we obtain a language L on the
alphabet Σ = {0, 1, 2}, since α = max{1, 2}. We will often refer to L as the set
of Pell words. The recurrence relation defined in (1) fits into case 1., and the
language is L = {1 ∪ 0 ∪ 20}∗{2 ∪ ε}.

The long term goal of [BR] is to set up a general methodology for systematically
generating several classes of objects, based on the numeration systems approach.

The main result of this paper is the definition of an algorithm for the exhaus-
tive generation of each subset Ln of a language L, once the coefficients a, b have
been fixed, and the numbers {xn}n≥0 satisfy (1.1). Then we study the average
cost of the procedure, proving that it runs in constant amortized time.

In particular, this result provides the exhaustive generation of each class of
objects O, according to a parameter p on O, such that

|On| = |{O ∈ O : p(O) = n}| = xn.

2 The generating algorithms
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17 7 3 1 i

0 0 0 0 0
0 0 0 1 1
0 0 0 2 2
0 0 1 0 3
0 0 1 1 4
0 0 1 2 5
0 0 2 0 6
0 1 0 0 7
0 1 0 1 8
0 1 0 2 9
0 1 1 0 10
0 1 1 1 11
0 1 1 2 12
0 1 2 0 13
0 2 0 0 14
0 2 0 1 15
0 2 0 2 16
1 0 0 0 17

Table 1: The codings of the integers from 0 to 17 in the numeration system defined by
Pell numbers.

In this section we present a generation algorithm, based on numeration sys-
tems, in order to produce all the elements of Ln, for a fixed n , in lexicographical
order. We will use the following notation: for any m ≥ 0, n ≥ 1, w(m,n) will
denote the word w ∈ Ln that encodes the integer m. For simplicity sake, when
there is no ambiguity, such a word will often be denoted by w(m). Similarly, for
any w ∈ L, m(w) ∈ N will denote the integer represented by the word w. For
instance, referring to Example 1, w(53, 5) = 10112, and m(10020) = 47.

The words of Ln are naturally ordered as follows:

w(0) < w(1) < w(2) < . . . < w(m) < w(m+ 1) < . . . < w(xn − 1).

The reader can easily verify that this order coincides with the lexicographical
order.

Also in this section we consider the two following different cases:
xn = axn−1 + bxn−2, b ≥ 0
x0 = 1
x1 = a+ 1,

(2.1)


xn = axn−1 − bxn−2, b ≥ 0
x0 = 1
x1 = a.

(2.2)

The reason why in (2.1) and (2.2) we choose these special initial conditions
is that they allow a to appear in all the positions of the codings of some integer
(in particular also as the last term).
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The main problem in generating the words of Ln in the lexicographical order
is to determine the successor of a certain word w ∈ L without using its decode
m(w). Essentially, we look for an efficient method to pass from w(m) to w(m+1),
without using heavy encoding and decoding operations.

The basic idea of these algorithms is that, because of the definition of L,
there are sub-strings that cannot appear in the coding of any integer m.

• Recurrence (2.1): let L be the language associated with the recurrence
(2.1). Let w ∈ Ln, w = w[1] · · ·w[n], w[i] ∈ Σ, i = 1, . . . , n; we
observe that w cannot contain the sub-string ab.
Hereafter we describe an algorithm to determine the successor s(w)
of w, assuming that m(w) 6= xn−1. The procedure starts by checking
the rightmost position of w, i.e., w[n]:

1. If w[n] 6= (b− 1), and w[n] 6= a then easily,

s(w) = w[1] · · · (w[n] + 1);

let us consider Example 1.2, where a = 2, b = 1, and let n = 5.
If w = 10101, with m(w) = 49, then s(w) = 10102 (= 50).

2. let w[n] = (b− 1); there are two possible cases:
a. w[n − 1] = a; if we set s(w) = w[1] · · · (w[n] + 1), we obtain

the “ forbidden” sub-string ab. Then we set s(w)[n − 1] =
s(w)[n] = 0, and increase by one the element in position n−2.
Again, this element could be equal to b − 1, so in this case
we need to check the previous position. This procedure goes
on until we find a position i0 > 1 such that w[i0] 6= b − 1,
or w[i0] = b− 1, but w[i0 − 1] 6= a. If this position does not
exist, then we set i0 = 1. Once we have determined i0,

s(w) = w[1] · · ·w[i0 − 1] (w[i0] + 1) 0 · · · 0;

referring to Example 1.2:
Let w = 01120, with m(w) = 30; we have w[5] = 0 = b− 1,
w[4] = 2 = a; since w[3] = 1 6= b − 1, then s(w) = 01200
(= 31).

b. if w[n− 1] 6= a, simply

s(w) = w[1] · · ·w[n− 1] (w[n] + 1).

Let w = 11110, with m(w) = 68; we have w[5] = 0 = b− 1,
w[4] = 1 6= a, then s(w) = 11111 (= 69).

3. let w[n] = a; again there are two possible cases:
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a. w[n−1] = (b−1) and w[n−2] = a. Using the same argument
as for the case 2.a, we look for the rightmost position i0 > 1,
such that w[i0] 6= (b − 1) or w[i0 − 1] 6= a. If this position
does not exist, then we set i0 = 1. Once we have found it,

s(w) = w[1] · · ·w[i0 − 1] (w[i0] + 1) 0 · · · 0.

Let w = 10202, with m(w) = 57; we have w[5] = 2 = a,
w[4] = 0 = b − 1, w[3] = 2 = a, w[2] = 0 = b − 1; then
i0 = 1, and s(w) = 11000 (= 58).

b. w[n− 1] 6= (b− 1) or w[n− 2] 6= a,

s(w) = w[1] · · · (w[n− 1] + 1) 0.

Let w = 11112, with m(w) = 70; we have w[5] = 2 = a,
w[4] = 1 6= b− 1; then s(w) = 11120 (= 71).

• Recurrence (2.2): Let L be the language associated with the recurrence
(2.1). Let w ∈ Ln; we observe that w = w[1] · · ·w[n], w[i] ∈ Σ,
i = 1, . . . , n, cannot contain any sub-string of the form (a − 1)(a −
b− 1)j(a− b), j ≥ 0.
Hereafter we give an algorithm, analogous to the previous one, in
order to determine the successor s(w) of w, again assuming that
n(w) 6= xn − 1. As usual, we scan the word w from right to left
starting from w[n].

1. If w[n] 6= (a− b− 1), and w[n] 6= (a− 1)

s(w) = w[1] · · · w[n− 1] (w[n] + 1);

2. if w[n] = (a−b−1) we need to check position n−1: if w[n−1] =
(a− b− 1) we find the first position i0 > 2, if it exists, such that
w[i0] 6= (a− b− 1). Otherwise we set i0 = 1. Then there are the
following cases:
a. if w[i] = (a− 1),

s(w) = w[1] · · · (w[i− 1] + 1) 0 · · · 0;

b. otherwise:

s(w) = w[1] · · · w[i− 1]w[i]w[i+ 1] · · · (w[n] + 1);

3. if w[n] = (a− 1), then

s(w) = w[1] · · · (w[n− 1] + 1) 0.
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Example 2.1 Let us consider the sequence of odd index Fibonacci
numbers, 1, 3, 8, 21, 55, . . . , (sequence M2741 in [SP]) defined by the
recurrence relation: 

xn = 3xn−1 − xn−2

x0 = 1
x1 = 3.

As usual, we code nonnegative integers using the sequence {xn}n≥0

as numeration system (see also Table 2).
As an example, let us consider the word w = 0202 (= 18), with
n = 4; since w[4] = 2(= a − 1), we are considering situation 3,
thus s(w) = 0210 (= 19). Instead, for w = 1211 (= 41), we have
w[4] = 1 = a− b− 1, w[3] = 1 = a− b− 1; we are in case 2.a.1, and
then we set i0 = 1, obtaining s(w) = 2000 (= 42).

3 The analysis of the cost of the algorithm

We are now able to generate all the words of Ln, starting from w(0) to
w(xn − 1). Basically, each word is obtained from the previous one making use
of both of generating algorithms.

In this section we will prove that the average computational cost of each of
the two algorithms is bounded by a constant. As a consequence, we can generate
all the elements of Ln in constant amortized time.

For any n ≥ 1, let Cn be the number of all the changes of digits necessary
to generate all the elements of Ln, and Pn the number of comparisons needed
to generate all these elements. Moreover, let Cn (Pn) be the average number of
changes (comparisons) needed to generate all the words having length n.
We analyze separately the cases of recurrences (2.1) and (2.2).

21 8 3 1 i

0 0 0 0 0
0 0 0 1 1
0 0 0 2 2
0 0 1 0 3
.
..

.

..
.
..

.

..
.
..

0 2 0 2 18
0 2 1 0 19
..
.

..

.
..
.

..

.
..
.

1 2 1 1 41
2 0 0 0 42

Table 2: The coding of some integers using the sequence of odd index Fibonacci num-
bers.
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Recurrence (2.1): referring to the table of the codings, see for instance Table
1, we consider the leftmost n−1 columns. The number of changes necessary
to generate all the words having length n is given by the number of changes
needed to generate the words with length n−1 plus the changes performed
on the last column of the table, i.e., at most xn − 1. So we have:

Cn = Cn−1 + xn − 1.

By a simple computation we get Cn =
∑n

i=0 xi − n. Since the number of
words with length n is equal to xn, we have

Cn =
1
xn
Cn = 1 +

n−1∑
i=0

xi

xn
− n

xn
.

We consider two possible cases:

1. a > 2, and b > 0, we have

xi

xi+1
=

1
a
− bxi−1

axi+1
≤ 1
a
≤ 1

2
.

Finally, we have:
xi

xn
≤ 2−(n−i),

and then

Cn < 1 +
n∑

i=1

2−i < 2.

The average number of changes to pass from an element to the suc-
cessive one is then at most two.

2. a = 1, and b = 1, we have

xi

xi+1
=

1
φ
,

where

φ =
−1 +

√
5

2
.

As in the first case we have that Cn is bounded by a constant.

Making use of the same reasoning used for Cn we then have:

Pn = Cn + xn − 1;

indeed the number of comparisons to be made is equal to the number of
released changes plus a comparison for each word. When we change a digit
in a word, we have to control, at most, the previous digit. Therefore,

Pn = Cn + 1− 1
xn

< Cn + 1.
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We conclude that the algorithm for generating the words of Ln in the case
of recurrence (2.1) runs in constant amortized time.

Recurrence (2.2): The computation is similar to the previous case. Both the
average number of changes and the average number of comparisons are
bounded by constants, so the exhaustive generation has the CAT property.

4 Concluding remarks

In this paper we have just studied very simple recurrence relations, i.e., those
in (2.1), and (2.2). However, we believe that it would be interesting to con-
sider other classes of recurrence relations, and the associated languages by using
numeration systems method.

We have recently studied the case of recurrence relations of the form

an = k1an−1 + k2an−2 + · · ·+ kran−r, n > r, (4.1)

satisfying the condition
k1 ≥ k2 ≥ · · · ≥ kr > 0, (4.2)

and the obtained results are similar to those in [BR] for recurrence (1.1). Things
become much more difficult by removing or slightly modifying the condition in
(4.2).

Moreover, we have considered some particular polynomial recurrence rela-
tions, without obtaining any substantial result.

In particular, are there special classes of polynomial recurrence relations that
lead to regular languages? On the contrary, are there recurrence relations with
constant coefficients not leading to regular languages?
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Infinite Unfair Shuffles and Associativity∗

Maurice H. ter Beek †, Jetty Kleijn‡

Abstract

We consider a general shuffling operation for finite and infinite words
which is not necessarily fair. This means that it may be the case that in a
shuffle of two words, from some point onwards, one of these words prevails
ad infinitum even though the other word still has letters to contribute.
Prefixes and limits of shuffles are investigated, leading to a characterization
of general shuffles in terms of shuffles of finite words, a result which does not
hold for fair shuffles. Associativity of shuffling is an immediate corollary.

1 Introduction

Shuffling two words is usually defined as arbitrarily interleaving subwords in such
a way that the resulting word contains all letters of both words, like shuffling two
decks of cards. Shuffling is a well-known operation—sometimes referred to as
interleaving, weaving, or merging—that, in many variants, has been extensively
studied. Its popularity comes from purely mathematical interest [5, 7, 8, 10–13,
15–17] and from its significance as a semantics for concurrent systems consisting
of several components [2, 4, 6, 14,18–20,22,23].

When systems may be iteratively composed, the modularity of the chosen
semantics becomes important. In particular, when a form of shuffling is used to
combine behaviours, this operation should be commutative and associative. In
addition, systems—in particular reactive systems—may exhibit ongoing, infinite
behaviours, represented by infinite words. While it is in general not difficult to
prove the commutativity and associativity of shuffling operations in case only
finite words are involved [2, 4, 7, 10, 13, 17, 20, 22, 23], this changes when infinite
words are allowed or certain variants of shuffling are considered. Mostly it is
still easy to prove commutativity, but it may be quite challenging to prove asso-
ciativity [2, 4, 19]. There even exist variants of shuffling for which associativity
does not hold [5, 8, 15–17] contrary to the intuition.

In this paper we consider shuffles of possibly infinite words which are not
necessarily fair in the sense that one of the two words may be delayed indefi-
nitely, while for each position in the shuffle an occurrence of a letter from the
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other word is chosen. Note that with this definition, a shuffle of two finite words
is always a standard—fair—shuffle. The motivation for this particular shuffle
operation stems from our attempts to describe the behaviour of a certain type
of team automaton as a language composed of the languages of its constituting
component automata [2–4]. These languages are prefix-closed and may con-
tain infinite words. The composed behaviour as exhibited by the team is not
necessarily fair in the sense that any individual component is allowed to exe-
cute its behaviour ad infinitum, without giving other components a fair turn
to continue. This leads to a language consisting of potentially unfair shuffles of
words representing behaviours of the various components. Since team automata
consist in general of two or more components and may also be defined in an
iterative fashion, an associativity result for this generalized form of shuffling is
needed to establish the compositionality of the semantics. As demonstrated in
the Ph.D. thesis [2] of the first author, this associativity result can also be used
for proving the associativity of other more involved—synchronized—shuffle op-
erations, relevant when describing the behaviour of team automata cooperating
under different synchronization strategies.

Unfortunately we were unable to find in the literature explicit results con-
cerning the associativity of the shuffle operation as considered here, although
there exist many references to the associativity of related shuffle operations [7,
10,13,17,20,22,23]. We could thus try and adapt existing results to the general
case when the words that are shuffled may be finite or infinite and the shuffle
does not have to be fair. However, rather than focussing on the single property
of associativity, we propose to investigate here the more general issue of the
relationship between shuffles of (finite or infinite) words and the shuffles of their
finite prefixes. This should shed more light on the relationships between the
finite and the infinite behaviours of the composed system, and contribute to the
general knowledge of shuffling in the context of infinite words. The associativity
of shuffling follows as a corollary. Hence it is our aim to give a self-contained
exposition, elaborating the limit behaviour of shuffles with infinite words and
leading to a characterization of shuffles in terms of their prefixes.

The organization of the paper is as follows. In Section 2 we introduce the
necessary notations and definitions and establish some basic properties. Also
proved here is the important result that the prefixes of the shuffles of two words
are exactly the shuffles of the prefixes of these words. Next, in Section 3, we
separately consider fair shuffles. Using an established technique, it is proved
directly that fair shuffling is associative, also when the words involved may be
infinite. Consequently, in the main Section 4, we consider general shuffles. As
a main result we demonstrate that a word must be a shuffle of two given words
whenever all its prefixes are shuffles of the prefixes of these two words. This
result does not hold if only fair shuffles are allowed. Together with the earlier
result from Section 2 this leads to a characterization of shuffles, and associativity
follows.
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2 Basic Definitions and Observations

Let ∆ be an alphabet, i.e. a (possibly empty, possibly infinite) set of symbols
or letters. A word over ∆ is a sequence a1a2 · · · with each ai ∈ ∆. A word may
be finite or infinite. The empty word is denoted by λ. For a finite word w, we
use the notation |w| to denote its length. Hence |λ| = 0 and if w = a1a2 · · · an,
with n ≥ 1 and ai ∈ ∆, for all 1 ≤ i ≤ n, then |w| = n. For a word w and an
integer j ≥ 1 such that j ≤ |w| if w is finite, we use w(j) to denote the symbol
occurring at the jth position in w.

The set of all finite words over ∆ (including λ) is denoted by ∆∗. The set
∆+ = ∆∗ \ {λ} consists of all nonempty finite words. By convention ∆ ⊆ ∆+.
The set of all infinite words over ∆ is denoted by ∆ω. By ∆∞ we denote the
set of all words over ∆. Hence ∆∞ = ∆∗ ∪∆ω. A language (over ∆) is a set of
words (over ∆). A language consisting solely of finite words is called finitary. If
L ⊆ ∆ω, i.e. all words of L are infinite, then L is called an infinitary language.
When dealing with singleton languages, we often omit brackets and write w
rather than {w}.

Given two words u, v ∈ ∆∞, their concatenation u · v is defined as follows.
If u, v ∈ ∆∗, then u · v(i) = u(i) for 1 ≤ i ≤ |u| and u · v(|u| + i) = v(i) for
1 ≤ i ≤ |v|. If u ∈ ∆∗ and v ∈ ∆ω, then u · v(i) = u(i) for 1 ≤ i ≤ |u| and
u · v(|u| + i) = v(i) for i ≥ 1. If u ∈ ∆ω and v ∈ ∆∞, then u · v(i) = u(i) for
all i ≥ 1. Note that u · λ = λ · u = u, for all u ∈ ∆∞. The concatenation of
two languages K and L is the language K · L = {u · v : u ∈ K, v ∈ L}. We will
mostly write uv and KL rather than u · v and K · L, respectively.

A word u ∈ ∆∗ is a (finite) prefix of a word w ∈ ∆∞ if there exists a v ∈ ∆∞

such that w = uv. In that case we write u ≤ w. If u ≤ w and u 6= w, then
we may use the notation u < w. Moreover, if |u| = n, for some n ≥ 0, then u
is the prefix of length n of w, denoted by w[n]. Note that w[0] = λ. The set
of all prefixes of a word w is pref (w) = {u ∈ ∆∗ : u ≤ w}. For a language K,
pref (K) =

⋃
{pref (w) : w ∈ K}.

Both finite and infinite words can be defined as the limit of their prefixes.
Let v1, v2, · · · ∈ ∆∗ be an infinite sequence of words such that vi ≤ vi+1, for all
i ≥ 1. Then lim

n→∞
vn is the unique word w ∈ ∆∞ defined by w(i) = vj(i), for all

i, j ∈ N such that i ≤ |vj |. Hence vi ≤ w for all i ≥ 1 and w = vk whenever
there exists a k ≥ 1 such that vn = vn+1 for all n ≥ k. For an infinite sequence
of finite words u1, u2, . . . ∈ ∆∗ we use the notation u1u2 · · · to denote the word
lim

n→∞
u1u2 · · ·un.

We now move to shuffles. We define a shuffle of two words as an interleaving
of consecutive finite subwords of these words which stops (is finite) only if both
words have been used completely. This implies that one (infinite) word may
prevail when the other word, from some point onwards, contributes nothing
anymore but the trivial subword λ.
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Definition 2.1 Let u, v ∈ ∆∞. Then

(1) w ∈ ∆∞ is a fair shuffle of u and v if w = u1v1u2v2 · · · , where ui, vi ∈ ∆∗,
for all i ≥ 1, are such that u = u1u2 · · · and v = v1v2 · · · , and

(2) w ∈ ∆∞ is a shuffle of u and v if either

(a) w is a fair shuffle of u and v, or

(b) w = u1v1u2v2 · · · , where ui, vi ∈ ∆∗, for all i ≥ 1, and either
u1u2 · · · ∈ pref (u) and v = v1v2 · · · ∈ ∆ω, or u = u1u2 · · · ∈ ∆ω

and v1v2 · · · ∈ pref (v).

For u, v ∈ ∆∞, the set of all fair shuffles of u and v is denoted by u ||| v and
the set of all shuffles of u and v is denoted by u || v. Thus, u ||| v = {w ∈ ∆∞ :
w is a fair shuffle of u and v} and u || v = {w ∈ ∆∞ : w is a shuffle of u and v}.
Note that, as defined by the fair shuffle operator ||| and the shuffle operator
||, both fair shuffling and shuffling yield languages.

Shuffling two languages is defined element-wise: The fair shuffle of two
languages L1 and L2 is denoted by L1 ||| L2 and is defined as the set of all
words which are a fair shuffle of a word from L1 and a word from L2. Hence
L1 ||| L2 = {w ∈ u ||| v : u ∈ L1, v ∈ L2}. Similarly, the shuffle of L1 and L2 is
denoted by L1 || L2 and is defined as L1 || L2 = {w ∈ u || v : u ∈ L1, v ∈ L2}.

Note that by definition a shuffle of two finite words is always fair: u || v =
u ||| v whenever u and v are finite words. On the other hand, if at least one
among u and v is infinite, then u ||| v ⊆ u || v and this inclusion may be strict,
as can be concluded from the following example.

Example 2.2 The word ab is a shuffle of a and b and a || b = {ab, ba}, a2 || b =
{a2b, aba, ba2}; in general an || b = {aibaj : i, j ≥ 0, i+ j = n}. Note that every
shuffle in an || b is fair. Also aω ||| b = {aibaω : i ≥ 0} consists of fair shuffles
only, but aω || b = (aω ||| b) ∪ aω. Note that also for infinite words it may be
the case that all shuffles are fair shuffles: aω ||| a = aω || a = aω.

It follows immediately from Definition 2.1 that both fair shuffling and shuffling
are commutative operations.

Theorem 2.3 Let u, v ∈ ∆∞. Then u ||| v = v ||| u and u || v = v || u.

Also the next observation is easily proved. It describes the structure of (fair)
shuffles and it can be used as a recursive definition for the shuffles of finite words
(see, e.g., [5, 17,21]).

Lemma 2.4 Let u, v ∈ ∆∞ and a, b ∈ ∆. Then

(1) u || λ = u ||| λ = u = λ ||| u = λ || u and

(2) au ||| bv = a(u ||| bv) ∪ b(au ||| v) and au || bv = a(u || bv) ∪ b(au || v).
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As an intermediate result we obtain that any concatenation of (fair) shuffles is
a (fair) shuffle of a concatenation. In particular, any shuffle of prefixes of two
words is a prefix of the (fair) shuffle of these words.

Lemma 2.5 Let u, v ∈ ∆∞ and z, u′, v′ ∈ ∆∗. Then

(1) z(u ||| v) ⊆ zu ||| v and z(u || v) ⊆ zu || v, and

(2) (u′ || v′)(u ||| v) ⊆ u′u ||| v′v and (u′ || v′)(u || v) ⊆ u′u || v′v.

Proof (1) We only prove the first inclusion. The other proof is analogous. Let
w ∈ z(u ||| v). Then w = zw′ for some w′ ∈ u ||| v. By Definition 2.1(1),
w′ = u1v1u2v2 · · · , with ui, vi ∈ ∆∗ for all i ≥ 1, u = u1u2 · · · , and v = v1v2 · · · .
Thus w = zw′ = zu1v1u2v2 · · · with zu1u2 · · · = zu. Hence w ∈ zu ||| v.

(2) We only prove the first inclusion. The other proof is analogous. First
assume u′ = λ. Then u′ || v′ = v′ by Lemma 2.4(1). From Theorem 2.3 and (1)
we have v′(u ||| v) ⊆ u ||| v′v. The case that v′ = λ is symmetric. We proceed by
induction on |u′|+ |v′|. The cases that |u| = 0 or |v| = 0 have already been dealt
with. We thus assume that u′ = au1 and v′ = bv1 with a, b ∈ ∆ and u1, v1 ∈ ∆∗.
Then, by Lemma 2.4(2), u′ || v′ = au1 || bv1 = a(u1 || bv1) ∪ b(au1 || v1). This
yields

(u′ || v′)(u ||| v) = a(u1 || bv1)(u ||| v) ∪ b(au1 || v1)(u ||| v)
⊆ a(u1u ||| bv1v) ∪ b(au1u ||| v1v)
⊆ (au1u ||| bv1v) ∪ (au1u ||| bv1v)

= (u′u ||| v′v)

by applying the induction hypothesis and Lemma 2.4(2) twice. �

In addition, as we prove next, every prefix of a shuffle of two words is a fair
shuffle of prefixes of these words. Consequently, the shuffles and the fair shuffles
of two words determine the same set of prefixes.

Theorem 2.6 Let u, v ∈ ∆∞. Then

pref (u) || pref (v) = pref (u ||| v) = pref (u || v) = pref (u) ||| pref (v) .

Proof From Lemma 2.5(2) we know that pref (u) || pref (v) ⊆ pref (u ||| v).
Since u ||| v ⊆ u || v by Definition 2.1, it follows that pref (u ||| v) ⊆ pref (u || v)
and pref (u) ||| pref (v) ⊆ pref (u) || pref (v). Hence the proof is complete once
we have shown that pref (u || v) ⊆ pref (u) ||| pref (v). Let z ∈ pref (u || v). This
implies that there exist an n ≥ 1 and u1, u2, . . . , un, v1, v2, . . . , vn ∈ ∆∗ such that
z = u1v1u2v2 · · ·un−1vn−1x with x ∈ pref (unvn), u1u2 · · ·un ∈ pref (u), and
v1v2 · · · vn ∈ pref (v). It is now immediately clear that z ∈ pref (u) ||| pref (v).

�
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Example 2.7 Although aω ||| b 6= aω || b, we have

pref (aω ||| b) = pref (aω || b) = {aibaω : i ≥ 0} ∪ a∗ .

3 Associativity of Fair Shuffling

In this section the associativity of fair shuffling is proved: u ||| (v ||| w) =
(u ||| v) ||| w for all words u, v, and w. Extending a technique known from,
e.g., [13,17,21], to infinite words makes it possibly to prove rather directly that
fair shuffling is associative. This technique is based on renaming and inserting:
with each word we associate its own (indexed) alphabet and rename its letters
accordingly. Next arbitrary (finite) subwords over the other indexed alphabet
are inserted to simulate shuffles with arbitrary words over the other indexed
alphabet. Then we intersect the resulting sets: all words in the intersection are
(fair) shuffles of the renamed words. Hence to obtain all (fair) shuffles, it is
sufficient to ultimately simply go back to the original alphabets.

To formalize all this, we use homomorphisms and their extension to infinite
words. Let h : Σ → Γ∗ be a function assigning to each letter of alphabet Σ a
finite word over Γ. The homomorphic extension of h to Σ∗, also denoted by h,
is defined in the usual way by h(λ) = λ and h(xy) = h(x)h(y) for all x, y ∈ Σ∗.
We extend h to Σ∞ by setting h( lim

n→∞
vn) = lim

n→∞
h(vn), for all v1, v2, . . . ∈ Σ∗

such that for all i ≥ 1, vi ≤ vi+1. Note that this is well-defined, since vi ≤ vi+1

implies h(vi) ≤ h(vi+1).
Let ∆ be an alphabet. For each integer i ∈ N and each a ∈ ∆ we let

[a, i] be a distinct symbol. Let [∆, i] = {[a, i] : a ∈ ∆}. Thus for all i, j ∈ N
such that i 6= j, [∆, i] and [∆, j] are disjoint. We moreover assume that ∆
and [∆, i] are disjoint for all i. The homomorphisms βi : ∆∗ → [∆, i]∗ and
βi : [∆, i]∗ → ∆∗ are defined by βi(a) = [a, i] and βi([a, i]) = a, respectively.
Note that βi and βi are renamings (bijections): βi uniquely labels every letter
in a word with i and βi can be used to remove this label again. Now let i ∈ N
and J ⊆ N be such that i /∈ J . We define ϕi,J : (

⋃
{[∆, j] : j ∈ {i} ∪ J})∗ → ∆∗

by ϕi,J([a, i]) = a and ϕi,J([a, j]) = λ, for all j ∈ J . Furthermore, we have
ψJ : (

⋃
{[∆, j] : j ∈ J})∗ → ∆∗ defined by ψJ([a, j]) = a, for all j ∈ J . Note

that ϕi,∅ = βi and ψ{j} = βj . Intuitively, ϕi,J is used to remove the label i
from every letter in a word that is labelled by i and to erase every other symbol
from that word, whereas ψJ simply removes all labels in J from every letter in
a word that is labelled by such a label from J .

We begin with the result announced above, which provides an alternative
definition for the fair shuffle.

Theorem 3.1 Let u, v ∈ ∆∞. Then, for all i, j ∈ N such that i 6= j, u ||| v =
ψ{i,j}(ϕ

−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)).
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Proof Without loss of generality we assume that i = 1 and j = 2.
(⊆) Let w ∈ u ||| v. Then w = u1v1u2v2 · · · with u1, u2, . . . , v1, v2, . . . ∈ ∆∗

such that u = u1u2 · · · and v = v1v2 · · · . Now consider

w = β1(u1)β2(v1)β1(u2)β2(v2) · · · .

It follows immediately that ϕ1,{2}(w) = u. Likewise, ϕ2,{1}(w) = v. Hence
w ∈ ϕ−1

1,{2}(u) ∩ ϕ−1
2,{1}(v). Since ψ{1,2}(w) = w, we are done.

(⊇) We only prove the case that u, v ∈∆ω. The proofs of the other cases
are similar. Let w ∈ ψ{1,2}(ϕ

−1
1,{2}(u) ∩ ϕ−1

2,{1}(v)) and w ∈ ϕ−1
1,{2}(u) ∩ ϕ−1

2,{1}(v)
be such that ψ{1,2}(w) = w. As ϕ1,{2}(w) = u there exist x1, x2, . . . ∈ ∆∗ and
u1, u2, . . . ∈ ∆+ such that w = β2(x1)β1(u1)β2(x2)β1(u2) · · · and u = u1u2 · · · .
Similarly, ϕ2,{1}(w) = v implies that there exist y1, y2, . . . ∈ ∆∗ and v1, v2, . . . ∈
∆+ such that w = β1(y1)β2(v1)β1(y2)β2(v2) · · · and v = v1v2 · · · . Hence

β2(x1)β1(u1)β2(x2)β1(u2) · · · = β1(y1)β2(v1)β1(y2)β2(v2) · · · .

Since [∆, 1]∩ [∆, 2] = ∅ it must be the case that either β2(x1) = λ or β1(y1) = λ.
First assume that β2(x1)=λ, i.e. x1 = λ. Hence

β1(u1)β2(x2)β1(u2)β2(x3) · · · = β1(y1)β2(v1)β1(y2)β2(v2) · · · .

Again by [∆, 1] ∩ [∆, 2] = ∅ and from the fact that ui, vi ∈ ∆+ for all i ≥ 1,
we know that β1(ui) = β1(yi) and β2(vi) = β2(xi+1) for all i ≥ 1. Thus w =
ψ{1,2}(w) = u1v1u2v2 · · · ∈ u ||| v.

The case that β1(y1) = λ is treated analogously. �

This alternative definition makes it possible to derive a symmetric description
for the case that a word u is fairly shuffled with the fair shuffles v ||| w of words
v and w.

Lemma 3.2 Let u, v, w ∈ ∆∞. Let i1, i2, i3 ∈ N be three different integers and
let j ∈ N be such that j 6= i1. Then

ψ{i1,j}(ϕ
−1
i1,{j}(u) ∩ ϕ−1

j,{i1}(ψ{i2,i3}(ϕ
−1
i2,{i3}(v) ∩ ϕ−1

i3,{i2}(w))))

= ψ{i1,i2,i3}(ϕ
−1
i1,{i2,i3}(u) ∩ ϕ−1

i2,{i1,i3}(v) ∩ ϕ−1
i3,{i1,i2}(w)) .

Proof Without loss of generality we assume that ik = k, for 1 ≤ k ≤ 3, and
j 6= 1.

(⊆) Let z ∈ ψ{1,j}(ϕ
−1
1,{j}(u) ∩ ϕ−1

j,{1}(ψ{2,3}(ϕ
−1
2,{3}(v) ∩ ϕ−1

3,{2}(w)))) and z ∈
ϕ−1

1,{j}(u) ∩ ϕ−1
j,{1}(ψ{2,3}(ϕ

−1
2,{3}(v) ∩ ϕ−1

3,{2}(w))) be such that ψ{1,j}(z) = z. Let

x ∈ ψ{2,3}(ϕ
−1
2,{3}(v) ∩ ϕ−1

3,{2}(w)) be such that z ∈ ϕ−1
1,{j}(u) ∩ ϕ−1

j,{1}(x). Let

x ∈ ϕ−1
2,{3}(v) ∩ ϕ−1

3,{2}(w) be such that ψ{2,3}(x) = x. Hence x is of the form
x = b1c1b2c2 · · · such that for all i ≥ 1, bi ∈ [∆, 2] ∪ {λ} and ci ∈ [∆, 3] ∪
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{λ}, β2(b1b2 · · · ) = v, and β3(c1c2 · · · ) = w. Furthermore z is of the form
z = a1b1c1a2b2c2 · · · such that for all i ≥ 1, ai ∈ [∆, 1] ∪ {λ} and bi, ci ∈
[∆, j] ∪ {λ}, β1(a1a2 · · · ) = u, and βj(b1c1b2c2 · · · ) = ψ{2,3}(b1c1b2c2 · · · ) is
such that βj(b1b2 · · · ) = β2(b1b2 · · · ) = v and βj(c1c2 · · · ) = β3(c1c2 · · · ) =
w. Now consider that z = a1β2(βj(b1))β3(βj(c1))a2β2(βj(b2))β3(βj(c2)) · · · .
Since β1(a1a2 · · · ) = u, β2(β2(βj(b1))β2(βj(b2)) · · · ) = βj(b1b2 · · · ) = v, and
β3(β3(βj(c1))β3(βj(c2)) · · · ) = βj(c1c2 · · · ) = w, we know that ϕ1,{2,3}(z) =
u, ϕ2,{1,3}(z) = v, and ϕ3,{1,2}(z) = w. Hence z ∈ ϕ−1

1,{2,3}(u) ∩ ϕ−1
2,{1,3}(v) ∩

ϕ−1
3,{1,2}(w) and ψ{1,2,3}(z) = ψ{1,j}(z) = z.

(⊇) Let z ∈ ψ{1,2,3}(ϕ
−1
1,{2,3}(u)∩ϕ−1

2,{1,3}(v)∩ϕ−1
3,{1,2}(w)) and z ∈ ϕ−1

1,{2,3}(u)∩
ϕ−1

2,{1,3}(v) ∩ ϕ−1
3,{1,2}(w) be such that ψ{1,2,3}(z) = z. Hence z is of the form

z = a1b1c1a2b2c2 · · · such that for all i ≥ 1, ai ∈ [∆, 1] ∪ {λ}, bi ∈ [∆, 2] ∪ {λ},
and ci ∈ [∆, 3] ∪ {λ}, β1(a1a2 · · · ) = u, β2(b1b2 · · · ) = v, and β3(c1c2 · · · ) = w.
Let u = a1α1a2α2 · · · , with αi ∈ ([∆, j] ∪ {λ})∗, be such that for all i ≥ 1,
βj(αi) = ψ{2,3}(bici). Then clearly u ∈ ϕ−1

1,{j}(u). Next let x = b1c1b2c2 · · · .
Then x ∈ ϕ−1

2,{3}(v) ∩ ϕ−1
3,{2}(w). Since for all i ≥ 1, ϕj,{1}(αi) = βj(αi) =

ψ{2,3}(bici) and ai ∈ [∆, 1] ∪ {λ}, it follows that u ∈ ϕ−1
j,{1}(ψ{2,3}(x)). Thus

u ∈ ϕ−1
1,{j}(u) ∩ ϕ−1

j,{1}(ψ{2,3}(x)). Finally, the fact that for all i ≥ 1, βj(αi) =
ψ{2,3}(bici) now implies that ψ{1,j}(u) = ψ{1,2,3}(z) = z. �

With this lemma it is now straightforward to prove that fair shuffling of
possibly infinite words is associative, a result which is mentioned in [19] (where
fair shuffling is called fair merge) but which is not proved there due to the
complications caused by a different setting.

Theorem 3.3 Let u, v, w ∈ ∆∞. Then u ||| (v ||| w) = (u ||| v) ||| w.

Proof By Theorem 3.1 and Lemma 3.1,

u ||| (v ||| w) = ψ{1,4}(ϕ
−1
1,{4}(u) ∩ ϕ−1

4,{1}(ψ{2,3}(ϕ
−1
2,{3}(v) ∩ ϕ−1

3,{2}(w))))

= ψ{1,2,3}(ϕ
−1
1,{2,3}(u) ∩ ϕ−1

2,{1,3}(v) ∩ ϕ−1
3,{1,2}(w)) .

Similarly, we have

(u ||| v) ||| w = ψ{3,4}(ϕ
−1
4,{3}(ψ{1,2}(ϕ

−1
1,{2}(u) ∩ ϕ−1

2,{1}(v))) ∩ ϕ−1
3,{4}(w))

= ψ{1,2,3}(ϕ
−1
1,{2,3}(u) ∩ ϕ−1

2,{1,3}(v) ∩ ϕ−1
3,{1,2}(w)) .

Hence u ||| (v ||| w) = (u ||| v) ||| w. �

Since for finite words shuffles and fair shuffles are the same, this theorem
implies that shuffling is associative for finite words. This is a well-known fact
(see, e.g., [7, 10, 13, 17, 20, 22]) which we state here explicitly for completeness’
sake and for future reference.
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Corollary 3.4 Let u, v, w ∈ ∆∗. Then u || (v || w) = (u || v) || w.

Theorem 3.1 supplies an alternative definition for fair shuffles only, since the
inverse homomorphisms used to insert subwords are applied to the complete
words to be shuffled. To extend this theorem to the general case we would
have to consider also the prefixes of one word in case the other word is infinite.
Because of this case distinction, this would lead to a less uniform description for
shuffles than we now have for fair shuffles. Rather than proving associativity on
basis of such an alternative definition or by further investigating the implications
of the associativity of fair shuffling, we will present in the next section a more
general approach based on prefix properties. We will express shuffles as limits
of shuffles of finite words, which should then allow us to apply the associativity
of the shuffling of finite words (Corollary 3.4).

4 General Shuffles

In this section we will prove that a word is a shuffle of two given words if and
only if each of its prefixes is a shuffle of prefixes of these two words. We begin
by introducing the concept of decomposition as an explicit description of how a
shuffle is obtained from two given finite words.

Definition 4.1 Let w ∈ ∆∗. A decomposition of w is a sequence d = (u1, v1,
u2, v2, . . . , un, vn) with n ≥ 1, u1 ∈ ∆∗, u2, u3, . . . , un, v1, v2, . . . , vn−1 ∈ ∆+,
vn ∈ ∆∗, and w = u1v1u2v2 · · ·unvn. If u1u2 · · ·un = u and v1v2 · · · vn = v, then
d is called a (u, v)-decomposition of w. The norm of d, denoted by || d ||, is n.

Note that decompositions — apart from the first and the last subword men-
tioned — only refer to nonempty subwords of the words that are shuffled. This
provides us with a normal form for the description of finite shuffles.

Lemma 4.2 Let u, v, w ∈ ∆∗. Then there exists a (u, v)-decomposition of w if
and only if w ∈ u || v.

Proof (Only if) Immediate from Definitions 2.1 and 4.1.
(If) Let w ∈ u || v. Then by Definition 2.1 we have w = u1v1u2v2 · · · , with

ui, vi ∈ ∆∗ for all i ≥ 1, u = u1u2 · · · , and v = v1v2 · · · . Let ρ1 = (u1, v1) and if
ρk = (α1, β1, α2, β2, . . . , α`, β`) for some ` ≥ 1 and αj , βj ∈ ∆∗, for all 1 ≤ j ≤ `,
then

ρk+1 =


(α1, β1, α2, β2, . . . , α`uk+1, vk+1) if β` = λ,
(α1, β1, α2, β2, . . . , α`, β`vk+1) if β` 6= λ and uk+1 = λ, and
(α1, β1, α2, β2, . . . , α`, β`, uk+1, vk+1) if β` 6= λ and uk+1 6= λ.

Thus ρk+1 is obtained from ρk by adding the words uk+1 and vk+1. These are
added in such a way that only the first and the last element of ρk+1 are al-
lowed to equal λ. In general, if ρk = (α1, β1, α2, β2, . . . , α`, β`), then α1, β` ∈
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∆∗, αj ∈ ∆+, for all 1 < j ≤ `, and βj ∈ ∆+, for all 1 ≤ j < `. Fur-
thermore, α1β1α2β2 · · ·α`β` = u1v1u2v2 · · ·ukvk, α1α2 · · ·α` = u1u2 · · ·uk, and
β1β2 · · ·β` = v1v2 · · · vk. Since w is finite, there must exist an m ≥ 1 such that
for all n > m, un = vn = λ. Then ρm = (α1, β1, α2, β2, . . . , α`, β`) is such that
α1β1α2β2 · · ·α`β` = w, α1 ∈ ∆∗, β1, α2, β2, α3, . . . , β`−1, α` ∈ ∆+, β` ∈ ∆∗,
α1α2 · · ·α` = u, and β1β2 · · ·β` = v. Hence ρm is a (u, v)-decomposition of w.

�

It is not difficult to see that a shuffle may have several decompositions. In
a series of papers (see, e.g., [16, 17]) Mateescu et al. use so-called ‘trajectories’
to describe shuffles. A trajectory defines, in a binary fashion, when to switch
from one word to another. When applied, a trajectory thus defines a unique
decomposition. Associativity is consequently discussed per set of trajectories.
However, associativity of the shuffle as investigated here is not considered.

To be able to describe extensions of shuffles explicitly, we introduce a prece-
dence relation for decompositions.

Definition 4.3 Let d = (x1, y1, x2, y2, . . . , xk, yk) and d′ = (u1, v1, u2, v2, . . . ,
un, vn) be two decompositions of x1y1x2y2 · · ·xkyk ∈ ∆∗ and u1v1u2v2 · · ·unvn ∈
∆∗, respectively. Then

(1) d directly precedes d′ if k ≤ n and for all 1 ≤ j ≤ k − 1, xj = uj and
yj = vj , and—moreover—either

(a) k = n, xk = uk, and yka = vk, for some a ∈ ∆, or

(b) k = n, yk = vk = λ, and xka = uk, for some a ∈ ∆, or

(c) k = n− 1, yk 6= λ, vk+1 = λ, and uk+1 = a, for some a ∈ ∆, and

(2) d precedes d′ if there exist decompositions d0, d1, . . . , d` such that ` ≥ 0,
d = d0, d′ = d`, and for all 0 ≤ j ≤ `− 1, dj directly precedes dj+1.

Note that if d and d′ are two decompositions such that d directly precedes d′,
then || d′|| = || d || or || d′|| = || d ||+ 1. Hence if d precedes d′, then || d′|| ≥ || d ||.

It is easy to see that whenever a decomposition d precedes a decomposition
d′, then d decomposes a prefix of the word that d′ decomposes. In fact, we have
the following result.

Lemma 4.4 Let d = (x1, y1, x2, y2, . . . , xk, yk) and d′ = (u1, v1, u2, v2, . . . ,
un, vn) be two decompositions such that d precedes d′. Then

x1x2 · · ·xk ∈ pref (u1u2 · · ·un) ,

y1y2 · · · yk ∈ pref (v1v2 · · · vn) ,

and
x1y1x2y2 · · ·xkyk ∈ pref (u1v1u2v2 · · ·unvn) .
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Proof If d = d′ there is nothing to prove, so let us assume that d 6= d′. From
Definition 4.3 it is clear that the statement holds in case d immediately precedes
d′.

If d precedes d′, then there exist (sj , tj)-decompositions dj of words wj ∈ ∆∗

with 0 ≤ j ≤ `, for some ` ≥ 1, such that d0 = d, d` = d′, and dj im-
mediately precedes dj+1, for all 0 ≤ j < `. Hence, for all 0 ≤ j < ` − 1,
sj ∈ pref (sj+1), tj ∈ pref (tj+1), and wj ∈ pref (wj+1). Thus s0 = x1x2 · · ·xk ∈
pref (s`) = pref (u1u2 · · ·un), t0 = y1y2 · · · yk ∈ pref (t`) = pref (v1v2 · · · vn), and
w0 =x1y1x2y2 · · ·xkyk∈pref (w`)=pref (u1v1u2v2 · · ·unvn). �

Given this lemma it can be proved that the limit of the shuffles defined by
an ordered sequence of (ui, vi)-decompositions is a shuffle of the limits of the ui

and the vi.

Lemma 4.5 For all i ≥ 0, let di be a (ui, vi)-decomposition of a word wi over
∆ such that di precedes di+1. Then u = lim

i→∞
ui, v = lim

i→∞
vi, and w = lim

i→∞
wi

exist, and w ∈ u || v.

Proof By Lemma 4.4 it follows that ui ≤ ui+1, vi ≤ vi+1, and wi ≤ wi+1, for
all i ≥ 0, so indeed u, v, and w exist and we only have to prove that w ∈ u || v.
We distinguish two cases.

First we consider the case that there exists an N ∈ N such that || di|| = || dN ||
for all i ≥ N . Let N0 ∈ N be such an N . Again we distinguish two cases.

Let us assume first that, for all i ≥ N0, if di = (x1, y1, x2, y2, . . . , xn, yn),
then yn = λ. Consequently, for all i ≥ N0, vi = vN0 . From ui ≤ ui+1, for all
i ≥ 0, we infer that for all i > N0 there exist zi−N0 ∈ ∆∗ such that ui+1 =
uizi−N0 . Observe that u = lim

i→∞
ui = uN0 lim

i→∞
z1z2 · · · zi−N0 . We thus obtain

that for all i > N0 we have wi = wN0z1z2 · · · zi−N0 . Since wN0 ∈ uN0 || vN0

by Lemma 4.2, we conclude that w = lim
i→∞

wi ∈ (uN0 || vN0) lim
i→∞

z1z2 · · · zi−N0 =

(uN0 || vN0)( lim
i→∞

z1z2 · · · zi−N0 || λ) ⊆ u || vN0 ⊆ u || v by Lemma 2.5(2) and the

definition of u.
Next assume there exist an i ≥ N0 such that di = (x1, y1, x2, y2, . . . , xn, yn)

with yn 6= λ. Let `0 be the smallest such i. Thus, for all i ≥ `0, ui = u`0 . From
vi ≤ vi+1, for all i ≥ 0, we infer that for all i > `0 there exist zi−`0 ∈ ∆∗

such that vi+1 = vizi−`0 . Observe that v = lim
i→∞

vi = v`0 lim
i→∞

z1z2 · · · zi−`0 .

Thus for all i > `0 we have wi = w`0z1z2 · · · zi−`0 . Since w`0 ∈ u`0 || v`0

by Lemma 4.2, we conclude that w = lim
i→∞

wi ∈ (u`0 || v`0) lim
i→∞

z1z2 · · · zi−`0 =

(u`0 || v`0)(λ || lim
i→∞

z1z2 · · · zi−`0) ⊆ u`0 || v ⊆ u || v by Lemma 2.5(2) and the

definition of u.
Now we move to the case that for all N ∈ N there exists a k ∈ N such

that || dk|| ≥ N . Let j1, j2, . . . ∈ N be the (unique) infinite sequence of integers
such that for all i ∈ N, || dji || < || dji+1 || and || d`|| = || dji || for all ji ≤ ` <
ji+1. Since || d0|| ≤ || d1|| ≤ · · · is an unbounded sequence of integers we know
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that the ji as just described exist. Since each dji precedes dji+1 , Definition 4.3
implies that there exist x1, x2, . . . , y1, y2, . . . , s1, s2, . . . , t1, t2, · · · ∈ ∆∗ such that
dji = (x1, y1, x2, y2, . . . , x|| dji

||−1, y|| dji
||−1, si, ti), for all i ≥ 1. By Lemma 4.4,

uji = x1x2 · · ·x|| dji
||−1si ∈ pref (uji+1) = pref (x1x2 · · ·x|| dji+1

||−1si+1), for all
i ≥ 1, and thus u = lim

n→∞
x1x2 · · ·xn. Analogously, v = lim

n→∞
y1y2 · · · yn, and

w = lim
n→∞

x1y1x2y2 · · ·xnyn. Thus w = x1y1x2y2 · · · with x1 ∈ ∆∗, xi ∈ ∆+

for all i ≥ 2, yi ∈ ∆+ for all i ≥ 1, u = x1x2 · · · , and v = y1y2 · · · . Hence
w ∈ u || v. �

On the other hand, we would now like to show that whenever every prefix of a
word w can be obtained as a shuffle of a prefix of a word u and a prefix of a word
v, then w is indeed a shuffle of u and v. To prove this it would be convenient if
the decompositions describing the prefixes of w as shuffles of prefixes of u and
v would precede each other and ultimately lead to w as a shuffle of u and v. As
the next lemma demonstrates, this can be achieved by requiring that u and v
have no letters in common. We write alph(w) to denote the alphabet of a word
w, i.e. the set of all letters that actually occur in w.

Lemma 4.6 Let u, v ∈ ∆∞ be such that alph(u)∩ alph(v) = ∅ and let w ∈ ∆ω.
Then pref (w) ⊆ pref (u) || pref (v) implies w ∈ u || v.

Proof Let pref (w) ⊆ pref (u) || pref (v). Now consider two arbitrary consecu-
tive prefixes of w. Thus for some n ≥ 0 we have w[n] and w[n+ 1] = w[n]a with
a ∈ alph(u) or a ∈ alph(v). Since pref (w) ⊆ pref (u) || pref (v), there are pre-
fixes un and un+1 of u, and prefixes vn and vn+1 of v such that w[n] ∈ un || vn

and w[n + 1] ∈ un+1 || vn+1. Consequently, un+1 = una and vn+1 = vn if
a ∈ alph(u), and vn+1 = vna and un+1 = un if a ∈ alph(v). Now let dn be
a (un, vn)-decomposition of w[n] with dn = (x1, y1, x2, y2, . . . , xk, yk) for some
k ≥ 0. Then we obtain a (un+1, vn+1)-decomposition of w[n+ 1] as follows.

First assume that a ∈ alph(u). If yk = λ, then dn+1 = (x1, y1, x2, y2, . . . ,
xka, yk), whereas if yk 6= λ, then dn+1 = (x1, y1, x2, y2, . . . , xk, yk, a, λ). In
both cases we have x1x2 · · ·xka = una = un+1 and y1y2 · · · yk = vn = vn+1.
Moreover x1y1x2y2 · · ·xkyka = w[n]a = w[n + 1]. Thus dn+1 is a (un+1, vn+1)-
decomposition of w[n+ 1] and dn precedes dn+1.

Secondly, let a ∈ alph(v). Now dn+1 = (x1, y1, x2, y2, . . . , xk, yka). Since
x1x2 · · ·xk = un = un+1 and y1y2 · · · yka = vna = vn+1 are such that x1y1x2y2 · · ·
xkyka = w[n]a = w[n+ 1] we thus know that dn+1 is a (un+1, vn+1)-decomposi-
tion of w[n+ 1], which is preceded by dn.

Observe that the only decomposition of w[0] = λ is d0 = (λ, λ). Hence we
have defined an infinite (and unique) sequence of (ui, vi)-decompositions di of
w[i], with i ≥ 0, such that di precedes di+1 for all i ≥ 0. From Lemma 4.5 it
thus follows that w = lim

n→∞
w[n] ∈ ( lim

n→∞
un) || ( lim

n→∞
vn) = u || v. �

Note that this proof uses the observation that—thanks to the disjointness of
the alphabets—any decomposition of a prefix of w into prefixes of u and v, has a
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(unique) successor describing a decomposition of the next prefix. This ultimately
leads to a description of w as a shuffle of u and v. Unfortunately, in general, it
is not true that decompositions of prefixes can be extended to decompositions of
the next prefix. This is shown in the following example, which even shows that
an infinite word may have infinitely many prefixes with non-extendable prefixes.

Example 4.7 Let u = (a3b)ω and v = bω. Clearly {a3, a3b} ⊆ pref (u),
{b2, b3} ⊆ pref (v), and w = a3b3 ∈ pref (u) || pref (v). Note that d1 = (a3, b3)
and d2 = (a3b, b2) are two decompositions of w.

Next consider w′ = wa = a3b3a ∈ pref (u) || pref (v). The only decomposi-
tions of w′ which are directly preceded by a decomposition of prefixes of u and
v are d′ = (a3b, b2, a, λ) and d′′ = (a3, b2, ba, λ). Clearly, d1 neither precedes d′

nor d′′. Note, however, that d2 precedes d′.
Finally, let j ≥ 0, uj = a3(ba3)j ∈ pref (u), and vj = b3(b3)j ∈ pref (v). Then

clearly both wj = (a3b4)j
a3b3 ∈ pref (u) ||pref (v) and w′j =wja=(a3b4)j

a3b3a∈
pref (u) ||pref (v). Note that dj =(x0, y0, x1, y1, . . . , xj , yj , a

3, b3), where xi =a3b
and yi = b3 for all 0 ≤ i ≤ j, is a (uj , vj)-decomposition of wj . Reasoning as for
j= 0 it is however clear that there does not exist a decomposition of w′j based
on prefixes of u and v that is preceded by dj .

Despite this example, it can however be shown that for all words u, v ∈ ∆∞ and
w ∈ ∆ω, whenever pref (w) ⊆ pref (u) || pref (v) then w ∈ u || v, even when u
and v have letters in common. We do this by establishing the existence of an
infinite sequence of (un, vn)-decompositions of w[n], with n ≥ 0, preceding each
other. With this in mind we now recall König’s Lemma.

Lemma 4.8 (König’s Lemma) If G is an infinite finitely-branching rooted
tree, then there exists an infinite path through G, starting in the root.

For later use we prove a more general result, by not just considering words, but
limit-closed languages. Limit-closedness guarantees that the infinitary part of a
language is characterized by its finite prefixes. This notion has been defined in
many disguises throughout the literature on theoretical computer science. The
oldest reference we found is [1], where the terminology used is ‘a closed process’,
while the term limit closure was coined in [9]—after initially referring to the
same concept as ‘König closure’ in its preceding technical report.

Definition 4.9 Let K ⊆ ∆∞. K is limit-closed if for all w1 ≤ w2 ≤ · · · ∈
pref (K), lim

n→∞
wn ∈ K ∪ pref (K).

Example 4.10 All singleton languages {u} and all finitary languages L =
{λ, a, . . . , an :n≥1} over a unary alphabet are limit-closed, whereas a∗ is not as
lim

n→∞
an =aω /∈a∗ ∪ L. However, a∗ ∪ aω and aω are limit-closed.
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Lemma 4.11 Let K,L ⊆ ∆∞ be limit-closed and let w ∈ ∆ω. Then pref (w) ⊆
pref (K) || pref (L) implies w ∈ K || L.

Proof Let pref (w) ⊆ pref (K) || pref (L). For n ≥ 0, let

Vn = {d : d is a (un, vn)-decomposition of w[n],
un ∈ pref (K), and vn ∈ pref (L)}

be the set of all possible decompositions of the prefix w[n] of w. Note that
V0 = {(λ, λ)}. Note furthermore that each Vn is finite, for n ≥ 0, and that
Vn ∩ Vn′ = ∅, for all n > n′ ≥ 0.

Consider the directly precedes relation E = {(d, d′) : d directly precedes d′}.
Thus E ⊆

⋃
n≥1(Vn−1 × Vn). Note that G = (

⋃
n≥0 Vn, E) is a directed acyclic

graph. It is sketched in Figure 1.

Figure 1: Sketch of tree G = (
⋃

n≥0 Vn, E).

Except for (λ, λ), every vertex of G has precisely one incoming edge. This
can be seen as follows. The fact that pref (w) ⊆ pref (K) || pref (L) implies that
every vertex has at least one incoming edge, whereas the fact that for every
decomposition of a prefix w[n], with n ≥ 1, we can immediately distinguish the
unique last symbol of w[n], implies that every vertex has at most one incoming
edge. Furthermore, from Definition 4.3 it follows that every vertex has at most
two outgoing edges, depending on whether the symbol added to w[n], with n ≥ 0,
to obtain w[n+ 1] ‘belongs’ to a prefix from K or to a prefix from L. Hence G
is an infinite finitely-branching rooted tree with root (λ, λ).

We can thus use König’s Lemma to conclude that there exists an infinite
path π through G, starting in the root (λ, λ). Let π = (d0, d1, . . . ). Then for all
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n ≥ 0, dn is a (un, vn)-decomposition of w[n] and (dn, dn+1) ∈ E. Hence from
Lemma 4.5 it follows that u = lim

n→∞
un, v = lim

n→∞
vn, and w = lim

n→∞
wn exist, and

w ∈ u || v. Since K and L are limit-closed this implies that w ∈ K || L. �

The statement of this lemma in general does not hold when either K or L is
not limit-closed.

Example 4.12 Let K = a∗ and L = {λ}. Then

pref (aω) = a∗ = pref (K) || pref (L) ,

but aω /∈ a∗ = K || L.

Since singleton languages are limit-closed, we directly obtain as a corollary the
desired result.

Corollary 4.13 Let u, v ∈ ∆∞ and w ∈ ∆ω. Then pref (w) ⊆ pref (u) || pref (v)
implies w ∈ u || v.

It must be noted here that this result does not hold for fair shuffles.

Example 4.14 Consider aω. We have pref (aω) = a∗ and

a∗ ⊆ pref (aω) ||| pref (b) = pref (aω) || pref (b) .

However, as we have seen in Example 2.2, aω ∈ aω || b, but aω 6∈ aω ||| b.

Theorem 2.6 and Lemma 4.11 together characterize the shuffles of two words
(limit-closed languages) as exactly the limits of the shuffles of the prefixes of
these words (languages).

Theorem 4.15 Let u, v ∈ ∆∞, let K,L ⊆ ∆∞ be limit-closed, and let w ∈ ∆ω.
Then
(1) w ∈ u || v if and only if pref (w) ⊆ pref (u) || pref (v), and
(2) w ∈ K || L if and only if pref (w) ⊆ pref (K) || pref (L).

We need one more observation in order to conclude that shuffling is associative.

Corollary 4.16 Let v, w ∈ ∆∞. Then v || w is limit-closed.

Proof Let y1 ≤ y2 ≤ · · · ∈ pref (v || w) and let y = lim
n→∞

yn. Since for all

x ∈ pref (y), there exists an i ≥ 0 such that x ∈ pref (yi) ∈ pref (pref (v || w)) =
pref (v || w), it follows that pref (y) ⊆ pref (v || w). We distinguish two cases. If
y ∈ ∆∗, then y ∈ pref (v || w). If y ∈ ∆ω, then by Theorem 4.15(1), y ∈ v || w.
Hence y ∈ v || w ∪ pref (v || w) and v || w is thus limit-closed. �

Theorem 4.17 Let u, v, w ∈ ∆∞. Then u || (v || w) = (u || v) || w.
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Proof If u, v, w are finite words, we have Corollary 3.4. If at least one of
them is infinite, then both u || (v || w) and (u || v) || w consist of infinite words
only. Let x ∈ u || (v || w). Then Theorem 4.15(2) implies that pref (x) ⊆
pref (u) || pref (v || w). Thus, by Theorem 2.6,

pref (x) ⊆ pref (u) || (pref (v) || pref (w)) .

Consequently pref (x) ⊆ (pref (u) || pref (v)) || pref (w) by Corollary 3.4 and
pref (x) ⊆ pref (u || v) || pref (w) by Theorem 2.6. Finally, since u || v and {w}
are limit-closed, Theorem 4.15(2) implies that x ∈ (u || v) || w. The converse
inclusion follows from the above and Theorem 2.3. �

5 Discussion

In this paper we have considered a general shuffling operation for possibly infinite
words, which is not necessarily fair, and we have studied its limit behaviour. This
has led to a characterization of shuffles in terms of the shuffles of their prefixes,
with the associativity of shuffling as an immediate corollary. This proof of
the associativity of shuffling is fully self-contained and it does not rely on the
sometimes vague or not substantiated claims made in the literature for related
operations.

Associativity is of interest not only from a purely mathematical point of
view. In fact, as mentioned in the Introduction, our motivation to study the
associativity of shuffling stems from the use of shuffling and some of its vari-
ants to prove compositionality for different types of team automata [2,4]. Team
automata consist of component automata that collaborate through synchroniza-
tions. These synchronizations can be freely chosen depending on the specific
protocol of collaboration to be modelled. In [3] we have defined different strate-
gies for choosing the synchronizations of a team automaton. To describe the
behaviours of these team automata in terms of the behaviours of their compo-
nents, several types of ‘synchronized shuffling’ have been introduced in [2, 4].
The associativity of shuffling as defined in this paper, is the basis for proofs of
the associativity of some variants of synchronized shuffling in the Ph.D. thesis of
the first author [2]. The associativity of these variants, in their turn, is crucial
to prove that several types of team automata satisfy compositionality in [2, 4]
(in the latter only finitary behaviours are considered).

Since the behaviours of team automata and their components are prefix-
closed languages representing ongoing behaviours, we have focussed on the prefix
properties of shuffles. As follows from Theorem 2.6, the shuffle operation is sound
in the sense that indeed all prefixes of an infinite shuffle appear as shuffles of finite
words (behaviours). In addition, the key Lemma 4.11 and its Corollary 4.13 show
that every word which is represented through its finite prefixes in the shuffles
of finite words is a shuffle of their limits (component behaviours). Together
they provide a tool to investigate infinite shuffles as limits of finite shuffles. In
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a forthcoming paper we intend to address similar issues for the more involved
shuffles with synchronization.
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Applying Mealy machine to D0L and u-u

words

Aleksandrs Belovs, Jānis Buls∗

1 Introduction

The theory of finite automata has preserved from its origins a great diversity of
aspects. From one point of view, it is a branch of mathematics connected with
algebra. From another viewpoint, it is a branch of algorithm design concerned
with string manipulation and sequence processing.

A finite automaton can be viewed as a machine model which is as elementary
as possible in the sense that the machine has a memory size which is fixed and
bounded. The number of possible states of such a machine is itself bounded,
whence the notion of a finite-state machine.

A Mealy machine [17,19] is a finite state machine that acts, taking a string on
an input alphabet and producing a string of equal length on an output alphabet.
This model, namely, Mealy machine, is being investigated intensively since the
nineteen fifties (cf. [7, 10,18,23,24]).

A word is a sequence of symbols, finite or infinite, taken from a finite alpha-
bet. Words are central objects of automata theory, and in fact in any standard
model of computing. During the last two decades research on combinatorics on
words has grown enormously (cf. [2, 13–15]).

The subject of finite automata on infinite words was established in the sixties
by Büchi [3] and McNaughton [16]. From this core the theory has developed into
many directions. The classification theory of sequence properties is one of these.

In different areas of mathematics, people consider a lot of hierarchies which
are typically used to classify some objects according to their complexity. We
investigate the lattice of machine invariant classes [4]. This is an infinite com-
pletely distributive lattice but it is not a Boolean lattice. The design of stream
ciphers motives this report too [5]. It is worth to mention the idea that a lattice
would serve as a measure of quality comes from fuzzy mathematics [9].

We concentrate our attention to bi-ideal sequences. Bi-ideal sequences have
been considered, with different names, by several authors in algebra and com-
binatorics [1, 6, 11, 20, 21]. This paper is organized as follows. It is proved that
so called u-u words create the machine invariant class, but bounded bi-ideals do
not. Also the recurrence function is estimated for transformed u-u words. This

∗Department of Mathematics, University of Latvia, Raiņa bulvāris 19, R̄ıga, Latvia,
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estimate is not improvable for ultimately periodic words (as a corollary from
Yablonski’s theorem [22]).

There are examined D0L, HD0L and CD0L words in this paper too. It
is proved that CD0L words create the machine invariant class. Lastly there
are analyzed connections between one-sided symbolic dynamics and uniformly
recurrent words. So the alternative proof is given for u-u words, namely, those
create the machine invariant class.

2 Preliminaries

In this section we present most of the notations and terminology used in this pa-
per. Our terminology is more or less standard (cf. [8,13–15]) so that a specialist
reader may wish to consult this section only if need arise.

Let A be a finite non-empty set, we will call alphabet, and A∗ be a free monoid
generated by A. It contains finite sequences of A elements with a concatenation
operation. The identity element of A∗, designated as ε, is called the empty word.

If w = w0w1 . . . wl−1 ∈ A∗ (here wi ∈ A), then l is called the length of w and
is denoted as |w|. The length of ε is 0. We set w0 = ε and wi+1 = wiw.

The word w′ is a factor of w (notation: w′\w), if w = uw′v for some u and
v. If u = ε or v = ε, then w′ is called, respectively, a suffix of a prefix of w.
We denote, respectively, by F(w), Pref(w) and Suff(w) the sets of all factors,
prefixes and suffixes of w.

If w = w0w1 . . . wl, then w[i, j] (with 0 ≤ i ≤ j ≤ l) stands for a factor
wiwi+1 . . . wj . We will use notation w[i] instead of w[i, i]. An occurrence of a
factor v in w is such a pair (i, j) that v = w[i, j].

An (one-sided) infinite word x on the alphabet A is any map x : N → A.
x = x0x1x2 . . . . All definitions made before can be applied to this case also,
only, concatenation xy is defined, if x is finite. Hence prefixes and factors of
infinite words are finite, but suffixes are infinite. Suffix xixi+1 . . . is denoted by
x[i,∞].

A sequence of finite words {wi} is said to converge to the infinite word
y = limn→∞wn, if

∀i ∈ N∃N ∈ N∀m > N : wm[i] = y[i].

As a special case we have uω = limn→∞ un for any non-empty u.
A function µ : A∗ → B∗ is called a morphism, if µ(ε) = ε and µ(uv) =

µ(u)µ(v). The morphism is uniquely defined by its values on A elements. The
morphism µ is called non-erasing, if ∀a ∈ A : µ(a) 6= ε. It is called uniform, if
∀a, b ∈ A : |µ(a)| = |µ(b)|. It is called literal, if ∀a ∈ A : |µ(a)| = 1. It is clear
that a literal morphism is an uniform and non-erasing one. The morphism µ
can be applied to an infinite word, defining

µ(x) = lim
n→∞

µ(x[0, n]),
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if this limit exists. It does, if µ is non-erasing.
A 3-sorted algebra V = 〈Q,A,B, ◦, ∗〉 is called a Mealy machine if Q,A,B

are finite non-empty sets and ◦ : Q × A → Q, ∗ : Q × A → B are functions.
The sets Q, A and B are called respectively state set, input alphabet and output
alphabet.

The mappings ◦ and ∗ can be extended to Q×A∗ by defining

q ◦ ε = q, q ◦ (ua) = (q ◦ u) ◦ a,
q ∗ ε = ε, q ∗ (ua) = (q ∗ u)((q ◦ u) ∗ a),

for all q ∈ Q, u ∈ A∗ and a ∈ A. Henceforth we will omit parentheses, assuming
that ◦ and ∗ have equal priorities, that is higher than priority of concatenation
and lower than one of taking factors. So q ◦ u ∗ x[5, 6]y = ((q ◦ u) ∗ (x[5, 6]))y. If
x is an infinite word and q ∈ Q, we have q ∗ x = limn→∞ q ∗ x[0, n].

A 3-sorted algebra V0 = 〈Q,A,B, q0, ◦, ∗〉 is called an initial Mealy machine,
if 〈Q,A,B, ◦, ∗〉 is a Mealy machine and initial state q0 ∈ Q. We say a machine
V0 transforms x to y (notation: x V

⇁ y) if y = q0 ∗ x. We will write x ⇁ y, if
there exists V such that x V

⇁ y.
Note that if y = µ(x), where µ is a literal morphism, then there exists a

Mealy machine V with exactly one state such that x V
⇁ y, and vice versa. It is

also known that if x ⇁ y and y ⇁ z, then x ⇁ z.
Our main object of investigation is machine invariant sets. In order to avoid

some set-theoric problems, we will make some assumptions. Let us take the set

N =
∞⋃

k=0

{0, 1, . . . , k}ω.

We will assume that all states of Mealy machines, input and output alphabets
are from the set N. But if we will use some other input or output alphabet O,
we will assume that there is fixed a bijection k : O → {0, 1, . . . , |O|−1}, and this
bijection is applied to the input or output word respectively.

A non-empty subset K ∈ N is called a machine invariant set, if for any word
x ∈ N and any Mealy machine V with initial state q0 the result word q0 ∗ x
also belong to K (of course, in the case when the alphabet of x is a subset of
the input alphabet of V ). It is proved that ultimately periodic words (these are
words of a form uvω) form a machine invariant class [22]. Moreover, it is the
minimal machine invariant class [4].

3 D0L words

D0L words is an infinite case of a specific class of L systems of parallel derivation
grammar. L systems were introduced by Lindenmayer in [12] as the parallel
variant of Chomsky grammars. D0L systems are possibly the most simple case
of L systems, and the following definition is widely used in the theory of infinite
words.
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Definition 3.1 Let A be an alphabet, and µ : A∗ → A∗ be such a morphism,
and a ∈ A such a symbol, that µ(a) = au and µk(u) 6= ε for all k ∈ N. Then a
word

µω(a) = lim
k→∞

µk(a)

is called a D0L word.

It is clear that

µk(a) = a
k−1∏
i=0

µi(u) = auµ(u)µ2(u) . . . µk−1(u).

Hence a condition on the non-emptiness of µk(u) is equivalent with the condition
of the infinite growth of the length of µk(a). So, the limit exists, if both requests
are satisfied. This limit can be also described as the unique fixed point of µ
beginning with a.

In some other papers a D0L word is defined by the morphism µ if µl for some
l ∈ N matches both requests. Of course, such a kind of definition leads to the
easier description of the corresponding morphism, but it is not important in our
investigation.

It is used to name properties of D0L words in the terms of properties of the
corresponding morphisms. So, µω(x) is uniform if µ is such.

Our main aim is to describe the minimal machine invariant class that contains
all D0L words. It is clear that the set of all D0L words does not form one, because
it does not even contain an ultimately periodic word 110ω.

Definition 3.2 We shall call a word y ∈ Bω a HD0L word, if there exists a D0L
word x ∈ Aω and a non-erasing morphism χ : A∗ → B∗ such that y = χ(x).

It is not obvious a machine invariant closure of the class of D0L words has
to contain all HD0L words, but it immediately follows from the next lemma.

Lemma 3.3 Any HD0L word y = χ(x), where x = µω(a) is a D0L word, can
be expressed in the form y = ψ(z), where z ∈ Cω is a D0L word and ψ : C → B
is a literal morphism.

In order to stress the importance of the literal morphism in this lemma, we
shall use the name of CD0L word, assuming the morphism applied to the D0L
word is a literal one. It is possible, in this case, to name properties of the D0L
word as the corresponding properties of CD0L word. For example, a CD0L word
is an uniform one, if at least one of corresponding D0L words is uniform.

Proof The idea is to construct ν as transforming χ(b) into χµ(b), dividing the
last into parts and matching a part of χµ(b) for a symbol of χ(b). As one symbol
can appear in several χ(b), literal morphism is needed.
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The symbol a is the first symbol of x. First, let us note that

|χµ(a)| ≥ 2 (3.1)

as µ(a) is of a length at least 2 and χ is a non-erasing morphism.
Let us take a finite alphabet

C =
⋃
b∈A

{(b, k)|0 ≤ k < |χ(b)|} ⊂ A× N

and build a morphism ν in a following way.
For a symbol b ∈ A we can build such a sequence of {ub

i} that

|µ(b)|−1∏
i=0

|χ(µ(b)[i])|−1∏
j=0

(µ(b)[i], j) =
|χ(b)|−1∏

i=0

ub
i . (3.2)

Define ν with (b, i) 7→ ub
i for 0 ≤ i < |χ(b)|. If we will take a literal morphism

ψ : C → B, defined with ψ(b, i) = χ(b)[i], it follows from the construction that

ψνk

|χ(a)|−1∏
i=0

(a, i) = χµk(a).

Additionally, ν(a, 0) begins with (a, 0) and as (3.1) holds, we can take
|ν(a, 0)| > 1. So, the morphism ν and the symbol (a, 0) matches the first re-
quest. A satisfiability of the second one in the general case can be proved taking
ua

i = ε for all i > 0, so that

|νk(a, 0)| = |χµk(a)| ≥ |µk(a)| −→
k→∞

∞.

So z = νω(a, 0) exists, and χ(x) = ψ(z). �

Let us make two useful remarks about lemma 3.3.

1. If the morphism µ erases a symbol b ∈ B (respectively, µ(b) = ε), then the
morphism χ can also erase this symbol, and the resulting HD0L word will
still be a CD0L word. It is so, because we can erase this symbol from all
images of the morphism µ, getting the same HD0L word.

2. If both morphisms µ and χ are uniform ones, then we can take ν also
uniform. Indeed, all products of ub

i in (3.2) are of the equal length and of
the same number of elements. So we can take all of them of equal size.
The second request in the end of the proof can be also shown easy.

Theorem 3.4 Any initial Mealy machine transforms a CD0L word into a CD0L
word.
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Proof We have to prove that a resulting word z is a CD0L word, though we
may assume that the source word x is a D0L word, because any CD0L word can
be got from a corresponding D0L word using a Mealy machine.

Let x ∈ Aω, µ be a morphism such that x = µω(a), and V = 〈Q,A,B, q0, ◦, ∗〉
be a machine transforming x into z.

Using a pigeonhole Principe it can be stated that there exists k and l (1 ≤
k < l) such that

∀q ∈ Q∀α ∈ A : q ◦ µk(α) = q ◦ µl(α). (3.3)

Moreover, we can assume that l − k ≥ k.
The idea is to interpret the word x as µk(µ′ω(a)), where µ′ = µl−k, assuming

that V transforms µ′ω(a). So let us define q • v = q ◦ µk(v), where v ∈ A∗. The
• is the analog of ◦ in our interpretation. Using (3.3) we have q • v = q • (µ′(v)).

We will take a morphism ν : (Q×A)∗ → (Q×A)∗ defined with

(q, a) 7→
|µ′(a)|−1∏

i=0

〈
q • (µ′(a)[0, i− 1]), µ′(a)[i]

〉
.

As µ′ω(a) exists, then νω(q0, a) also exists and can be got adding corresponding
states to the symbols.

Using the induction it is easy to see that

µ′i(a) W
⇁ νi(q0, a), (3.4)

where W = 〈Q,A,Q×A, q0, •, �〉 with q � b = (q, b).
As we have said before, the morphism χ : (Q×A)∗ → B∗ will be defined as

(q, a) 7→ q ∗ µk(a). As µ′ erases symbols µk does (as l − k ≥ k), we can use the
first remark after lemma 3.3 with ν and χ.

The fact that χ(νω(q0, a)) = q0 ∗ x can be checked using (3.4). �

It can be also noticed (using the second remark after lemma 3.3) that if the
source word x is an uniform CD0L word, then the resulting word q0 ∗ x is also
an uniform one.

4 Recurrent and uniformly recurrent words

This section continues work had begun in the paper [4]. The following theorem
has been proved there:

Theorem 4.1 Every initial Mealy machine transforms an ultimately recurrent
word to an ultimately recurrent word.

Let us recall that a word x is called recurrent if any its factor has an infinite
number of occurrences in it. So, denoting by F∞(x) the set of all factors of x
with the infinite number of occurrences in x, we have that a word x is recurrent
if and only if F∞(x) = F(x). Any word of a form ux, where x is recurrent, is
called an ultimately recurrent one. Following definition narrows this class.
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Definition 4.2 We say a factor u of the infinite word x occurs synthetically in
x, if there exists k ∈ N that in any factor of x of length k there is at least one
occurrence of u. Infinite word x is called uniformly recurrent, if all its factors
occur synthetically in x. We say a word x is u-u word if x = uy, where y is an
uniformly recurrent word.

This definition imply the appearance of the following function

Definition 4.3 The recurrence function of the u-u word x is the function Kx :
N+ → N+ defined with

Kx(n) = max
u∈F∞(x)∩An

kx(u),

where kx(u) = max{|w||w ∈ F∞(x) ∧ u /∈ F (w)}+ 1.

The simplest properties of this function are counted in the following lemma

Lemma 4.4 Any u-u word x and its recurrence function Kx(n) satisfy proper-
ties:

1. The word x is ultimately recurrent.

2. If x = uy, then ∀n ∈ N : Kx(n) = Ky(n).

3. Any recurrent suffix t of x simultaneously is an ultimately recurrent suffix.
The function kt(u) can be described as the minimal k from the definition
of the uniformly recurrent word for the factor u. Function Kt(n) is k for
the rearrest factor of length n.

4. The function Kx(n) is monotonically increasing one and Kx(n) ≥ n.

The following theorem is important for us as the revision of the theorem 4.1
.

Theorem 4.5 The class of u-u words is machine invariant

Proof Let x be a u-u word and V0 = 〈Q,A,B, q0, ◦, ∗〉 be an initial Mealy
machine.

Since any u-u word is also an ultimately recurrent one, by the conclusion of
the theorem 4.1, y = q0 ∗ x is an ultimately recurrent word. This means that
there exists u ∈ B∗ such that y = uy′, and y′ is recurrent. We can choose u so
large, that x′ = x[|u|,∞] is uniformly recurrent.

Let us choose an arbitrary factor w = y′[m,n] of y′. We will use the following
inductive construction

Base Let us take v1 = x′[m,n] and Q1 = {q}, where q is the state of the
machine V0 before the transforming of x′[m,n].



154 Words 2005

Step Let us assume, we have vk ∈ F (x), the set Qk with cardinality k, and
∀q ∈ Qk : w ∈ F(q ∗ vk). There are two alternatives

(a) For all occurrences of vk = x′[i, j] in x′, the word y′[i, j] has an occurrence
of w. In this case we stop further construction.

(b) There exists the occurrence vk = x′[i, j], such that w /∈ F (y′[i, j]). So
before the transforming of it, machine was in the state q /∈ Qk.

The word y′ is recurrent, hence there is occurrence w = y′[k, l] with k ≥ i.
We will take vk+1 = x′ [i,max{j, l}] and Qk+1 = Qk ∪{q}. It is easy to see
that inductive assumption holds.

For all k |Qk| < |Q| <∞, so after the finite number of steps the construction
stops. So there exists such a vk that satisfy the alternative (a). Then w occurs
in y′ synthetically, because vk does so in x′. �

The question about some numerical relations between the source and result-
ing words can arise. The following theorem presents one.

Theorem 4.6 For any u-u word x and Mealy machine V1 = 〈Q,A,B, q0, ◦, ∗〉
inequality holds:

Kq0∗x(n) ≤ T |Q|(n)− 1,

where T (n) = Kx(n) + 1. Here T k means function’s T k-th iteration.

Proof At first, construct machine V0 that differ from V1 with output: V0 =
〈Q,A,Q× A, q0, ◦, ∗́〉, where q ∗́ a = (q, a) for all q and a. It is easy to see that
recurrence function of V0 dominates (is larger on all elements of N) the one for
V1. So further we will consider only the case of V0.

Let us return to the proof of the theorem 4.5. We will define x′, y′ and
w = y′[m,n+m−1] in a same way as in that proof. Again, v1 = x′[m,n+m−1]
and Q1 = {q}. The old inductive assumption

(vk ∈ F(x′)) ∧ (|Qk| = k) ∧ (∀q ∈ Qk : w ∈ F(q ∗́ vk)). (4.1)

will be completed with the estimation on the length of the factor vk. It is clear
that |v1| = n. For larger k we will suppose that |vk| = T k−1(n).

Let us change the inductive construction in the alternative (b). All occur-
rences of vk belong to one of two groups:

• Occurrences x′[i, j] of the first kind, where y′[i, j] has an occurrence of w.

• Occurrences of the second kind, where y′[i, j] does not contain w.

As the word y′ is recurrent, assuming the specific way of output of the machine
V0, we have that there are the infinite number of both. So there exists such an
occurrence of vk in x′[i, j], that is of the second kind, but the next one is of the
first kind. The former belongs to the section x′ [i+ 1, i+Kx(|vk|)].
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As in the previous proof, the transform of x′[i, j] starts in the state q /∈ Qk.
Let us take vk+1 = x′ [i, i+Kx(|vk|)] and Qk+1 = Qk ∪ {q}. It remains to proof
estimation of the length, but

|vk+1| = Kx(|vk|) + 1 = T (T k−1(n)) = T k(n).

Inductive construction is over. For some l ≤ |Q| alternative (a) holds. In
any section of y′ of the length Kx(|vl|) there will be an occurrence of w. And

Kx(|vl|) = T (T l−1(n))− 1 ≤ T |Q|(n)− 1.

As it follows from the lemma 4.4, this estimation holds also for the source word
y. �

Let us take the periodic word x = (a1a2 . . . al)ω with the period l, where all
ai are pairwise distinct. As easy to see, Kx(n) = n+ l−1. Using Mealy machine
with q states, it is possible to convert it to the periodic word with ql distinct
symbols in period. Hence ∀n : Ky(n) = T q(n)− 1.

So in a general case the inequality of the theorem 4.6 is tight. The only
problem is that periodic words seems too simple, and the question could be
interesting for words with faster growing recurrence functions. The complete
and exact answer to this question seems technically difficult. We will describe
(without a proof) an example for Mealy machine with three states. Consider
such three morphisms

ψ :
{

0 7→ 100000
1 7→ 1000

χ :
{

0 7→ αθθθ
1 7→ αθθθθ

ϕ :
{
α 7→ 2000110
θ 7→ 2110001

and the word x = ϕχψω(1). With the Mealy machine on the figure 1 (the initial
state is marked with black and the output is universal, i.e. for a state q and
an input symbol a it outputs a pair (q, a)), which transforms x to y, we have
Ky(1) = T 3(1)− 1 = 217.

Figure 1: Mealy machine
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5 Bounded Bi-ideals

Definition 5.1 Let {ui}i∈N be a sequence of words from A∗, and u0 6= ε. Con-
sider a recurrent sequence

v0 = u0, vi+1 = viui+1vi.

The word lim
i→∞

vi is called a bi-ideal.

It can be proved that a word is bi-ideal in that and only in that case, when
it is recurrent. So bi-ideals form machine invariant class. In the previous section
we have considered one possible narrowing of this class. Now we will consider
another one.

Definition 5.2 Let x be a bi-ideal word for a sequence {ui}i∈N. If all ui lengths
are not larger than l, we say the word x is bounded (with a constant l) bi-ideal.

As an example one can consider a word s with ui = i mod 4. This word begins
with

010201030102010001020103010201010102010301020100010201030102010

Using a Mealy machine this word can be translated into a word r with

ri =

(
si, (

i−1∑
k=0

si) mod 4

)
.

Theorem 5.3 The word r cannot be expressed in the form uw, where w is a
bounded bi-ideal.

So the class of all ultimately bounded bi-ideals is not machine invariant.

Proof We will divide the proof into following parts.

1. Let v be a prefix of any bounded with a constant l bi-ideal z. We will
consider a position SO(v) where the second occurrence of v in z begins.
The following estimation holds

SO(v) ≤ 2 · (|v|+ l).

Indeed let i be such that (in notations from definition) |vi| < |v| ≤ |vi+1|.
The word z begins with viui+1viui+2viui+1vi. Hence the desired inequality
is obvious.

So for any bounded bi-ideal

lim sup
|v|→∞

SO(v)
|v|

≤ 2. (5.1)
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2. Now we will concentrate our attention on s.

For a prefix vi+1 = vi−1uivi−1ui+1vi−1uivi−1:

• symbols ui and ui+1 will be called central symbols,

• we will say a suffix w to be a large suffix of vi+1 if |w| > |vi|.

The following two assertions can be proved:

3. The word vi is a prefix of s. If a 6= ui then vi has only two occurrences in
ξ = viavi.

This can be proved by the induction on i. For i = 0 it can be checked
directly.

Let us assume that for vi the assertion is proved and prove it for vi+1. At
first

vi+1avi+1 = vibviavibvi (5.2)

with b = ui+1. It is obvious that for any occurrence of vi+1 in ξ either a
prefix vi of vi+1 is a factor of a prefix vibvi of ξ or a suffix vi of vi+1 is a
factor of a suffix vibvi of ξ.

Using inductive assumption one can see that there are only 3 possible
occurrences of vi+1 in ξ. First one is the leftmost, another one is the
rightmost and one is exactly in the middle. But the last one does not suite
because a 6= b.

4. If w is a large suffix of vi+1 and a is one of 2 no-central symbols of vi+1

then w has only two occurrences in vi+1avi+1.

As in the previous point (5.2) holds. The suffix vi of w can have an
occurrence only in a subword viavi or in a subword vibvi (the last one is
presented in two copies). Using the previous point one can see that vi can
have only 4 occurrences in vi+1avi+1. As a 6= b it can be easy seen that
only two of them are suitable for the occurrence of w.

5. Consider a beginning of a word s with i ≡ 0 (mod 4):

vi1vi 2 vi1vi 3 vi1vi.

Symbols 2 and 3 are not central symbols of vi+1 = vi1vi. Using the
assertion from the point 4 any large suffix of vi+1 have only 3 occurrences
in this beginning fragment. But

Σ(vi1vi2), Σ(vi1vi2vi1vi3)

are both odd numbers (here Σ means the sum of all symbols in the word).
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6. Now we can prove that the word r is not a ultimately bounded bi-ideal.
Let us assume that r = xy and y is a bounded bi-ideal. We can take such
a big prefix vi that 2|x|+ 2 < |vi| and i ≡ 0 (mod 4), and let w to be such
a large suffix of vi that |x|+ |w| = |vi|.
On the same position as w stands in s a subword stands in r. We will call
it w′. It is the prefix of y. Considering the said in the previous point one
can see that SO(w′) ≥ 3|w′|. As we can take as large w′ as we like it is in
a contradiction with (5.1).

�

6 One-sided Symbolic Dynamics

Let us remind that a system 〈X, d〉 where d : X×X → R is called a metric space,
if four axioms holds: d(x, y) ≥ 0, (d(x, y) = 0)⇔ (x = y), d(x, y) = d(y, x) and
d(x, z) ≤ d(x, y) + d(y, z). A subset A of X is an open subset, iff with any
element x it contains also Uε(x) = {y ∈ X|d(x, y) < ε} for some ε > 0. A subset
A is closed, iff X \A is open.

We will say that the set A is closed under the operation f , if f(A) ⊂ A.
It is possible to define a metric d on the set Aω putting

d(x, y) =
{

2−min{k≥0|x[k] 6=y[k]}, if x 6= y;
0 , if x = y .

The subspace T ⊂ Aω is closed, if and only if for any sequence xii∈N such that
∀i : xi ∈ T , its limit y = limi→∞ belongs to T (in the case it exists). The space
〈Aω, d〉 is compact. It is so called Koning’s Lemma.

We will consider also the function σ, called shift function, σ : x 7→ y, where
y[i] = x[i+ 1].

Definition 6.1 A subset of 〈Aω, d〉 both closed in the metric space and under
the operation σ is called a subshift or symbolic dynamical system.

Brief introduction to symbolic dynamical systems can be found in [14]. We
will count some main properties of the subshifts

1. A set S is a subshift, if and only if it can be expressed in a form

S = SX = {y ∈ Aω|F(y) ∩X = ∅} = {y ∈ Aω|F(y) ⊂ A+ \X}.

for some X ⊂ A∗.

2. An image and a full preimage of a subshift S with a literal morphism is a
subshift.

3. An intersection
⋂

S∈T S of a set of subshifts and a union
⋃

S∈T S of a finite
set of subshifts T are subshifts.
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Further with S(x) we will denote the smallest subshift containing a word x.
It is easy to prove that S(x) = SA∗\F(x). Moreover, it can be shown that any
non-empty subshift contains a minimal subshift.

The following result is one of the earliest in the symbolic dynamics.

Theorem 6.2 The word x is uniformly recurrent, if and only if the subshift
S(x) is minimal (for any subshift T ⊂ S: T = S or T = ∅).

It is also important that any non-empty subshift contains a minimal one –
assume it is T . Then, as easy to see, ∀x ∈ T : T = S(x), so all words from T
are uniformly recurrent!

It is possible to use this result in our investigation. Up to the end of this
paragraph we will assume that all machines are with universal output q∗a = (q, a)
and B = Q×A. So we will omit the last describing Mealy machines.

Theorem 6.3 For an uniformly recurrent word x ∈ Aω and Mealy machine
〈Q,A, q0, ◦, ∗〉 there exists such a state q ∈ Q, that q ∗x ∈ (Q×A)ω is uniformly
recurrent and F(q ∗ x) ⊂ F(q0 ∗ x).

Proof At first, consider a set W = {q ∗ y|(q ∈ Q) ∧ (y ∈ S(x)}. It is easy to
see that it is a subshift. Let us select a subshift S(q0 ∗ x) ⊂ W . It contains a
minimal subshift V ⊂ S(q0 ∗ x). Consider a literal morphism h : (q, a) 7→ a. So
an image h(V ) is a non-empty subshift and h(V ) ⊂ S(x). Hence h(V ) = S(x)
and ∃y ∈ V : x = h(y), or, in other words, ∃q ∈ Q : q ∗ x = y. The only left, is
to notice that V = S(y) is a minimal subshift, so y is uniformly recurrent and
y ∈ S(q0 ∗ x), hence F(y) ⊂ F(q0 ∗ x). �

The result about u-u words (theorem 4.5) follows from this theorem and
from the next one

Theorem 6.4 If a set C ⊂ N is closed under operation σ and literal morphisms
and for any Mealy machine V = 〈Q,A, q0, ◦, ∗〉 and x ∈ C ∩Aω holds

∃q ∈ Q : (q ∗ x ∈ C) ∧ (F(q ∗ x) ⊂ F(q0 ∗ x))

then there exists such u ∈ (Q×A)∗ and w ∈ C that q0 ∗ x = uw.

We assumed here that there exists a bijection k : Q×A→ {0, 1, . . . , |Q×A|−1}
and in fact k(q ∗ x), k(w) ∈ C.

Proof Let us invent an equivalence relation ∼ on the set Q defined with

(q ∼ r)⇔ (∃n ∈ N : q ◦ x[0, n] = r ◦ x[0, n]).

Let A1, . . . Ak be equivalence classes of this relation, and ai be an arbitrary
element from Ai.
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We will construct a Mealy machine Vk = 〈Qk, A, q, •, �〉 where

Qk = {(q1, . . . qk) ∈ Qk|∀i 6= j : qi 6= qj} ∪ {Ω}

.

(q1, . . . qk) • a =
{

(q1 ◦ a, . . . qk ◦ a) , ∀i 6= j : qi ◦ a 6= qj ◦ a
Ω , otherwise

.

and Ω • a = Ω for all a. We will take the initial state q equal with (a1, . . . , ak).
Finally, as usual q � a = (q, a).

As ai are from distinct equivalence classes, q � x does not contain a factor
of a form (Ω, a). So, using our assumption, we can state that there is such
r ∈ Qk that r � x ∈ C and it does not contain a factor of a form (Ω, a). Hence
r = (r1, . . . , rk) and all ri are from different equivalence classes. Let us take one
(assume it is r1) that r1 ∼ q0.

Using a literal morphism ((q1, . . . , qk), a) 7→ (q1, a) we can state that r1 ∗x ∈
C. But ∃n : (q0∗x)[n,∞] = (r1∗x)[n,∞] and the last suffix of r1∗x also belongs
to C, due it is closed under σ. �

7 Future Work

At the present moment, besides exploring some other machine invariant classes,
there are some questions that seems interesting. At first, whether the inequality
from the theorem 4.6 is tight in the general case? Also, is it possible to estimate
the non-recurrent prefix in the image of ultimately recurrent word with a Mealy
machine?

Another interesting problem is to generalize the usage of symbolical dynamics
in the proof of the theorem 6.3 to another classes of words.
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monöıdes finiment engendrés. C. R. Acad. Sc. Paris, Sér. A, 262, 1149–1151.

[7] J. Dassow. (1981) Completeness Problems in the Structural Theory of Automata.
Mathematical Research (Band 7), Akademie–Verlag, Berlin.

[8] B. A. Davey, H. A. Priestley. (2002) Introduction to Lattices and Order. Cambridge
University Press.

[9] J. A. Goguen. (1967) L-fuzzy sets. J. Math. Anal. Appl., vol. 8, 145–174.

[10] J. Hartmanis, R. E. Stearns. (1966) Algebraic Structure Theory of Sequential Ma-
chines. Prentice–Hall, Inc., Englewood Cliffs, New Jersey.

[11] N. Jacobson. (1964) Structure of Rings. American Mathematical Society, Provi-
dence, RI.

[12] Lindenmayer. (1968) Mathematical Models for Cellular Interactions in Develop-
ment (two parts), J. Theor. Biol. 18, 280–315.

[13] M. Lothaire. (1983) Combinatorics on Words. Encyclopedia of Mathematics and
its Applications, Vol. 17, Addison–Wesley, Reading, Massachusetts.

[14] M. Lothaire. (2002) Algebraic Combinatorics on Words. Encyclopedia of Mathe-
matics and its Applications, Vol 90, Cambridge University Press, Cambridge.

[15] Aldo de Luca, Stefano Varricchio. (1999) Finiteness and Regularity in Semigroups
and Formal Languages. Springer–Verlag, Berlin, Heidelberg.

[16] R. McNaughton. (1966) Testing and Generating Infinite Sequences by a Finite
Automaton. Inform. and Control 9, 521–530.

[17] G. H. Mealy. (1955) A Method for Synthesizing Sequential Circuits. Bell System
Tech. J. vol 34, September, 1045–1079.

[18] B. I. Plotkin, I. Ja. Greenglaz, A. A. Gvaramija (1992) Algebraic Structures in
Automata and Databases Theory. World Scientific, Singapore, New Jersey, London,
Hong Kong.

[19] S. Seshu. (1959) Mathematical Models for Sequential Machines. IRE Mat. Convent,
Rec. 7, N 2, 4–16.

[20] I. Simon. (1988) Infinite Words and a Theorem of Hindman. Rev. Mat. Apl. 9,
97–104.

[21] A. I. Zimin. (1982) Blokiru�wie mno�estva termov. [ Blocking Sets of Terms. ]
Matem. sb., t.119, } 3, s. 363–375. (Russian)



162 Words 2005

[22] V. B. Kudr�vcev, S. V. Alexin, A. S. Podkolzin. (1985) Vvedenie v teori� av-
tomatov. [ An Introduction to the Theory of Automata. ] Moskva «Nauka». (Rus-
sian)

[23] A. A. Kurmit. (1982) Posledovatel~na� dekompozici� koneqnyh avtomatov.
[ Sequential Decomposition of Finite Automata. ] Riga «Zinatne». (Russian)

[24] B. A. Trahtenbrot, �. M. Barzdin~. (1970) Koneqnye avtomaty (povedenie i
sintez). [ Finite Automata (Behaviour and Synthesis). ] Moskva «Nauka». (Rus-
sian)



Density of Symbols in Discretized Rotation

Configurations.∗

Valérie Berthé†, Bertrand Nouvel ‡

Abstract

The aim of this paper is to study local configurations for discrete ro-
tations. The algorithm of discrete rotation we consider is the following: a
discretized rotation is defined as the composition of a Euclidean rotation
with a rounding operation, as studied in [NR05] and [NR04]. It is possible
to encode all the information concerning a discrete rotation as two multi-
dimensional words Cα and C ′

α that we call configurations. We introduce
here two discrete dynamical systems defined by a Z2-action on the two-
dimensional torus that allow us via a suitable symbolic coding to describe
the configurations Cα and C ′

α and to deduce the densities of occurrence of
the symbols in the configurations.

1 Introduction

Symbolic dynamics and more generally, discrete dynamical systems have natural
and deep interactions with combinatorics on words. This interaction is partic-
ularly well-illustrated in the Sturmian case, see e.g. [Lot02,Fog02]. The combi-
natorial objects involved are the Sturmian words, while the dynamical systems
are the irrational rotations of the torus T1 = R/Z. A Sturmian word is indeed a
coding with respect to a particular two-interval partition of the one-dimensional
torus T1 of the orbit of a point under the action of an irrational rotation. This
point of view allows one to deduce many combinatorial properties of Sturmian
words, such as for instance the densities of occurrences of factors that can be
computed thanks to the equidistribution properties of irrational rotations.

Several attempts of generalization of this fruitful interaction have been pro-
posed. One of the first idea which comes to mind is a rotation of T2. As
an example, the Tribonacci word, that is, the fixed point of the substitution
1 7→ 12, 2 7→ 13, 3 7→ 1 codes the orbit of a point of the torus T2 under the
action of a translation in T2 with respect to a partition of T2 into three pieces
with fractal boundary [Rau82,Lot05].

A second approach, which is dual to the previous one, consists in working
with two rotations of T1. It is indeed convenient to describe discrete planes
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‡LIP (UMR 5668), ENS Lyon, 49, Allée d’Italie, 69364 Lyon Cedex 7 (France),

bertrand.nouvel@ens-lyon.fr

163



164 Words 2005

by use of the coding with respect to a three-interval partition of a Z2-action
by two irrational rotations on T1. One thus gets two-dimensional words over a
three-letter alphabet that can be considered as two-dimensional Sturmian words
[BV00].

We consider here a further generalization. Indeed, we study configurations
associated with a discrete rotation, defined as the composition of a Euclidean
rotation with a rounding operation. It is possible to encode all the information
concerning a discrete rotation as two multidimensional words Cα and C ′

α that
we call configurations. The main purpose of the present paper is to prove that
both configurations are codings of a Z2-action by two rotations on T2 with
respect to a partition into a finite number of rectangles. We then deduce results
concerning the density of each symbol in Cα and C ′

α. As a motivation for this
study, let note that we plan to use these results in a next future for an algorithm
of randomization of discrete rotations.

2 Conventions

We work in the discrete plane Z2. For each point v, xv denotes its horizontal
coordinate and yv its vertical coordinate.

Let x be a real number. We recall that the floor function x 7→ bxc is defined
as the greatest integer less or equal to x. The rounding function is defined as
[x] := bx + 0.5c and {x} := x − [x]. These applications can be extended to
vectors, by independent application on each component of the vector.

The discretization cell of the point v ∈ Z2 is defined as the set of elements w
in R2 which have the same image by discretization as v, i.e., [v] = [w]. Hence
the discretization cell of v is defined as the half-opened unit square centered in
[v].

We use the canonical bijection between the torus T2 = (R/Z)2 and the
square {v ∈ R2;xv ∈ [−1

2 ,
1
2 [ and yv ∈ [−1

2 ,
1
2 [}, i.e., the discretization cell of

0. By abuse of notation, we also denote by {v} the image under the canonical
projection from R2 onto T2 of a point v ∈ R2. Hence let us stress the fact that
the map x 7→ {x} is an additive morphism from R2 onto T2.

Without loss of generality, we assume throughout this paper that α ∈ [0, π/4]:
the arguments used here can be easily extended to the case of any other octant.
We denote by rα the Euclidean rotation of angle α:

rα : R2 → R2, v 7→
[

cos(α) − sin(α)
sin(α) cos(α)

]
v.

The discrete rotation [rα] is defined as

[rα] : Z2 → Z2, v 7→ [rα(v)].

By {rα} we mean the map {rα} : Z2 → T2, v 7→ {rα(v)}.
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We denote by (i, j) the canonical basis of the Euclidean space R2. We simi-
larly use the notation iα := rα(i) and jα := rα(j).

Let Q be a finite set called alphabet. A two-dimensional word in QZ2
is called

a configuration over Q. An application from {0, 1, · · · , n−1}×{0, 1, · · · ,m−1}
to Q is called a pattern of size [m,n]. Let C be a configuration in QZ2

. A
pattern χ of size [m,n] occurs at position p in C if C(p + v) = χ(v), for all
v with xv, yv ∈ {0, 1, · · · , n − 1}×{0, 1, · · · ,m − 1}. We define C [m,n] as the
configuration with values in the finite alphabet consisting of the patterns of size
[m,n] over Q, that is defined as the application that returns the pattern of size
[m,n] that occurs at the specified position in the configuration.

The density of the symbol p ∈ Q in the configuration C ∈ QZ2
is defined as

the following limit (if it exists):

ηC(p) = lim
n→∞

#{v ∈ Z2, xv, yv ∈ {−n, · · · , n} and C(v) = p}
(2n+ 1)2

.

A dynamical system (X,T ) is defined as the action of a continuous and onto
map T on a compact space X. Given two continuous and onto maps T1 and T2

acting on X and satisfying T1 ◦ T2 = T2 ◦ T1, the Z2-action by T1 and T2 on X,
that we denote (X,T1, T2), is defined by

∀(m,n) ∈ Z2, ∀x ∈ X, (m,n) · x = Tm
1 ◦ Tn

2 (x).

It is natural to associate a two-dimensional symbolic dynamical system to the
triple (X,T1, T2) by coding the orbits of the points of X under the Z2-action as
follows: given x0 ∈ X and given a labelling function l defined on X with values
in a finite set Q that takes constant values on the atoms of a finite partition of
X, the configuration C defined by

∀(m,n) ∈ Z2, C(m,n) = l(Tm
1 ◦ Tn

2 (x0))

is called the coding of the orbit of x0 under the Z2-action (X,T1, T2) with respect
to the labelling function l.

3 Dynamical System Associated to Cα

According to [NR05], we associate a first configuration Cα to the discrete rota-
tion [rα] that encodes all the information concerning the discrete rotation (there
exists indeed a planar transducer that uses the configuration Cα as input and
gradually computes the action of the discrete rotation). For a given v ∈ Z2, let
V4 denote the set of 4-neighbours of v, that is, V4 = {v + i, v + j, v− i, v− j}.
The configuration Cα maps each point v of Z2 to the set [rα](V4)− [rα][v], that
is,

Cα(v) := {a0,a1,a2,a3} with (ak = [rα(v+rk
π/2(i))]− [rα(v)] for k = 0, · · · , 3).
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Figure 1: A progressive construction of the configuration Cα: we represent the set of
vectors that leads to the relative position of the 4-neighbors of v after the action of the
discrete rotation.

Let us note that Cα contains 3 or 4 non-zero elements, according to [NR03].
Let Qα denote the finite set of values taken by Cα.

We define a frame of the torus T2 ≡ [−1
2 ,

1
2 [ × [−1

2 ,
1
2 [ as a rectangle of the

form [a, b[×[c, d[, with −1
2 ≤ a ≤ b <

1
2 and −1

2 ≤ c ≤ b <
1
2 . The interpretation

of Cα as a coding a Z2-action is based on the following result:

Theorem 3.1 ( [NR05]) There exists a partition Pα of the torus T2 into a
finite number of frames such that for each p ∈ Qα, there exists a frame Ip such
that for all v ∈ Z2, then Cα(v) = p if and only if {rα(v)} ∈ Ip.

Consider the following two actions Tiα : T2 → T2, x 7→ x+ {iα}, Tjα : T2 →
T2, x 7→ x + {jα}. One has for every v ∈ ZZ2, {rα(v)} = T xv

iα
◦ T yv

iα
(0). Let

us define lCα as the labelling function associated to the partition Pα defined by
lCα : T2 → Qα, v 7→ φc(fCα(vx), fCα(vy)) with fCα defined as follows:

if α ∈ [0, π/6]:

[− 1
2 ,

1
2 − cos(α)[ 7→ 0

[ 12 − cos(α), sin(α)− 1
2 [ 7→ 1

[sin(α)− 1
2 ,

1
2 − sin(α)[ 7→ 2

[ 12 − sin(α), cos(α)− 1
2 [ 7→ 3

[cos(α)− 1
2 ,

1
2 [ 7→ 4

if α ∈ [π/6, π/4]:

[− 1
2 ,

1
2 − cos(α)[ 7→ 0

[ 12 − cos(α), 1
2 − sin(α)[ 7→ 1

[ 12 − sin(α), sin(α)− 1
2 [ 7→ 5

[sin(α)− 1
2 , cos(α)− 1

2 [ 7→ 3
[cos(α)− 1

2 ,
1
2 [ 7→ 4

where φc is described in Figure 2. The values taken by Cα, that is, the
elements of Qα are represented in Figure 2 as sets of vectors.

Theorem 3.1 can then be reformulated as follows: Cα is the coding of the
orbit of 0 under the Z2-action (T2, Tiα , Tiα) with respect to the labelling function
lCα .
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(0, 0) 7→
(0, 1) 7→
(0, 2) 7→
(0, 3) 7→
(0, 4) 7→
(0, 5) 7→

(1, 0) 7→
(1, 1) 7→
(1, 2) 7→
(1, 3) 7→
(1, 4) 7→
(1, 5) 7→

(2, 0) 7→
(2, 1) 7→
(2, 2) 7→
(2, 3) 7→
(2, 4) 7→

(3, 0) 7→
(3, 1) 7→
(3, 2) 7→
(3, 3) 7→
(3, 4) 7→
(3, 5) 7→

(4, 0) 7→
(4, 1) 7→
(4, 2) 7→
(4, 3) 7→
(4, 4) 7→
(4, 5) 7→

(5, 0) 7→
(5, 1) 7→

(5, 3) 7→
(5, 4) 7→
(5, 5) 7→

Figure 2: Table describing the action of φc. The symbols represent the all the vectors
of the set.

4 Distribution of Symbols in Cα

We can now deduce from the Z2-action introduced in Section 3 results concerning
the densities of symbols in Cα by using classical tools from symbolic dynamics
and ergodic theory.

Let Gα ⊆ T2 denote the orbit of 0 under the Z2-action (T2, Tiα , Tiα) with
respect to the labelling function lCα : this very orbit is the orbit coded by the
configuration Cα. In other words, Gα is the image by the canonical projection
x 7→ {x} onto T2 of the lattice Lα := Ziα + Zjα; Gα has a group structure, and
is invariant by rotation by π/2.

Let us recall that an angle α is said Pythagorean if cosα and sinα are both
rational. Let us distinguish two cases according to the fact that α is Pythagorean
or not, that is, according to the density of Gα in T2.

The Dense Case

Lemma 4.1 We assume that α is not Pythagorean. For every symbol p ∈ Qα,
its density ηCα(p) exists and is equal to the area of the frame Ip defined in
Theorem 3.1.

Proof (Sketch) If either cos(α) or sin(α) is irrational, then one cannot have
simultaneously p cos(α) + q sin(α) ∈ Z and −p sin(α) + q cos(α) ∈ Z, for any
(p, q) ∈ Z2. Hence one concludes by using a classical argument on Weyl sums.

�

The Pythagorean Case

If α is a Pythagorean angle then Gα is not dense in the torus T2: indeed,
Gα is a finite cyclic group. It has order c where (a, b, c) ∈ N3 is the prime
Pythagorean triple satisfying 1 ≤ b ≤ a ≤ c, a2 + b2 = c2, gcd(a, b, c) = 1 and
c exp(iα) = a+ ib that generates the angle α. More information on Pythagorean
angles can be found in [NR04].
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Lemma 4.2 Let α ∈ [0, ...π/4[ be a Pythagorean angle. Let c denote the order
of the cyclic group Gα. The density ηCα(p) of the symbol p in Cα satisfies

∀p ∈ Qα, ηCα(p) =
Card (G′

α ∩ Ip)
c

.

Proof (Sketch) By definition,

ηCα(p) = lim
n→∞

({rα}({−n, · · · , n}2) ∩ Ip)/(2n+ 1)2.

One first checks that

ηCα(p) = lim
n→∞

({rα}({−cbn/cc, ..., cbn/cc}2) ∩ Ip)/(2n+ 1)2).

But as Gα is cyclic and of order c, then

ηCα(p) =
{rα}({0, ..., c− 1}2) ∩ Ip

c2
=

Card (G′
α ∩ Ip)
c

.

�

5 Distribution of Symbols in C ′α

Let us define now C ′
α:

∀v ∈ Z2, C ′
α(v) :=

⋃
w such that [rα(w)]=v

Cα(w).

Let Q′
α denote the set of values taken by C ′

α. We want to state a result analogous
to Theorem 3.1 in order, first, to interpret the configuration C ′

α as a coding of a
symbolic dynamical system, and second, to compute the densities of the symbols
in C ′

α. Let us note that Corollary 1 in [NR05] does not directly yield a dynamical
interpretation of C ′

α.
Our strategy in order to describe C ′

α as a coding of a Z2-action is the fol-
lowing. We first create a “block configuration” by working with patterns of
size [2, 2] that occur in C ′

α. We then introduce a particular domain of R2 that
is a fundamental domain for the lattice Ziα + Zjα, such that if we know the
projection of a point p ∈ Ziα + Zjα in that domain, then we can recover the
symbols that appear in the block configuration; therefore we find out what are
the symbols that appear in C ′

α. We thus deduce a symbolic dynamical system
for the block configuration. Finally, we use this dynamical system, in order to
get the density of the symbols both in the block configuration and in C ′

α.
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5.1 Dynamical System for C ′
Bα

Let C ′
Bα

(v) be defined as the following 2× 2-block configuration:

∀v ∈ Z2, C ′
Bα

(v) = C ′[2,2]
α (2v).

Since C ′
Bα

(v) is an application that returns patterns of size [2, 2], then C ′
α(v) =(

C ′
Bα

(bxv/2c, byv/2c)
)

(vx mod 2,vy mod 2). For any v ∈ Z2, one sets

FB(v) = [xv −
1
2
, xv +

3
2

[×[yv −
1
2
, yv +

3
2

[.

The introduction of this block configuration is natural, since the intersection
between FB(v) and rα(Z2) = Ziα + Zjα is nonempty for every v ∈ Z2; this is a
direct consequence of the fact that two holes (a hole is an element v ∈ Z2 that
has no antecedent by [rα]) can never be adjacent (see [NR04]). An example of
a hole is depicted in Figure 4 below. Let

FDα :=
(

[−1
2
, cosα− 1

2
[
)2

∪
(

[cosα− 1
2
, cosα+ sinα− 1

2
[×[−1

2
, sinα− 1

2
[
)
.

The set FDα is a fundamental domain for the lattice Lα = Ziα + Zjα (see
Figure 3). Hence for any v ∈ Z2, there exists a unique w ∈ Z2 such that
rα(w) ∈ v + FDα . Therefore for all v ∈ Z2, we first define

θ′ : Z2 → Lα, v 7→ rα(w),

where w is the unique point such that rα(w) ∈ v + FDα , and then

θ : Z2 → FDα , v 7→ θ′(v)− v.

Figure 3: An exchange of pieces between FDα and the canonical representation of
R2/Lα. This exchange of pieces only requires translations of the form kiα + k′jα, with
k, k′ ∈ Z.

Theorem 5.1 There exists a partition of FDα into a finite number of frames
Jp′, for p′ pattern of size [2, 2] that occurs in C ′

α, such that for all v ∈ Z2,
θ(2v) ∈ Jp′ if and only if C ′

Bα
(v) = p′.
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Figure 4: From a point p0 = θ′(2v) ∈ Ziα + Zjα that falls into the domain FDα
(2v)

(in dark gray), we can recover all the symbols of C ′
α that contribute to the block of size

[2, 2] whose associated domain is FB(2v) in light gray.

Proof (Sketch) The proof is based on the following idea: from the location of
θ(2v) in FDα , it is possible to deduce the value of C ′

Bα
(v). We notice that, for

all the points w of Z2 that have their image by rα in FB(2v) we can compute
Cα(w). Indeed we show that if xθ(2v) <

1
2 , [θ(2v)] = 0, else [θ(2v)] = 1; we thus

deduce Cα(w) from {θ′(2v)}, according to Theorem 3.1. The same argument
applies for all the points w′ = rα(w) of Ziα + Zjα that are inside FB(2v); note
that w′ = θ(2v) + kiα + k′jα, with k, k′ ∈ Z. We thus similarly localize the
position in (2v+{0, 1}2) of all the images of points in Ziα + Zjα∩FB(2v). This
is sufficient to conclude that we can infer the pattern C ′

B(v) from θ(2v). �

Let lC′
Bα

be the labeling function given by the partition of Theorem 5.1 that
associates to a frame in FDα the corresponding pattern of size [2, 2].

From Theorem 5.1, we deduce that

∀v ∈ Z2, C ′
Bα

(v) = lC′
Bα

(θ(2v))

Now, let T2
α = R2/(Ziα + Zjα); we denote as v 7→ {v}α the canonical

projection on T2
α, that is in one-to-correspondence with FDα . One has

∀v ∈ Z2, θ(v) ≡ −{v}α modulo Lα.

Finally, the configuration C ′
Bα

is a coding of the orbit 0 under the Z2-action
(T2

α,v 7→ v + {i}α,v 7→ v + {j}α) with respect to the labelling function lC′
Bα

.

5.2 Application

We assume that α is not a Pythagorean angle. Similarly as in the study of Cα,
the orbit of 0 under the Z2-action is dense and uniformly distributed in T2

α. We
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thus deduce that

∀p ∈ Q′
α, ηC′

α
(p) =

∑
p′∈Q

[2,2]
α

n(p′, p)µ(fp′),

where Q[2,2]
α is the set of patterns of size [2, 2] that occur in C ′

α, n(p′, p) is the
function that returns the number of occurrences of p in the pattern p′ of size [2, 2],
and µ(Jp′) denotes the area of frame Jp′ associated to the symbol p′ according
to Theorem 5.1.

However practically, the computations for these symbolic maps are quite
tedious. For each symbol p, there exist 40 patterns p′ of size [2, 2] to compute.
This leads to approximatively 360 inequations... and there are approximatively
25 symbols p to consider! See [BN05] for a program that handles these symbolical
expressions. The results describing the densities of the symbols in C ′

α have been
summarized in Figure 6.

Let us note that in the Pythagorean case, the theory is also similar to the

Figure 5: A partition of the domain FDα
, for α ≈ 0.464705 rad. This partition gives

according to the position of θ(2v) inside that domain the pattern of size [2, 2] that
appears in C ′

Bα
(v). On the axis the positions are labeled by expressions of the form

kc+k′s+k′′, meaning that the corresponding line is located at k cos(α)+k′ sin(α)+k′′− 1
2

in FDα
. For readability reasons, the scale is monotone but not linear.
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one developed for Cα.

5.2.1 Remark

Let us observe that all the results we have given here for symbols are extendable
without major difficulty to patterns of a given size [m,n]. Actually, a frame is
associated to each pattern, and the same theory can be used.

Figure 6: Table describing ηC′
α

(p) for each symbol p that appears in C ′
α, with respect

to the value of α.
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Complexity and palindromic complexity of

billiard words

Jean-Pierre Borel∗

Abstract

We present some recent results on palindromic factors and prefixes of
billiard words in a k-dimensional space, with k ≥ 3. The language of
these words is already known in the usual case. We give a geometrical
characterization of factors of billiard words, using some projection on a
(k − 1)-dimensional space. As a consequence, we get some results on the
complexity and palindromic complexity of these words, in the non-usual
case. For example, we get some billiard words on 3 letters without any
palindromic factor of even length, or billiard words on 4 letters whose
palindromic factors have a bounded length. All the results are obtained
by geometrical methods.

Keywords Languages, Billiard words, Complexity, Palindromic factors.

AMS classification 68R15.

1 k-dimensional billiard words

1.1 Billiard words starting at the origin

Let D be the half-line of origin O, in the k-dimensional space Rk, and parallel to
the positive vector (α1, α2, . . . , αk). Then we define the associated billiard word,
or cutting sequence, (starting from O) denoted by cα1,α2,...,αk

on the alphabet
A = {a1, a2, . . . , ak} as shown in Figure 1. In dimension 2, this can be made
using the three following methods:

1. encoding by a1 the black horizontal unitary segment and by a2 the black
vertical unitary segment (see Figure 1 (a)). Then a1cα1,α2 encodes the
discrete path immediately below the half-line, hence

cα1,α2 = a2a1a2a1a2a2a1a2a1 . . .

in Figure 1 (a). The infinite word a1cα1,α2 is the well-known Christoffel
word;

∗LACO, UMR CNRS 6090 - 123 avenue Albert Thomas, F-87060, LIMOGES CEDEX
(FRANCE), borel@unilim.fr, partially supported by Région Limousin

175
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Figure 1: (a) and (b)

2. moving from the origin to infinity, encode the sequence of intercepts be-
tween D and the grid, using a1 for a vertical line and a2 for an horizontal
one (black points on Figure 1 (a));

3. by looking at the sequence of the centers (white points) of the unit squares
crossed by D. Two consecutive centers correspond to joining squares, so
that the vector joining these two points is one of the two vectors of the
canonical basis (e1, e2). Then encode by aj the vector ej , j = 1, 2.

In higher dimension k ≥ 3, both methods 2 and 3 can be generalized. We
consider now the facets of the unit k-cubes crossed by D, instead of the sides of
the unit squares (see Figure 1 (b), with k = 3). In this figure, the crossing points
are the black points and the centers of units k-cubes are the white ones, as in
Figure 1 (a). In both cases, we encode the vectors ej (1 ≤ j ≤ k) of the canonical
basis by the letters aj , and a crossed facet by its orthogonal direction, and we
get the billiard word cα1,α2,α3 = a1a2a3a1a2a3 . . .. This works as long as the
half-line D crosses each facet in its interior (so we can define consecutive crossed
unit k-cubes), i.e., D does not contain any point with two integer coordinates,
except for O. This property corresponds to the following condition:

αi

αj
/∈ Q , i 6= j. (1.1)

This condition already holds in the usual case:

the αi are Q-linearly independent. (1.2)
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Then we say that (α1, α2, . . . , αk) is totally irrational. This strong hypothesis
has been made in the former works in this topic. Note that the two conditions
(1.1) and (1.2) are the same only in dimension 2.

1.2 Billiard words with intercept

The same construction can be made with the half-line D starting from any point
S and parallel to the positive vector (α1, α2, . . . , αk). For simplicity reasons, we
choose S in the subspace D⊥, and by periodicity we can assume that S is in the
orthogonal projection P of the unit k-cube centered at the origin, onto D⊥. As
before, we must assume that:

D does not contain any point with two integer coordinates. (1.3)

This condition depends on both S and (α1, α2, . . . , αk). This billiard word will
be denoted by cα1,α2,...,αk,S .

2 Already known results on factors of billiard words

Billiard words and Sturmian words have been intensively studied, see [1], [4] or [5]
for general exposures, and many results are known, concerning the language of
these words, i.e., the set of all finite factors. The well-known notion of Rauzy’s
diagram gives very nice results. With Hypothesis (1.2) of total irrationality, the
complexity function is known, [2], [3], and so for the palindromic complexity
function: the complexity function pu(n) (resp. palindromic complexity function
palu(n)) of an infinite word u is the number of distinct factors (resp. palindromic
factors) v of length n of u. It is also possible to look at the first occurence of
each palindromic factor, to characterize Sturmian words in dimension 2, [11].

3 Recent results on palindromic factors and prefixes

Theorem 3.1 With Hypothesis (1.2) of total irrationality, the billiard word
cα1,α2,...,αk

has:

• when n is even, a unique palindromic factor of length n. The center of
this palindromic factor is the unique pair of letters aa which belongs to the
language of cα1,α2,...,αk

;

• when n is odd, and for each letter a of the alphabet A, a unique palindromic
factor of length n in which the letter a is in central position.

This result implies that for two different palindromic factors of odd length of the
billiard word with the same central letter, the shortest one is a central factor of
the longest. The same result is true for two distinct palindromic factors of even
length.
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Theorem 3.2 With Hypothesis (1.2) of total irrationality,

• in dimension k = 2, the billiard words have infinitely many palindromic
prefixes; these factors are related to the continued fraction expansion of the
slope ρ of D;

• in dimension k ≥ 3, the set of vectors (α1, α2, . . . , αk) such that the bil-
liard word cα1,α2,...,αk

has infinitely many palindromic prefix factors is a
negligible set, in the sense of the Lebesgue measure on the k-dimensional
unit sphere. However, this set is dense on the positive part of this unit
sphere.

These results, in dimension 2, have been stated in some slightly different for-
mulations in [7], [8], [9], [10]. In higher dimension, it has been proved in [6].
The main problem is to synchronize the denominators of the convergents of the
continued fraction expansion of the ratios αi

αj
.

4 A geometrical characterization of factors of billiard
words

4.1 b-walks

We consider the (k − 1)-dimensional subspace D⊥ in Rk, and the orthogonal
projection P of the unit k-cube centered at the origin, onto D⊥. We denote
by bj , 1 ≤ j ≤ k, the orthogonal projections onto D⊥ of the vectors ej of the
canonical basis of Rk.

Definition 4.1 Let H be any point in P. A b-walk in P starting from H is a
finite sequence of points H0,H1,H2, . . . Hn in P, such that H0 = H, and such
that there exists, for any 1 ≤ i ≤ n, some j = j(i) such that ~Hi−1Hi = bj . The
integer n is called the length of the walk.

Such a walk is characterized by its starting point H and its coding word, i.e.,
the finite word of length n on A obtained by encoding each vector bj by the
letter aj .

In Figure 2, corresponding to k = 3, P is an hexagon, and the b-walk starting
from H and of length 11 is encoded by a3a1a3a3a2a1a3a3a1a3a2.

4.2 b-walks and factors of billiard words

Theorem 4.2

• Except for some points H, there exists a unique b-walk starting from H
with a given length n.

• A finite word on A is a factor of the billiard word cα1,α2,...,αk
only if it

encodes some b-walk. This condition is also sufficient with Hypothesis
(1.2).
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The set E of the exceptional points H in this theorem is the set of all points
H such that there exists a b-walk starting from H and ending on the boundary
of P. It is a negligible set, in the sense of the Lebesgue measure on Rk−1. Using
the Part 1. of the Theorem, for any H /∈ E , there exists a unique infinite b-walk
starting from H, which is the limit of the finite b-walks starting from H. It can
be proved that:

• with Hypothesis (1.1), C := O + 1
2(
∑k

j=1 bj) is not in E , and the billiard
word (starting at the origin) encodes the infinite b-walk starting from C;

• Hypothesis (1.3) exactly corresponds to S /∈ E . In this case, the cor-
responding billiard word encodes the infinite b-walk starting from H :=
O + ~SC.

In Figure 3, the two translated hexagons are the orthogonal projections PC

of the usual unit cube in R3 (all the three coordinates between 0 and 1), whose
center is C, and PS of the unit cube centered at the starting point S. The
projections of all the centers of the unit k-cubes crossed by the half-line D
starting from S are in PS .

Proposition 4.3 For any finite word u on A, the set Pu of the starting points
H of all the b-walks encoded by u is a convex polyhedron (except for the points
in E), whose diameter tends to 0 as the length |u| tends to infinity.

4.3 An application for palindromic factors

We consider now the closure H of the set of the orthogonal projections on D⊥ of
the centers of the k-cubes crossed by D. Hence H is a subset of P, and is equal
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Figure 3:

to P with Hypothesis (1.2) of total irrationality. More generally, we have:

Theorem 4.4

• The billiard word cα1,α2,...,αk,S contains arbitrarily long palindromic factors
of even length if and only if the origin is in H.

• The billiard word cα1,α2,...,αk,S contains arbitrarily long palindromic factors
of odd length and central letter aj if and only if 1

2bj is in H.

4.4 An example in dimension 3

As an example in dimension k = 3, consider the vector (2,
√

5, 1 +
√

5), which
satisfies (1.1), but not the Hypothesis (1.2) of total irrationality : α1 + 2α2 −
2α3 = 0. Then P is the following hexagon:

In Figure 4 are given four of the sets Pu, which are parallelograms in this case
(triangles or hexagons may also appear, for some other u), corresponding to some
palindromic factors u of length 2 and 7, which may appear in the corresponding
billiard words. We consider the billiard word starting at the origin. Then H
is the union of the four parallel thick segments. The factors u which appear in
this word, are those such that H intersects Pu in its interior. The set H does
not intersects Pa3a3 in its interior. Hence the word a3a3 is not a factor of the
billiard word. By this way, we obtain that the palindromic factors of length less
or equal to 7 of the billiard word are:

a1 ; a2 ; a3

a3a1a3 ; a3a2a3 ; a2a3a2
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a2a3a1a3a2 ; a1a3a2a3a1

a3a2a3a1a3a2a3.

In this case, we only have 1
2b1 ∈ H, hence there only exist arbitrarily long

palindromic factors with central letter a1. The factor a3a3 does not appear, so
that there exists no palindromic factor of even length. More precisely, we prove
in the general case:

Proposition 4.5

• In dimension 3, the billiard words starting from the origin always have
arbitrarily long palindromic factors. However, for almost all S, the billiard
word starting from S has a finite number of palindromic factors.

• In dimension k ≥ 4, the billiard word starting from the origin may have a
finite number of palindromic factrors.

4.5 Complexity of non-usual billiard words

With the usual Hypothesis (1.2) of total irrationality, the complexity and palin-
dromic complexity functions are already known. They depend only on the di-
mension k.

p2(n) = n+ 1

p3(n) = n2 + n+ 1

pk(n) =
min(k−1,n)∑

i=0

i!
(
k − 1
i

)(
n
i

)
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palk(n) =
{

1 if n is even
k if n is odd

These results come from the original works on Sturmian words in dimension k =
2, from [2] (dimension k = 3), and [3] (for any k); the palindromic complexity
can be considered as a classical unwritten result.

Consider now the non-usual case: Hypothesis (1.1) is true, but there exist
some linear relations over Q on the coefficients αj . Let r ≥ 1 be the maximal
number of such relations, linearly independent over Q. This means that the
linear space generated by the αj ’s over Q is of dimension k−r. Thus Hypothesis
(1.1) implies r ≤ k − 2.

Then we have:

Theorem 4.6 For each billiard word, the set H is the union of a finite number
of parallel (k − r − 1)-dimensional polyhedrons.

Corollary 4.7 Consider two billiard words cα1,α2,...,αk,S1 and cα1,α2,...,αk,S2 cor-
responding to a given positive vector (α1, α2, . . . , αk). Then:

• either these two words have the same language,

• or the intersection set of their languages is finite.

The second case is the most usual one.

The first case appears for some special values of the vector ~S1S2.

Corollary 4.8 (CONJECTURE) For each billiard word cα1,α2,...,αk,S, the
complexity function p(n)grows like nk−r−1, and is under some strong tech-
nical hypothesis a polynomial function of n whose degree is k − r − 1, for n
sufficiently large.

This result can be proved in some special cases, for example when k = 3 or
4, or when r = k − 2.

In dimension k = 3, the only possibility is r = 1, and the complexity function
is p(n) = cn+c+1 for sufficiently large n, with c = |c1|+ |c2|+ |c3|−d, where the
cj are the integer coefficients of the unique linear relation c1α1 +c2α2 +c3α3 = 0
over Z with coprime coefficients, and d = 2 or 1 depends on S. The set H is the
union of c+ 1 parallel segments. Two examples corresponding to billiard words
starting at the origin:

• in the case of Figure 4, d = 2 and c = 3, and the complexity functions are
given by:

n : 1 2 3 4 5 n ≥ 6
p(n) : 3 6 9 14 18 3n+ 4
pal(n) : 3 0 3 0 2 n mod 2

where n mod 2 is equal to 0 or 1.
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• when we have α1 +α2−α3 = 0, the complexity functions are p(n) = n+ 2
and pal(n) = 3(n mod 2) for any n ≥ 1.
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Efficient Word Recognition of Certain

Locally Defined Trace Languages∗

Luca Breveglieri, Stefano Crespi Reghizzi, Alessandra Savelli †

Abstract

We present a new cubic time algorithm for solving the word membership
problem of certain rational trace languages, namely those defined by local
automata whose state graphs are well-nested cycles. For this family our
result improves on the known algorithms for rational trace languages, which
have a polynomial time bound with a non-fixed exponent, determined by
the independence relation. This bound is exceedingly large for practical
application such as program parallelization, which motivated this research.

1 Introduction

This work is a first step in the direction of finding more efficient word recognition
algorithms for trace languages [3]. As our interest for trace languages comes
from their capacity to model dependence relations in computer programs, in
order to perform program optimization, we have narrowed our attention to trace
languages defined by finite automata of the local type. This because, for the
purpose of code parallelization, a program can be conveniently schematized by
a local machine such that each instruction is identified by a distinct letter of
the partially commutative alphabet. As program loops are the most rewarding
regions for parallelization by optimizing compilers, we have focused attention
on automata consisting of nested cycles, with the intention to consider more
general situations in the future.

The trace language associated to such local automaton represents all valid
permutations (i.e. schedules) of the possible runs of the program. Therefore
solving the membership problem is an essential step for further work on program
scheduling.

The membership problems for trace languages defined by rational (i.e. regu-
lar) and context-free languages have been studied in [6], [2] and [1], where they
are shown to be solvable in polynomial time. The combinatorial interest of the
problem is related to the number of prefixes in traces of given length.

In [5] the best algorithm based on the analysis of prefixes is described. Its
worst-case time complexity, although polynomial, is not of fixed degree, but it

∗Work partially supported by MIUR Project “Linguaggi formali” and by CNR-IEIIT.
†Politecnico di Milano, Dipartimento di Elettronica e Informazione, P.za L. da Vinci 32,

I-20133 Milano, {brevegli, crespi, savelli}@elet.polimi.it
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grows with the size of the cliques of the independence relation (the complement of
the dependence relation). A quick analysis of the independence relation of some
ordinary programs consisting of some hundredths machine instructions shows
that the exponent may be of the same order of magnitude, that is unacceptable
for any practical purpose.

By restricting the problem to local automata and by further limiting the
topology of the graph to nested cycles, we have been able to significantly reduce
the worst case time-performance. Now to test a string for validity is equivalent
to computing the number of iterations of the cycles of the automaton, and to
check whether iteration counts match. This strategy is very different from prefix
analysis of previous algorithms.

The paper proceeds as follows. In Sect. 2 we introduce the basic definitions.
In Sect. 3 we state and justify the conditions, based on the the occurrence of
factors and substrings, for a string to be in the trace language. In Sect. 4 the
recognition algorithm is presented, its correctness is argued by exploiting the
above-mentioned conditions, and its time complexity is analyzed.

2 Basic definitions

We list the basic definitions, mostly taken from [3]. Let Σ be an alphabet and I
be an arbitrary independence relation on Σ which is symmetric and irreflexive.
The complementary relation D of I, the dependence relation, is symmetric and
reflexive. If (a, b) ∈ D (or (a, b) ∈ I), we say that a and b are dependent (or
independent) and we write aDb (or aIb).

Let ∼I be the smallest congruence on Σ∗ such that ab ∼I ba for all pairs
of independent letters a, b. The trace monoid M(Σ, I) defined by 〈Σ, I〉 is the
quotient Σ∗/ ∼I . A trace [x] is an element of M(Σ, I) represented by the string
x, and a trace language T is a subset of M(Σ, I). For every L ⊆ Σ∗, the trace
language defined by L is [L] = {t ∈M(Σ, I) | t = [x] for some x ∈ L}.

In this work, we only consider trace languages defined by regular languages.
A local automaton A = (Σ, Q, δ, q0, F ) is such that for every q, q′ ∈ Q and

a, a′ ∈ Σ, δ(q, a) = δ(q′, a′) if and only if a = a′. Therefore all the arcs of A
labelled by the same letter enter the same state, which no other arc enters. For
simplicity, we will name the state with the label of incoming arcs.

A nested cycle language is a regular language defined as:

• A letter a ∈ Σ is a nested cycle language.

• If N1 and N2 are nested cycle languages, then the concatenation N1N2 is
a nested cycle language.

• If N is a nested cycle language, then (N)+ is a nested cycle language.1

• Nothing else is a nested cycle language.
1N+ is defined as NN∗.
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Figure 1: A nested cycle local automaton A.

Since + is idempotent we may assume that it is never applied twice consecutively.
A nested cycle automaton is an automaton recognizing a nested cycle lan-

guage. In this work we only consider nested cycle language which in addition are
accepted by local automata. An example of nested cycle and local automaton is
in Figure 1, where Σ = {a, b, c, d, e}, L(A) = a(b(cd+)+e+)+, and C0, C1, C2, C3

are labels given to cycles. Note that the final state is always unique.
From now on, A and L will always represent a nested cycle local automaton

and the language recognized by A respectively.
If we look at trace languages as a model of programs, the letters of Σ repre-

sent the instructions of the program and two independent letters represent the
independence between the instructions, that is, the possibility of commuting or
parallelizing their execution. A word of a trace language is then an acceptable
order of instructions execution of the program.

The locality of the automaton reflects the fact that the instructions of a
program can be considered to be all distinct (i.e. each is identified by its address).
By restricting the study to nested cycle automata, the corresponding programs
are nested repeat-until instructions, without conditional instructions.

Ordering of letters, nesting of cycles, and nested iteration tree
Consider the automaton A′ obtained from A by removing all back arcs (i.e.

erasing all + from the regular expression of L). We define a total ordering
relation on Σ: a precedes b (a < b) if there exists a path in A′ from a to b. In
Figure 1, a < b < c < d < e. Such relation is surely antisymmetric.

Since the cycles are well nested in A, we can define a partial order on them:
we write C ≺ C ′ if C is nested in C ′. If there is no cycle C ′′ such that C ≺ C ′′ ≺
C ′, we say that C ′ is immediately nested in C ′. In Figure 1, C3 ≺ C1 ≺ C0, and
C2 ≺ C0.

Let u be in L. The Nested Iteration Tree (NIT) of u is the tree of iterations
of the cycles traversed by the automaton A recognizing u. The transitive closure
of the NIT is denoted by NIT ∗.

For example, the NIT of u = abcdcddebcdee is represented in Figure 2. We
say that u iterates cycle C0 twice, and that C0(2) (i.e. the second iteration of
C0) iterates C1 once and C2 twice, etc..
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Figure 2: The NIT of abcdcddebcdee.

3 Main Theorem

Let B ⊆ Σ. We denote by C(B) the innermost cycle of A containing all the
letters in B. Note: for two sets of letters, B,B′, if B ⊆ B′, then it holds
C(B) ≺ C(B′). Let w ∈ Σ∗ and B ⊆ Σ. The projection of w onto B is denoted
by πB(w). Let b ∈ Σ. A run of b in a word w is a maximal factor of b, that is,
a sequence of b not contained in a longer sequence of b.

Lemma 3.1 Let w,w′ ∈ Σ∗. Then w ∼I w
′ if, and only if, πa,b(w) = πa,b(w′)

for each pair of letters a, b ∈ Σ (possibly identical) such that aDb.

Proof By contradiction, suppose that w �I w′. Since πa(w) = πa(w′) for
every a ∈ Σ, then w and w′ have the same number of occurrences of letters.
Thus, w′ can be obtained by permutating the letters of w, necessarily including
permutations between dependent letters, that is, there are a1, a2 ∈ Σ such that
a1Da2 and πa1,a2(w) 6= πa1,a2(w′), a contradiction. The second implication is
obvious. �

Lemma 3.2 Let w ∈ L, |w| = n, and a ∈ Σ. Then the number of a in w is
equal to the number of times that w iterates C(a).
Let a1, a2 ∈ Σ such that a1 < a2. Then, the number of factors a1a2 in πa1,a2(w)
is equal to the number of times that w iterates C(a1, a2).
Moreover, the length of the i-th (1 ≤ i ≤ n) run of a1 (resp. a2) in πa1,a2(w) is
equal to the number of iterations of C(a1) (resp. C(a2)) inside the i-th iteration
of C(a1, a2).

Proof Let p = πa1,a2(w). Since C(a1, a2) is the innermost cycle containing
both a1 and a2, a walk from a1 to a2 in the automaton (that is, each factor a1a2

in p) represents an iteration of C(a1, a2). Thus, the i-th run of a1 (or a2) in
p refers to the i-th iteration of C. Obviously, each occurrence of a1 (resp. a2)
is an iteration of C(a1) (resp. C(a2)), so that, in conclusion, the length of the
i-th run of a1 (a2) in p is the number of iterations of C(a1) (C(a2)) in the i-th
iteration of C(a1, a2). �

By counting the above features of w, we obtain partial information on the NIT
of w, namely the number of iterations of some cycles and the existence of some



189

paths in the tree. For instance, the fact that a cycle C ′ is iteratedm times in C(1)
(first iteration of a cycle C), implies that there exist paths from node C(1) to
the m nodes representing the first m iterations of C ′. Such a path is represented
by an edge in the NIT ∗ (transitive closure of NIT ), called hierarchical edge.

Moreover, the hierarchical edges from the iterations of C to those of C ′

determine a partition of the iterations of C ′: all the iterations of C ′ connected
with the same iteration of C are a class.

We will use the next simple fact.

Lemma 3.3 Let u, v ∈ {a, b}∗. Then u = v if, and only if, they have the
same initial letter and the sequences of lengthes of runs of a (and b) in u and v
coincide.

Theorem 3.4 Let Σ be an alphabet, D be an arbitrary dependence relation, L
be a language recognized by a nested cycle local automaton, and w ∈ Σ∗. Then
w ∈ T = [L] if, and only if:

1. for every pair of distinct a1, a2 ∈ Σ such that a1Da2 and a1 < a2, it holds
πa1,a2(w) ∈ a1{a1, a2}∗a2 , and
there exists w′ ∈ L such that

(a) for every a ∈ Σ, w′ iterates C(a) πa(w) times;

(b) the number of iterations of C(a1, a2) of w′ is equal to the number of
factors a1a2 in πa1,a2(w);

(c) the number of iterations of C(a1) of w′ (resp. C(a2)) in the i-th
iteration of C(a1, a2) is equal to the length of the i-th run of a1 (resp.
a2) in πa1,a2(w).

Proof If w ∈ T , then there exists w′ ∈ L such that w ∼I w
′ and, by Lemmas

3.1 and 3.2 we have the first implication. As to the other implication, by
Lemmas 3.2, 3.3, and 3.1 it follows that w ∼I w

′. �

4 Recognition algorithm and example

For a word u ∈ L a Nested Iteration Graph (NIG) of u is a subgraph of the
NIT ∗ of u. By Theorem 3.4, if a word w belongs to the trace language [L],
then we can construct a graph Gin which is a NIG of a word w′ ∈ L such
that w ∼I w′, in the following way. The nodes representing the iterations
of a cycle C are in the level of Gin that is the level of nesting of C in the
starting automaton. For every a ∈ Σ, there are πa(w) nodes representing the
iterations of C(a) in Gin. For every a1, a2 ∈ Σ such that a1Da2, the number of
nodes representing the iterations of C(a1, a2) in the NIG is equal to the number
of factors a1a2 in πa1,a2(w). Moreover, there are hierarchical edges between
the nodes representing the iterations of C(a1, a2) and those representing the
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iterations of C(a1) (and C(a2), respectively) depending on the lengths of runs
of a1 (resp. a2) in πa1,a2(w).

We have that [w] belongs to the trace language [L] if, and only if,

• every projection of w on a pair of dependent letters satisfies the first con-
dition of Theorem 3.4, and

• the counters computed at points (a), (b), and (c), permit to construct a
graph Gin, which is a NIG of a word w′ ∈ L such that w ∼I w

′. (Indeed,
in general we may obtain contrasting information about the number of
iterations of a cycle or about the hierarchical edges connecting two levels
in Gin.)

Next we illustrate the construction of such a graph Gin for the running
example. Consider the input string and dependence relation

w = cdbadcdeedceebe D = {(c, e), (d, e), (a, a), (b, b), (c, c), (d, d), (e, e)}

The values of the counters determine the features of the graph listed in Table 1.
Each edge from a node to an encircled set of nodes represents a set of hier-

archical edges.
Sometimes the graph Gin thus constructed does not contain all the nodes

corresponding to the cycles of the starting automaton. This means that no
information is available about the number of iterations of some cycle C. This
happens, following Theorem 3.4, if C is such that:

Counter values Features of the graph Gin

C(c) = C1 and πc(w) = ccc if w ∈ [L], then every w′ ∈ L such that
w′ ∼I w iterates C1 three times.

C(c, e) = C0, C(c) = C1, C(e) = C2

and πc,e(w) = cceeceee
w′ iterates C0 twice (see the factors ce
in πc,e(w));
w′ iterates C1 twice in the first iteration
of C0 and once in the second iteration
(see the runs of c in πc,e(w));
C2 is iterated twice in the first iteration
of C0 and three times in the second it-
eration (see the runs of e).

C(d, e) = C0, C(d) = C3, C(e) = C2

and πd,e(w) = dddeedeee
w′ iterates C0 twice (see the factors de
in πd,e(w));
w′ iterates C3 three times in the first
iteration of C0 and once in the second
iteration (see the runs of d in πd,e(w));
C2 is iterated twice in the first iteration
of C0 and three times in the second it-
eration.

Table 1: Counter values and features of the resulting graph Gin (depicted in Figure 3).
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Figure 3: The graph Gin of cdbadcdeedceebe.

• there exists no letter a such that C(a) = C, and

• for no pair of distinct dependent letters a, b, it is C(a, b) = C.

To illustrate, imagine to add a self loop to state c in the automaton of Figure 1.
Then Theorem 1 would provide no information about the iterations of C1.

When this happens, in order to construct the graph Gin we need the following
result, which states that we can assume the undetermined number of iterations
of cycle C to be equal to that of its father.

Proposition 4.1 Let C be a cycle of a nested cycle local automaton such that
for every pair a, b of letters belonging to C, C(a) � C and if aDb, C(a, b) � C.
Let C be immediately nested in C ′. Consider a word u ∈ L such that u iterates
C ′ h times and C ki times in the i-th iteration of C ′, i = 1, . . . , h.

Then there exists a word v ∈ L such that: u ∼I v, v iterates C ′ h times, and
v iterates C once in every iteration of C ′.

Proof (Hints of the complete proof) Since for no letter a ∈ Σ it is C(a) =
C, then C can be viewed as a sequence C1C2 · · ·Cm of inner cycles. Since for
every pair of distinct dependent letters a, b belonging to C one has C(a, b) 6= C,
then no inner cycle depends on another one, so that, if we interchange two of
these cycles, we obtain an equivalent word. Then we can obtain v from u by
a series of interchanges, grouping all iterations of C1, all iterations of C2, and
so on, inside every sequence of iterations of C. In conclusion, such a v iterates
C only once in every iteration of C ′ but it iterates more times the inner cycles
C1C2 · · ·Cm. �

This transformation is applied in the algorithm, to construct Gin. We add to
Gin the nodes representing the iterations of the undetermined cycles (as many
as the number of their parents by Proposition 4.1), thus obtaining another NIG
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graph, named G0, which contains all and only the nodes of the NIT to be
constructed (if it exists).

The next and last phase of the algorithm computes the missing father-son
edges in the graph G0 producing a graph named G. From Theorem 1 and
Proposition 4.1 we draw the following conclusion: [w] ∈ T if, and only if, G0

can be “completed” obtaining a graph G with all the father-son edges. Such a
completion must of course be consistent with the hierarchical paths of G0; this
implies that, for every edge (n1, n2) in G0, there exists a path in G from n1 to
n2, made by a chain of father-son edges. Therefore G contains as subgraph the
NIT of a word w′ ∈ L, w′ ∼I w.

Completion algorithm

The algorithm is greedy. At each step we consider the last level l of G0 missing
some father-son connection to level l − 1 (though G0 is not a tree, it already
has its nodes organized as the final NIT , so that the concept of level is well
defined). Then we connect, if possible, each iteration node of level l to a father
node.

After a connection has been established, the father inherits the hierarchical
paths of its sons. This means that, if C has been connected to the father C ′

and there is a hierarchical path from C to an ancestor C ′′, then this path must
traverse C ′. Consequently the hierarchical edge from C ′ to C ′′ is added to the
graph.

Clearly the algorithm terminates since the number of cycles in the automaton
is finite.

From previous statements we know the algorithm ends with a graph G con-
taining a NIT if, and only if, the given word belongs to the trace language.

Partitioning step Next we specify the step for connecting a level to the one
above. This step bears resemblance to the Earley context-free parsing algorithm
[4].

We remember that the hierarchical edge in G0 connecting the iterations of a
cycle C ′′ to those of an inner cycle C determines a partition of the iterations of
C.

Let C ≺ C ′ be immediately nested cycles of the automaton at respective
levels l and l − 1, whose iterations are still unconnected in the current graph.

Consider in the graph the finest partitions PC′ and PC of these iterations
(indeed there can be more partitions corresponding to hierarchical edges con-
necting the iterations of a cycle to more than one level upwards). If there are
no partitions, then take the trivial partition, i.e. the partition having only one
class. The trivial partition can in fact be viewed as a hierarchical edge to the
root.

Let h and k be the number of classes of PC′ and PC respectively. In order
to find a good connection between the iterations of C ′ and those of C, we have
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to find a partition P ′
C′ of the iterations of C ′ into k classes such that

• P ′
C′ is coarser or finer than PC′ , according to the fact that h ≥ k or h < k,

and

• the cardinality of every class of P ′
C′ must not exceed that of the corre-

sponding class of PC .

This inequality follows from the remark that we want to connect the iterations
of each class of P ′

C′ to those of the corresponding class of PC and from C ≺ C ′,
so that in every iteration of C ′ there must be one iteration of C at least.

Of the two cases of the former condition, we only discuss the case h ≥ k (the
other case being similar).

A coarser partition P ′
C′ consisting of k classes can be represented by an array

of k cells, where every cell is a sequence of classes of PC′ . In order to find a
coarser partition P ′

C′ , we apply the following procedure, which first constructs
an array S with k cells, which are sets of sequences of classes of PC′ .

We compute S from left to right, starting by the empty cells. We put into
each cell the classes that can be associated to the corresponding class of PC .
The last class of the sequence written in a cell Si determines the first class of
a sequence in the next cell Si+1. We proceed in this way until the last cell is
assigned.

procedure construction of the array S of sets of class sequences
Initial ← {1}
NextInitial ← ∅
for i := 1 to k do

for each ind in Initial do
for j := ind to indLastClass(ind, size(PC(i))) do
Si := Si ∪ 〈PC′(ind)PC′(ind+ 1) · · ·PC′(ind+ j)〉
NextInitial := NextInitial ∪{ind+ j + 1}

end for
end for
Initial ← NextInitial

end for

Notes:
size(PC(i)) represents the cardinality of the i-th class of PC .
indLastClass(ind, size(PC(i))) is the last class of a sequence starting with PC′(ind)
we can put into Si, that is, PC′(ind + size(PC(i))− 1). Indeed, the i-th cell of
S represents the possible fathers of PC(i), so that the cardinality of a sequence
we can put into Si cannot be greater than size(PC(i)).

Now a good connection between the iterations of C ′ and C is possible if in
the last cell the last class of a sequence coincides with the last class of C ′.

Having obtained the coarser partition P ′
C′ , each node, but the last one, of

each class P ′
C′(i) of P ′

C′ is connected to a single node of PC(i). The last node
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S1 S2

〈PC1(1)〉 〈PC1(2)〉
〈PC1(1)PC1(2)〉

Figure 4: Array S.

is connected to all the remaining nodes of PC(i) (by construction of P ′
C′ the

cardinality of each P ′
C′(i) is not greater than that of PC(i)).

Example

To illustrate, consider the graph G0 of Figure 3. The iterations of C3 have
to be connected to those of C1, the immediately enclosing cycle. The finest
partition of C1 is PC1 = {{C1(1), C1(2)}, {C1(3)}}, while that of C3 is PC3 =
{{C3(1), C3(2), C3(3)}, {C3(4)}}. Note that this connection case is very simple, as
we have the same number of classes for C1 and C3, and in fact the missing paths
can easily be obtained transitively since there are hierarchical edges from C0 to
both C1 and C3. However, we can use this example to illustrate the run of the
completion algorithm. We have to find a partition of C1 in two classes (coarser
or finer than PC1 , but we already have a two class partition in this case) such
that the former class has cardinality ≤ 3 and the latter class has cardinality ≤ 1
(3 and 1 are the cardinalities of the classes of PC3).

Array S has a number of cells equal to the number of classes of PC3 , that
is 2. We begin assigning sequences of PC1 classes to its cells. Since the first
class of PC3 has 3 elements, we can put into S1 two sequences: 〈PC1(1)〉, and
〈PC1(1)PC1(2)〉. Now there is only one possible initial index of PC1 classes for
the second cell, that is 2. (From the second sequence in S1 we cannot get an
index, since there are only two classes in PC1 . Then we put into S2 the sequence
〈PC1(2)〉, thus completing array S:

In order to reconstruct a partition P ′
f , we examine the last cell of S, S2,

looking for a sequence ending by the last class of PC1 , which is 〈PC1(2)〉. This is
chosen as the last father’s class of P ′

C1
. Next we visit the preceding cell, looking

for a sequence ending by the class of PC1 which is a predecessor of the first class
of the sequence already chosen. In this case, the sequence is 〈PC1(1)〉.

Here we stop. In general we continue until the first class of P ′
C1

is computed.
The new connections are added to the graph and the iterations of C1 inherit from
their sons the hierarchical edges to the iterations of C0, drawn as dotted arcs
in Figure 5 (in this case, the information provided by the inherited hierarchical
edges was already partially known, which is not always the case).

Let n be the length of the word to be tested for membership. Clearly both
phase 1 and 2 take time O(n). Phase 3 performs steps 3(a) and 3(b) a constant
number of times, equal to the maximal nesting depth of the automaton. Step
3(b) takes time O(n). It remains to analyze step 3(a), which turns out to be
the dominating step. The code contains three nested for loops. The number of
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Figure 5: Adding new edges.

iterations of each of them is bounded by the number h of classes of PC′ , which
cannot exceed n, since every cycle contains at least one letter. In conclusion we
have:

Proposition 4.2 The worst case complexity of the word membership problem
for a trace language defined by a nested cycle and local automaton is O(n3).

Notice that the exponent is independent from any property of the dependence
relation, unlike the algorithm of [5].

5 Conclusion

At present it is unclear whether the lower time complexity of our algorithm,
with respect to the general approach of [5], is due to the hypothesis of locality,
to that of nested cycle restricted topology, or to the different approach based on
detecting cycle iterations, instead of prefix analysis. In the future we intend to
investigate the possibility of extending the algorithm to the general case of local
automata.

Acknowledgements: to Jean Berstel, Christian Choffrut, and Massimiliano
Goldwurm for valuable comments.
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On arithmetical complexity of Sturmian

words∗

Julien Cassaigne†, Anna E. Frid ‡

Abstract

Using the geometric dual technique by Berstel and Pocchiola, we give a
uniform O(n3) upper bound for the arithmetical complexity of a Sturmian
word. We also give explicit expressions for the arithmetical complexity of
Sturmian words of slope between 1/3 and 2/3 (in particular, of the Fi-
bonacci word). In this case, the difference between the genuine arithmeti-
cal complexity function and our upper bound is bounded and ultimately
2-periodic.

1 Introduction

Arithmetical complexity of infinite words, defined by Avgustinovich, Fon-Der-
Flaass and Frid in 2000 [2], is the function aw(n) equal to the number of words
of length n which occur in arithmetical subsequences of a word w: for a word
w = w0w1 · · ·wn · · · , we by definition have

aw(n+ 1) = #{wkwk+d · · ·wk+nd|k ≥ 0, d ≥ 1}.

Nowadays this function is one of the most explored modifications of the classical
subword complexity function fw(n) defined by

fw(n+ 1) = #{wkwk+1 · · ·wk+n|k ≥ 0};

for other modifications, see e.g. [7–9].
One of the first questions that naturally arose for arithmetical complexity

as well as for any other modified complexity function concerns non-periodic
words of minimal complexity. The first candidates for minimality were as always
Sturmian words. However, Sturmian words do not even fall into the class of
uniformly recurrent words whose complexity is linear. Such words have been
characterized [6] and are always generated by Toeplitz transforms from a specific
family. In particular, frequencies of letters in such words are rational, so they
can never be Sturmian. A family of words with lowest possible arithmetical

∗The research of the second author is supported in part by RFBR grant 03-01-00796 and
by Russian Science Support Foundation.
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complexity have been distinguished among them; unlike the subword complexity,
here no unique “minimal” complexity function but a family of functions with
decreasing slopes of asymptotes exist.

But then, what is the arithmetical complexity of Sturmian words? In [5],
it has been proved that it grows at least as O(n3): the lower bound looks as
a function of n not depending on α minus a function of α, more precisely, as
n3/4π2 +O(n2)−O(1/α3), where α is the slope of the Sturmian word. Here we
supplement that result by an upper bound, uniform for all Sturmian words and
also equal to O(n3) (more precisely, to (1/6 + 1/π2)n3 +O(n2)). So, the upper
and the lower bounds differ approximately in 10.58 times, and the upper bound
seems to be closer to the genuine arithmetical complexity function.

Unlike the bound, the function itself depends on the choice of the Sturmian
word. For some Sturmian words, including the Fibonacci word, we find it ex-
plicitly. In the considered cases, the difference between the upper bound and
the genuine arithmetical complexity is bounded.

2 Preliminaries

Sturmian words have several equivalent definitions, including the complexity
one: a right infinite word s is Sturmian if and only if its subword complexity
is fs(n) = n + 1 for all n. (For a detailed presentation on Sturmian words,
see [3].) In what follows we use the following representation of Sturmian words.
Let α ∈ (0, 1) be irrational, and ρ ∈ [0, 1) be arbitrary; the Sturmian word
sα,ρ = s0s1 · · · sn · · · , where sn ∈ {0, 1}, is defined by

sn =
{

1, if {(n+ 1)α+ ρ} < α,
0, otherwise.

for all n ≥ 0. Here α is called the slope of sα,ρ; formally speaking, < may be
substituted by ≤ to get another Sturmian word which differs from sα,ρ by at
most two symbols. However, since we are interested in arithmetical complexity,
we do not need such details. Indeed, the set of factors of a Sturmian word, and
thus the set of its arithmetical factors, depend only on its slope. It what follows
we denote the set of arithmetical factors of sα,ρ by Aα and Aα ∩ {0, 1}n by
Aα(n); the arithmetical complexity which we need to find is the number aα(n)
of elements of Aα(n).

For β, γ ∈ R, let us denote by wα(β, γ, n) = w0w1 · · ·wn the word of length
n+ 1 defined by

wi =
{

1, if {iβ + γ} < α,
0, otherwise

for all i = 0, . . . , n. Then clearly wα({dα}, {(k + 1)α+ ρ}, n) = sksk+d · · · sk+nd

for all k ≥ 0, d ≥ 1. Since α is irrational, both {dα}∞d=1 and {(k + 1)α + ρ}∞k=0

constitute dense sets on (0, 1) depending on independent variables k and d. We
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see that
Aα(n+ 1) =

⋃
β,γ∈[0,1)

wα(β, γ, n). (2.1)

In what follows we shall use this representation of Aα(n + 1) to estimate and
find its cardinality, i. e., aα(n+ 1).

Note that given an irrational α, we could use the same arguments con-
sidering not only a Sturmian word of the slope α but any infinite word w =
w0w1 · · ·wn · · · defined by

wn =
{

1, if {(n+ 1)θ + ρ} < α,
0, otherwise,

where θ is irrational. (If θ is rational, the word w is periodic.) Such words were
considered e. g. by Rote [10]; the arithmetical complexity of such a word does
not depend on anything but α and is also equal to aα(n). Thus, in fact we study
the arithmetical complexity of words from a class wider than Sturmian.

3 Geometric dual method

In this section we describe the technique taken from Berstel and Pocchiola [4]
and adopted to our problem. Originally, this technique was used to count the
number of all finite words which are factors of Sturmian words. The exposition
below in this section follows the line of [4].

Geometrically, a word wα(β, γ, n) can be depicted as follows. Let us shadow
all strips k ≤ y < k + α in the quadrant x ≥ 0, y ≥ 0. Then the (l + 1)th
symbol wl of wα(β, γ, n) is equal to 1 if and only if the line y = βx+ γ crosses
the vertical x = l in the shadowed strip (see Fig. 1). We say that the line l
with equation y = βx+ γ defines the word wα(β, γ, n). Let L be the set of lines
y = βx + γ with β, γ ∈ [0, 1); then each line from L defines one word of each
length.

Let us denote by P the affine plane and by Pα(n) the set of points pij with
i = 0, . . . , n, j = 0, . . . , 2i+ 1 defined by

pi,2k = (i, k), pi,2k+1 = (i, k + α)

for all i = 0, . . . , n, k = 0, . . . , i. Let us denote by Pα(β, γ, n) the sequence of
points p0j0 , p1j1 , . . . , pn,jn such that each ji is the maximal integer from {0, . . . ,
2i+ 1} with the point piji lying in the half-plane y ≤ βx+ γ. So, the (i+ 1)th
symbol wi of wα(β, γ, n) is equal to 1 if and only if ji is even in Pα(β, γ, n). In
particular we obtain the following lemma:

Lemma 3.1 If for some β, β′, γ, γ′ ∈ [0, 1) we have Pα(β, γ, n) = Pα(β′, γ′, n),
then wα(β, γ, n) = wα(β′, γ′, n).
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Figure 1: A word from Aα
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Figure 2: Construction of the arrangement Dα(1)

Note that the converse is false: different sequences Pα(β, γ, n) may give the
same words wα(β, γ, n). Below we shall partially classify the situations when it
happens.

Now let us define the set P∗ of all non-vertical lines y = βx+γ, β, γ ∈ R and
introduce the duality transform x ∈ P ∪P∗ 7→ x∗ ∈ P ∪P∗ from [4] which maps
the point p with coordinates (β, γ) to the line p∗ with equation y = βx− γ and
the line l ∈ P∗ with equation y = βx + γ to the point l∗ ∈ P with coordinates
(β,−γ). This transform preserves the incidence relation: points lying on the
same line are mapped to lines crossing at the same point and vice versa; a
point p = (a, b) lies in the half-plane y ≤ cx + d below the line l with equation
y = cx+ d if and only if l∗ = (c,−d) lies in the half-plane y ≤ ax− b below p∗;
etc. The set L ⊂ P∗ is mapped onto the square L∗ = {(β, γ)|0 ≤ β,−γ < 1}.
For details and pictures concerning the duality transform, see [4].

Let us draw the intersection of the set P∗α(n) with the interior of L∗. Adding
to the segments of p∗ij the four borders of the square L∗, we obtain the picture



201

β

γ

Figure 3: An arrangement Dα(4)

called the arrangement Dα(n) (see Fig. 2, 3). In what follows, we shall interpret
an arrangement as a planar graph with vertices (defined as the intersection
points of all the segments of the picture), edges (defined as pieces of segments
delimited by two vertices), and faces, defined as the interiors of the polygons
delimited by the edges. Note that the external face is not counted. For example,
Dα(1) has 6 faces (see Fig. 2).

We shall say that a point l∗ ∈ L∗ defines a word w if the line l ∈ L defines
w.

Lemma 3.2 If two points l∗ and l′∗ lie in the same face of Dα(n), then l and
l′ define the same word of Aα(n+ 1).

Due to this lemma, we can say that a face f of the arrangement Dα(n) defines
a word w ∈ Aα(n+ 1) if any point l∗ lying in it defines w. Recall that the face
is defined as the interior of a polygon!

Note that if l∗ = (x,−y) lies on an edge of the arrangement Dα(n) which is
a part of the line p∗ij , then its dual line l passes via the point pij . We see that l∗

defines the same word as the face below it (more precisely, the face containing
points (x+ ε,−y − ε) for small positive ε). So, points which do not lie in faces
of Dα(n) do not define new words of Aα(n+ 1), and we have the following

Corollary 3.3 For each α and n ≥ 1, the arithmetical complexity aα(n) is not
greater than the number of faces of Dα(n− 1).

At the same time, the number of faces of Dα(n) can be computed by just the
same technique which has been used by Berstel and Pocchiola [4]. In particular,
it does not depend on α, provided that α is irrational.

Lemma 3.4 For any irrational α, the number of faces of Dα(n) is

dα(n) = 2 +
n(n+ 1)(n+ 2)

3
+ 2

n∑
p=1

(n− p+ 1)ϕ(p),
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β
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(a,−b)

α

−α

(1−a,−{  +b})

Figure 4: Centers of symmetry and a pair of symmetric points

where ϕ(p) is the Euler function.

4 Symmetry

In fact, the upper bound from Corollary 3.3 can be instantly made two times
less when we mention that arrangements are symmetric. It can be easily seen
that the part of an arrangement lying above the line y = −α (equal to p∗01)
is symmetric about the point (1/2,−α/2), and the part lying below this line
is symmetric about the point (1/2,−(1 + α)/2) (see Fig. 4). This symmetry
applies not only to faces of the arrangement but to words defined by them.

Lemma 4.1 If a point (a,−b) ∈ L∗ lies in a face of Dα(n), then so does the
point (1− a,−{α− b}). These two points define the same word of length n+ 1.

The centers of symmetry C1 = (1/2,−α/2) and C2 = (1/2,−(1 + α)/2)
always lie inside faces c1 and c2 which define respectively the words 10101 · · ·
and 01010 · · · . Any other face of Dα(n) is symmetric to another one, distinct
from it but defining the same word. So, Corollary 3.3 can be improved to

aα(n) ≤ dα(n− 1)/2 + 1.

To write it more clearly, let us denote

g(n) =
n(n+ 1)(n+ 2)

6
+

n∑
p=1

(n− p+ 1)ϕ(p) + 2.

Then we have the following

Theorem 4.2 For each irrational α ∈ (0, 1) the inequality holds aα(n + 1) ≤
g(n).
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Note that g(n) = (1/6 + 1/π2)n3 + O(n2), so we have obtained a uniform
O(n3) upper bound for aα(n). In what follows we shall try to do more, namely,
to classify non-symmetric faces of Dα(n) defining the same words and thus to
pass from the upper bound to a precise formula for the arithmetical complexity.
We shall succeed only for α ∈ (1/3, 2/3) and discuss the difficulties arising for
other α’s. Note that for each irrational α, the sets Aα and A1−α can be obtained
one from the other by interchanging 0s and 1s. Due to this symmetry, without
loss of generality from now on we consider only α < 1/2.

5 Inheritance of faces

Let us say that a face of Dα(n− 1) is a splitting face if two lines p∗ni and p∗n,i+1

meet it for some i, that is, if it is split into (at least) three faces of Dα(n).
Suppose that we have two faces f1 and f2 of Dα(n) not symmetric to each

other and defining the same word x = x0 · · ·xn. Without loss of generality we
assume that both of them intersect with the half-square β < 1/2 (otherwise due
to Lemma 4.1 we could substitute one or both of them by respective symmetrical
faces). We shall refer to such faces as to a non-symmetric pair. The faces of such
pair are subsets either of the same face f of Dα(n − 1) which defines the word
x′ = x0 · · ·xn−1, or of two different faces f ′1 and f ′2 of Dα(n− 1), both defining
the word x′. In the first case, the face f is a splitting face. In the second case,
suppose that f ′1 and f ′2 are symmetric to each other; then both of them meet
the line β = 1/2. Otherwise f ′1 and f ′2 also constitute a non-symmetric pair.

We see that to classify the non-symmetric pairs of Dα(n), it is sufficient to
trace what happens in Dα(n − 1) to splitting faces, non-symmetric pairs and
faces meeting the line β = 1/2. This task becomes easier when we mention that
splitting faces cannot occur from nowhere:

Lemma 5.1 Suppose that there is a splitting face in Dα(n) with n ≥ 1 defining
a word x0x1 · · ·xn. Then there is a splitting face in Dα(n− 1) defining the word
x1 . . . xn.

Lemma 5.2 Suppose that for some n ≥ 4, the only splitting face(s) in Dα(n−1)
are c1 or/and c2 (which are faces containing centers of symmetry of the upper
and the lower parts of the arrangement). Then there no splitting faces in Dα(n)
except possibly c2 or/and c1.

In what follows, we show that the situation of this lemma ultimately appears
for α > 1/3. To do it, we first show that arrangements of order n corresponding
to slopes from the same Farey interval of order n are isomorphic.

Recall that the Farey series of order n is the sequence of all irreducible
fractions with denominators not greater than n taken in ascending order. For
example, Farey series of order 6 is 0, 1

6 ,
1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

5
6 , 1. The open in-

terval between two successive entries of the Farey series is called a Farey interval
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Figure 5: Non-symmetric pairs in Dα(k), k is odd

of order n.

Lemma 5.3 If α1 and α2 lie in the same Farey interval of order n, then Dα1(n)
and Dα2(n) are isomorphic.

Here the isomorphism of arrangements is defined so that it implies a one-to-one
correspondence between faces. If Dα1(n) and Dα2(n) are isomorphic, then to
each face of Dα1(n) we can relate a face of Dα2(n) so that these faces define
equal words and are bounded by sets of similarly denoted lines from P∗α1

(n) and
P∗α2

(n).

6 Precise formulas

Recall that due to the symmetry, we can assume that α < 1/2.

Theorem 6.1 For each irrational α ∈ (0.4, 0.5) we have aα(1) = 2, aα(2) = 4,
aα(3) = 8, aα(4) = 16, aα(5) = 30, and

aα(n+ 1) =
{
g(n)− 4, if n is odd,
g(n)− 3, if n is even

for n+ 1 ≥ 6.

Proof (Sketch) Let us fix an irrational α ∈ (0.4, 0.5) = (2/5, 1/2). The clus-
ters of 4 faces of Dα(5) and 3 faces of Dα(6) which appear in non-symmetric
pairs are depicted on Fig. 5 and 6 respectively for k = 5 and k = 6; there are no
more non-symmetric pairs in those arrangements.
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Figure 6: Non-symmetric pairs in Dα(k), k is even

Note that all non-symmetric pairs of Dα(6) occur from non-symmetric pairs
of Dα(5). So, there are no splitting faces in Dα(5) which would split to non-
symmetric pairs, and the only splitting faces are c1 and c2. Due to Lemma 5.2,
there are no splitting faces except c1 and c2 in arrangements of higher orders.
Due to Lemma 5.3, all these arguments apply for all α from the same Farey
interval of order 5, that is, from (2/5, 1/2) = (0.4, 0.5). So, it remains to trace
what happens to non-symmetric pairs of Dα(n) when passing to Dα(n+1). This
can be done by induction, and the general situation can be seen at Fig.. 5 and
6 . We see that non-symmetric pairs are 4 if n is odd and 3 if n is even, which
is sufficient for the theorem to be proved. �

Theorem 6.2 For each irrational α ∈ (0.375, 0.4) we have aα(1) = 2, aα(2) =
4, aα(3) = 8, aα(4) = 16, aα(5) = 30, aα(6) = 52, aα(7) = 83, aα(8) = 128 and

aα(n+ 1) =
{
g(n)− 8, if n is even,
g(n)− 9, if n is odd

(6.1)

for n+ 1 ≥ 9.

In particular, this formula is valid for the Fibonacci word, i. e., for α = (3 −√
5)/2 = 0.381966 · · · .

Proof (Sketch) In this range of α, splitting faces not equal to c1 and c2 exist
longer and disappear only at Dα(8). To prove it, we consider Dα(8). In this
arrangement, there are eight non-symmetric pairs of faces: three of them look
as at Fig. 6 and five cross vertical lines β = 1/5 and β = 2/5, different faces of
the same pair crossing different lines. Faces of these five pairs define the word
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100001000 and the four its conjugates. At the same time, at Dα(9) there are
nine non-symmetric pairs, four of them look as at Fig. 5 and five are descendants
of respective pairs of Dα(8). So, there are no splitting faces in Dα(8); this is
valid for all α from the Farey interval (3/8, 2/5) = (0.375, 0.4). The 3 or 4 non-
symmetric pairs from Fig.. 5 and 6 behave exactly as for α ∈ (0.4, 0.5); the new
pairs always remain 5. �

We managed also to trace splitting faces remaining in Dα(8) for 1/3 < α <
3/8. In this case, splitting faces disappear in Dα(3k − 1), where k is uniquely
defined by k/(3k − 1) < α < (k − 1)/(3k − 4), and the arrangements start to
behave as for α ∈ (0.375, 0.4). So, we can obtain the following

Theorem 6.3 Suppose that α is irrational and lies in the interval
(

k
3k−1 ,

k−1
3k−4

)
for some integer k ≥ 3. Then

• for n+ 1 < 9, aα(n+ 1) behaves as it is described in Theorem 6.2;

• for n+ 1 = 9, . . . , 3k − 1, the function g(n)− aα(n+ 1) is 6-periodic with
the period 10,12,10,11,11,11;

• for n+ 1 ≥ 3k, (6.1) holds.

This theorem completes the description of aα(n) for irrational α ∈ (1/3, 1/2).
The situation for α < 1/3 is more complicated since there exist non-central
splitting faces in Dα(n) for arbitrarily large n, and the difference between g(n)
and aα(n+ 1) grows.
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Congruences and the Thue-Morse Sequence

Emeric Deutsch∗, Bruce E. Sagan†

Abstract

We show that the Thue-Morse sequence arises in the study of various
congruences. In particular, it is connected to congruences involving the
central binomial coefficients, Motzkin numbers, Motzkin prefix numbers,
Riordan numbers, and hex tree numbers.

Résumé

Nous démontrons que la séquence Thue-Morse apparâıt dans l’étude des
congruences. En particulier, c’est reliée aux congruences qui contiennent
les coefficients binomiaux centrals, les nombres de Motzkin, les nombres de
Motzkin prefix, les nombres de Riordan, et les nombres d’arbre hex.

1 Introduction

The Thue-Morse sequence is certainly ubiquitous in the study of combinatorics
on words [2]. However, it does not seem to have been noticed until now that it is
also intimately connected with congruences for certain combinatorial sequences.
We will show that it appears in congruences involving the central binomial coef-
ficients, Motzkin numbers, Motzkin prefix numbers, Riordan numbers, and hex
tree numbers. Here, only the results are presented. Those wishing details of the
proofs should consult [4].

First, let us set some notation. Let N denote the nonnegative integers and
consider an integer sequence

a = (a0, a1, a2, . . .) = (an)n∈N.

Then we will perform operations from linear algebra on such sequences as if
they were infinite vectors. When appropriate, we will identify a scalar k with
the sequence which is constant at k. So, for example, the sequence 2a+ 3 would
have 2an + 3 as it’s nth term.

If m is a positive integer then it will be convenient to write k ≡m l instead
of the more conventional k ≡ l(modm). If the base m expansion of k is

k = k0 + k1m+ k2m
2 + · · ·

∗Department of Mathematics, Polytechnic University, Brooklyn, NY 11201, USA,
deutsch@duke.poly.edu

†Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027,
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then we will denote the sequence of digits by

(k)m = (k0, k1, k2, . . .) = (ki).

We will also let
δm(k) = # of ones in (k)m.

Finally, we denote the Thue-Morse sequence by

t = (0, 1, 1, 0, 1, 0, 0, 1, . . .).

One can define t in many ways. For example, tn is the parity of δ2(n).

2 Central binomial coefficients

One of the most famous and most useful congruences for binomial coefficients is
due to Lucas [10].

Theorem 2.1 (Lucas) Let p be a prime and let (n)p = (ni) and (k)p = (ki).
Then (

n

k

)
≡p

∏
i

(
ni

ki

)
. (2.1)

Using this theorem, it is not hard to give a simple formula for the congruence
class of the central binomial coefficients modulo 3 which settles conjectures of
Cloitre and Zumkeller [11, A074938–40]. To state the result, let

T (01) = {n ∈ N : (n)3 contains only digits equal to 0 or 1}.

Theorem 2.2 The central binomial coefficients satisfy(
2n
n

)
≡3

{
(−1)δ3(n) if n ∈ T (01),
0 otherwise.

Of course, one could also write down an expression for
(
2n
n

)
modulo any

prime. The interest in the modulus 3 case stems from the connection with t.
The next result can be derived from Theorem 2.2 and settles further conjectures
of Cloitre [11, A074938–9].

Theorem 2.3 We have (
n :

(
2n
n

)
≡3 1

)
≡3 t.

and (
n :

(
2n
n

)
≡3 −1

)
≡3 1− t.

It is amusing that the Thue-Morse sequence, which is such an essentially
modulo 2 object, comes up in this modulo 3 setting.
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3 Motzkin numbers

The Motzkin numbers are closely related to the Catalan numbers

Cn =
1

n+ 1

(
2n
n

)
, n ∈ N.

In fact, the nth Motzkin number can be defined as

Mn =
∑
k≥0

(
n

2k

)
Ck, n ∈ N,

where, as usual, a binomial coefficient is zero if the bottom is larger than the
top. Just as with Cn, there are also a number of combinatorial ways to define
Mn. In particular, they count the number of ordered trees with n edges such
that each vertex has at most 2 children.

To determine the parity of Mn, we will need a sequence related to t. A run
in a sequence is a maximal subsequence of consecutive, equal elements. Now
define a sequence c whose nth term is the number of elements in the first n runs
of t (where we consider the initial zero of t to be the 0th run). Then

c = (1, 3, 4, 5, 7, . . .).

Various properties of c were studied in [1]. Using the description of Mn in terms
of trees and induction, we are able to prove the following theorem which is also
implicit in the work of Klazar and Luca [9].

Theorem 3.1 The Motzkin number Mn is even if and only if either n ∈ 4c− 2
or n ∈ 4c− 1.

4 Related sequences

There are various sequences related to the Mn. So, using Theorem 3.1, one can
also derive their congruence properties modulo 2 in terms of the sequence c.

A Motzkin path of length n is a lattice path in the lattice N × N with steps
(1, 1), (1,−1), and (1, 0) starting at (0, 0) and ending at (n, 0). It is well known
that Mn is the number of Motzkin paths of length n. (Note that we do not need
any condition about staying above the x-axis since we are working in N × N.)
Define a Motzkin prefix of length n to be a lattice path which forms the first
n steps of a Motzkin path of length m ≥ n. Equivalently, a Motzkin prefix is
exactly like a Motzkin path except that the endpoint is not specified. Let Pn,
n ≥ 0, be the number of Motzkin prefixes of length n. This is sequence A005773
in Sloane’s Encyclopedia [11]. The Pn also count directed rooted animals with
n+ 1 vertices as proved by Gouyou-Beauchamps and Viennot [7].

Corollary 4.1 The number Pn is even if and only if n ∈ 2c− 1.
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Next we consider the Riordan numbers [11, A005043], γn, which count the
number of ordered trees with n edges where every nonleaf has at least two
children. These are called short bushes by Bernhart [3]. If we relax the degree
restriction so that the root can have any number of children then the resulting
trees are called bushes. It is known [5, 6] that Mn is the number of bushes with
n+ 1 edges. It follows that

Mn = γn+1 + γn

since every bush with n + 1 edges is either a short bush or has a root with
one child which generates a short bush with n edges. From this one gets the
following result.

Corollary 4.2 The number γn is even if and only if n ∈ 2c− 1.

Finally, consider the sequence counting restricted hexagonal polyominos [11,
A002212]. The reader can find the precise definition of these objects in the paper
of Harary and Read [8]. We will use an equivalent definition in terms of trees
which can be obtained from the polyomino version by connecting the centers of
adjacent hexagons. A ternary tree is a rooted tree where every vertex has some
subset of three possible children: a left child, a middle child, or a right child.
A hex tree is a ternary tree where no node can have two adjacent children. (A
middle child would be adjacent to either a left or a right child but left and right
children are not adjacent.) Let Hn, n ≥ 0, be the number of hex trees having n
edges.

Corollary 4.3 The number Hn is even if and only if n ∈ 4c− 2 or n ∈ 4c− 1.

It would be interesting to understand these results combinatorially. Since
the proof of Theorem 3.1 is partly inductive, there is as yet no really good
explanation for why the sequence c enters into these congruences.
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Substitutions on an infinite alphabet: first

results

Sébastien Ferenczi∗

Abstract

We give a few examples of substitutions on an infinite alphabet, and
the beginning of a general theory of the associated dynamical systems.

1 Substitutions

Let A be a finite or countable set, called the alphabet, and its elements will be
called letters.

Definition 1.1 A word is a finite string w1...wk of elements of A ; the con-
catenation of two words w and w′ is denoted multiplicatively, by ww′. A word
w1...wk is said to occur at place i in the infinite sequence or finite word u if
ui = w1, ..., ui+k−1 = wk; when u is finite, we denote by N(w, u) the number of
these occurrences.

A substitution is an application from an alphabet A into the set A? of
finite words on A ; it extends to a morphism of A? for the concatenation by
σ(ww′) = σwσw′.

It is called primitive if there exists k such that a occurs in σkb for any
a ∈ A, b ∈ A.

It is called of constant length q if σa is of length q for any a ∈ A.
A fixed point of σ is an infinite sequence u with σu = u.

For any sequence u = (un, n ∈ N) on a finite alphabet A, we can define
the (topological) symbolic dynamical system associated to u: we first take
Ω = AN, equipped with the product topology (each copy of A being equipped
with the discrete topology) and T the one-sided shift

T (x0x1x2 . . .) = x1x2x3 . . .

then Xu is the closure of the orbit of u under T . The dynamical system asso-
ciated to a primitive substitution is the symbolic system (Xu, T ) associated to
any of its fixed points.

∗Institut de Mathématiques de Luminy, CNRS, UPR 9016, 163 av. de Luminy, F13288, Mar-
seille Cedex 9 (France), Fédération de Recherche des Unités de Mathématiques de Marseille,
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In the usual case when A is finite, the theory is well-established, see for
example [QUE], [PYT]: under the (relatively mild) assumption of primitivity,
the symbolic system Xu, T is minimal: the closed orbit of any point under
T is the whole Xu, or, equivalently, for all m there exists n such that every
word of length m occurring in u occurs in every word of length n occurring in
u. Under the same assumption, the system is uniquely ergodic: it admits
a unique invariant probability measure µ. The measure-theoretic dynamical
systems built from primitive substitutions give many interesting examples in
ergodic theory, such as

Example 1.2 (The Morse substitution)

a → ab
b → ba

For any sequence u, the language L(u) is the set of all words occurring in
u ; the complexity of u is the function p(n) which associates to each n ∈ N
the number of words of length n in L(u). For fixed points of primitive substitu-
tions, the complexity is always bouded by Cn, and this implies the system has
topological (and hence measure-theoretic) entropy zero.

2 A fundamental example

The following broad question was asked by C. Mauduit: what can be said of the
following substitution on A = Z?

Example 2.1 (The drunken man substitution)

n→ (n− 1)(n+ 1)

for all n ∈ Z

The first obstacle is that, if we look at the k-th image of 0, it is made only
of even (resp. odd) numbers if k is even (resp. odd); this reflects the fact that
the matrix has period two (see section 3 below). Hence the right substitution
to consider is

Example 2.2 (The squared drunken man substitution)

n→ (n− 2)nn(n+ 2)

for all n ∈ A = 2Z

This substitution, which we denote by σ, has no fixed point; but we can
define a subset X of AN to be the set of all sequences x = x0x1 . . . such that
every word occurring in x occurs also in σn0 for at least one n > 0. X is then a
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closed subset of the (noncompact) set ZN equipped with the product topology
(each copy of Z being equipped with the discrete topology), and is invariant by
the shift T . We say that (X,T ) is the (non-compact) symbolic system associated
to the substitution σ.

It is trivially false that, in any given sequence x of X, for all m there exists n
such that every word of length m occurring in x occurs in every word of length n
occurring in x; but on an infinite alphabet the minimality of the system (X,T )
would be equivalent to a weaker property, namely that any word occurring in
one element of X occurs in every element of X. But in fact this property is not
satisfied here, as there exist infinite sequences in X without any occurrence of
the letter 0: take for example the sequence beginning by σn(2n) for all n.

Hence

Proposition 2.3 (X,T ) is not minimal.

Though individual sequences may have strange properties, we are looking at
good statistical properties for “typical” sequences of X. This involves looking
for invariant measures; but here the situation is also different from the finite
case, as

Proposition 2.4 There is no finite measure on X invariant under T .

Definition 2.5 For any words v and w, we say that v is an ancestor (under σ)
of w with multiplicity m if w occurs in σv at m different places. If w = w0 . . . ws,
the cylinder [w] is the set {x ∈ X;x0 = w0, . . . , xs = ws}.

We define the natural measure µ on (X,T ) by assigning to each cylinder
[n], n ∈ A, or T k[n], the measure 1, and to a cylinder [w], or T k[w], the measure
1
4

∑
µ[v]m(v) , the sum being taken on all its ancestors v and m(v) denoting

their multiplicities.

Proposition 2.6 µ is an infinite measure on X invariant under T .

Lemma 2.7 σ is left determined: there exists N such that, if w is a word
of length at least N in the language L(u), it has a unique decomposition w =
w1 . . . ws where each wi is a σai for some ai ∈ A, except that w1 may be only a
suffix of σa1 and ws may be only a prefix of σas; furthermore the ai, 1 ≤ i ≤ s−1,
are unique.

Lemma 2.8 The system (X,T, µ) is generated by a countable family of Rokhlin
stacks: namely, for every n ∈ N, X is, up to sets of µ-measure zero, the disjoint
union of the T k[σnj], j ∈ 2Z, 0 ≤ k ≤ 4n − 1.

Proposition 2.9 The system (X,T, µ) is recurrent: namely, for every set E
with 0 < µ(E), µ{x ∈ E;Tnx 6∈ E for every n > 0} = 0.
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Proposition 2.10 The system (X,T, µ) is ergodic: namely, for every set E
with 0 < µ(E) and µ(E∆TE) = 0, either µ(E) = 0 or µ(X/E) = 0.

In fact, to prove ergodicity, we prove that though we cannot define fre-
quencies for words, we may define ratios of frequencies: namely, for almost all
x ∈ X, and words w and w′, 1

nN(w, x0 . . . xn−1) has limit zero when n → +∞,
but N(w,x0...xn−1)

N(w′,x0...xn−1) does converge to µ[w]
µ[w′] .

Note that there are many T -invariant measures concentrated on the same set
as µ; in particular, if in the definition of µ we replace the natural constant 4 by
any C ≥ 4, we get another infinite measure on X invariant under T - necessarily
nonergodic.

Because of the recurrence, it makes sense to study the induced, or first
return, map of (X,T, µ) on the cylinder [0]. Let (Y, S, ν) be this system.

Proposition 2.11 The system (Y, S, ν) is measure-theoretically isomorphic to
the symbolic system associated to the substitution τ on A = N×Z, equipped with
its natural measure, which is an invariant probability measure.

where τ is the

Example 2.12 (The induced drunken man substitution)

(m,n)→
n−1+m+∏

j=0

(j, 1) (m,n+ 1)
−1∏

i=−n+1+m−

(i, 1)

for all m ∈ Z and n ≥ 1.

and its natural measure is defined by ν[m,n] = ν(Sk[m,n]) = 2−|m|−2n and
a cylinder [w], or Sk[w], has measure 1

4

∑
µ[v]m(v) , the sum being taken on all

its ancestors (under τ) v and m(v) denoting their multiplicities.

Proposition 2.13 The system (Y, S, ν) is not minimal and not uniquely er-
godic.

The system (Y, S, ν) being a finite measure-preserving system, we can com-
pute its measure-theoretic entropy h(S, ν). Note that τ has a fixed point u,
which is the infinite sequence beginning by τn(0, 1) for every n.

Lemma 2.14 If, for given M , the sequence v(M) is deduced from u by replacing
each (m,n) with the symbol ω when |m| > M or n > M , then its complexity is
bounded by C(M)n2.

Corollary 2.15 h(S, ν) = 0.
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3 General theory

Definition 3.1 The matrix of a substitution σ is defined by M = ((mij))
where mij is the number of occurrences of the letter j in the word σi.

We define the substitution σl on the alphabet Al by associated to the l-letter
v1 . . . vl the l-word made by enumerating all the words of length l occurring in
σ(v1 . . . vl), starting from the first position. We denote by Ml the matrix of this
substitution.

Definition 3.2 Let M be a natrix on a countable alphabet. We denote by
mij(n) the coefficients of Mn; M is irreducible if for every (i, j) there exists
l such that Mij(l) > 0. An irreducible M has period d if for every i d =
GCD{l;mii(l) > 0}, and is aperiodic if d = 1.

An irreducible aperiodic matrix admits a Perron-Frobenius eigenvalue λ
defined as limn→+∞mij(n)

1
n . M is transient if∑

n

mij(n)λ−n < +∞,

recurrent otherwise. For a recurrent M , we define lij(1) = mij , lij(n + 1) =∑
r 6=i lir(n)mrj ; M is null recurrent if∑

n

nlii(n)λ−n < +∞,

and positive recurrent otherwise.

The reference for all the definitions and results on infinite matrices above
is [KIT]. The vocabulary comes from the theory of random walks: when it is
stochastic, a matrix is positive recurrent if it is the matrix of a random walk
which returns to each point with probability one and the expectation of the
waiting time is finite, it is null recurrent if it is the matrix of a random walk
which returns to each point with probability one and the expectation of the
waiting time is infinite, and it is transient if it is the matrix of a random walk
which does not return to each point with probability one. And of course, the
matrix of the drunken man substitution is the matrix of the famous random
walk of the same name, though the dynamical systems we can associate to these
two objects are completely different.

Now, for a given substitution σ on a countable alphabet A, we define the
dynamical system asscociated to σ in the same way as in the previous section.

Proposition 3.3 If σ is of constant length, left determined, and has an irre-
ducible aperiodic positive recurrent matrix, the associated system (X,T ) admits
a natural ergodic invariant measure which is a probability.

The natural measure is defined by taking (µ[n], n ∈ A) to be the normalized
left eigenvctor of M for its Perron-Frobenius eigenvalue λ, (µ[w], w ∈ Al) to be



220 Words 2005

the normalized left eigenvctor of Ml for its (same) Perron-Frobenius eigenvalue
λ, and µ(T k[w]) = µ[w] for all cylinders. When σ is of constant length, λ is the
common length of the σn, n ∈ A.

Proposition 3.4 If σ is of constant length, left determined, and has an irre-
ducible aperiodic null recurrent matrix, the associated system (X,T ) admits a
natural infinite invariant measure.

The natural measure is defined as in the previous case by Perron-Frobenius
eigenvectors; as for the transient case, such a measure may exist or not.

4 Further examples

Example 4.1 (The one-sided drunken man substitution)

n→ (n− 1)(n+ 1)

for all n ≥ 1, and
0→ 1.

As for its two-sided counterpart, this substitution has a matrix of period 2, hence
we study its square.

Example 4.2 (The squared one-sided drunken man substitution)

n→ (n− 2)nn(n+ 2)

for all even n ≥ 2, and
0→ 02.

Here the matrix is transient, but there exists an infinite invariant measure,
whose value on letters is given by µ[2n] = 2n + 1. When we induce it on the
cylinder [0] we get:

Example 4.3 (The induced one-sided drunken man substitution)

n→ 123 . . . (n+ 1)

for all n ≥ 1.

Turning to positive recurrent examples, we have:

Example 4.4 (The one step forward, two step backwards, substitu-
tion)

n→ (n− 1)(n− 1)(n+ 1)

for all n ≥ 1, and
0→ 111.
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As its matrix is of period two,

Example 4.5 (The squared one step forward, two step backwards,
substitution)

n→ (n− 2)(n− 2)n(n− 2)(n− 2)nnn(n+ 2)

for all even n ≥ 2, and
0→ 002002002.

The system has a natural invariant ergodic probability measure, which gives
measure 1

3 to [0] and 2−2n+1 to [2n], n ≥ 1. But it is still not minimal, and not
uniquely ergodic.

Example 4.6 (The golden ratio substitution)

n→ (n− 2)(n+ 1)

for all n ≥ 2,
0→ 01,

1→ 02.

It has an aperiodic matrix, positive recurrent, and the natural invariant ergodic
probability gives to [n] the measure 2n(3−

√
5)

2(1+
√

5)n .

Example 4.7 (The infini-Bonacci substitution)

n→ 1(n+ 1)

for all n ≥ 1.

This is a very special case, as the symbolic system is minimal and uniquely er-
godic. Measure-theoretically, the system is isomorphic to the dyadic odometer,
with an explicit coding to and from the system generated by the period-doubling
substitution on two letters, 1 → 12, 2 → 11. From the combinatorial point of
view, the infini-Bonacci fixed point was used by Cassaigne to build many inter-
esting new sequences and thus earned the unofficial nickname of the universal
counter-example.
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Substitutions on Multidimensional

Sequences

Thomas Fernique∗

Abstract

We provide in this paper a multidimensional generalization of substitu-
tions on words, which is defined as the action on multidimensional sequences
of a non-pointed substitution endowed with local rules. The non-pointed
substitutions and the local rules have in the multidimensional case respec-
tively the roles played by the substitutions defined on letters and by the
concatenation on words. This definition then allows us to provide a (yet
partial) multidimensional generalization of an algebraic characterization of
Sturmian words that are fixed-point or morphic image of a fixed-point of a
non-trivial substitution on words.

Introduction

A substitution acts on a word in this way: the image of each letter is a word, and
the image of the whole word is then just the concatenation of the images of its
letters. Substitutions are powerful combinatorical tools, and have natural inter-
actions with language theory, geometry of tilings, automata theory, and many
others (see e.g. [14] and the references inside). It thus would be useful to define
a similar tool in the more general framework of multidimensonal sequences, that
are sequences of letters indexed by Zn (whereas words are sequences of letters
indexed by N). It is however a difficult problem, mainly for lack of a natural
“multidimensional concatenation”.

Such a generalization has already been introduced in [15]: for p1, . . . , pn fixed
in N, a letter u indexed by (i1, . . . , in) is mapped to a set σ(u) of letters indexed
by {(j1, . . . , jn) | ∀k, pkik ≤ jk < pk(ik + 1)} (that is, a p1× . . .× pn-rectangle).
But it generalizes in fact only constant-length substitutions on words (which
map letters to words all of the same length). An algebraic characterization of
all the multidimensional sequences which are fixed point of such substitutions
is also proved (see again [15]), what generalizes a similar result for words which
are fixed-point of a constant-length substitution (see e.g. [1]).

A first aim of this paper is to introduce a notion of multidimensional sub-
stitution which generalizes any type of substitutions on words, and not only the

∗LIRMM CNRS-UMR 5506 and Université Montpellier II, 161 rue Ada 34392 Montpellier
Cedex 5 (France), PONCELET Lab. CNRS-UMI 2615 and Independent University of Moscow,
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constant-length ones (or any other particular type). Second, we would like to
give an algebraic characterization of the multidimensional sequences which are
fixed-point of such a multidimensional substitution. More precisely, Theorem
3.9 generalizes the following result (see e.g. [6, 9]):

Let α be an irrational number in [0, 1]. One defines the Sturmian sequence
uα = (un) over the alphabet {1, 2} by:

∀n ≥ 1, un = 1 ⇔ (nα) mod 1 ∈ Iα,

where Iα = (0, 1 − α] or Iα = [0, 1 − α). Then uα is a fixed point (resp. the
morphic image of a fixed point) of a substitution on words if and only if α has
a purely periodic (resp. eventually periodic) continued fraction expansion.

Notice that this characterization concerns only Sturmian sequences, that is, a
subset of the set of all the sequences. Thus, generalizing this result also requires
to define a notion of “multidimensional Sturmian sequence”.

The paper is organized as follows. In the first section, we define non-pointed
substitutions and local rules, that are our multidimensional equivalents of the
“classic” substitutions defined on letters, and of the concatenation product used
to make such substitutions act on sequences. It allows us, under conditions on
the local rules, to define our notion of multidimensional substitution. In Section
2, we describe a type of local rules which satisfy the conditions required to define
a multidimensional substitution: the local rules derived from a global rule. In
Section 3, we resume the notion of generalized substitutions, define Sturmian
hyperplane sequences and then we show that these generalized substitutions
provide global rules from which we can derive local rules as described in Section
2. It yields multidimensional substitutions on Sturmian hyperplane sequences,
and allows us to give (Theorem 3.9) a partial generalization of the algebraic
characterization of fixed-points stated above.

1 Non-pointed substitutions and local rules

Let A be a finite alphabet. A pointed letter is an element L = (x, l) of Zn ×A,
where x is the location of the letter l. We denote by L the set of pointed letters.

A pointed pattern is a set of pointed letters with distinct locations. The
support of a pointed pattern is defined as the set of the locations of its letters.
Two pointed patterns are said consistent if two letters with the same location
are identical. The notions of union, intersection and inclusion are then defined
for consistent patterns as for usual sets. We denote by P the set of pointed
patterns.

The lattice Zn acts on pointed letters (resp. pointed patterns) by translation
on the locations (resp. supports): the classes of equivalence of this action are
called non-pointed letters and denoted by L (resp. non-pointed patterns, denoted
by P).
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Thus, to each pointed pattern P corresponds a unique non-pointed pattern,
called its underlying non-pointed pattern and denoted P . Conversely, to each
non-pointed pattern P corresponds all the congruent pointed patterns, called
realizations of P , that have P as underlying non-pointed pattern. If P and P ′

are congruent pointed patterns, one denotes v(P, P ′) ∈ Zn the vector that maps
P onto P ′ by translation.

We are now in a position to give our multidimensional generalization of the
definition on letters of a substitution on words:

Definition 1.1 A non-pointed substitution is a map from L to P.

In what follows, σ denote a non-pointed substitution. We now define local
rules, which are the main ingredient of our “multidimensional concatenation”.

Definition 1.2 We define two types of local rules for σ:

• an initial rule λ∗ is defined on a set I(λ∗) = {L} of one pointed letter,
and maps L to a realization of σ(L);

• an extension rule λ is defined on a set E(λ) = {L,L′} of two pointed
letters with distinct locations, and maps L and L′ to disjoint realizations
of respectively σ(L) and σ(L′).

Roughly speaking, an initial rule tells us how to position σ(L) for a particular
pointed letter L, while an extension rule λ such that E(λ) = {L,L′} is used, for
a pointed pattern {A,A′} congruent to {L,L′}, to position σ(A′) relatively to
σ(A) in the same way λ(L′) is positioned relatively to λ(L). We first define the
action of σ on Λ-paths:

Definition 1.3 Let U be a pointed pattern and Λ be a set of local rules for σ.
A Λ-path of U is a sequence R = (R1, . . . , Rk) of pointed letters of U such that:

• there exists an initial rule λ∗ ∈ Λ such that I(λ∗) = {R1};

• for i = 1 . . . k − 1, there exist an extension rule λi ∈ Λ and xi ∈ Zn such
that E(λi) = {Li, L

′
i} with Ri = Li + xi and Ri+1 = L′i + xi.

One then defines by induction a map denoted by (σ,Λ, R) on the letters of R
(see Fig. 1):

• (σ,Λ, R)(R1) = λ∗(R1);

• for i = 1 . . . k − 1, (σ,Λ, R)(Ri+1) = λi(L′i) + v(λi(Li), (σ,Λ, R)(Ri)).

Notice that, when computing the action of a substitution σ on a word, we
proceed in the same way: the image by σ of the first letter of the word (here
seen as a path) has a specified position (here given by an initial rule), while the
position of the image of a letter follows, by induction, from the position of the
concatenation of the images of the previous letters (here, we use extension rules
to do that). We then define the action of σ on pointed patterns:
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Figure 1: Top: from left to right, an initial rule and two extension rules; bottom:
computation of the image of a path using successively the three previous local rules.

Definition 1.4 Let Λ be a set of local rules for σ and U be a pointed pattern.
The set Λ is said to cover U if any pointed letter of U belongs to a Λ-path of U
and is said to be consistent on U if for any two Λ-paths R and R′ of U which
both contain a pointed letter L, (σ,Λ, R)(L) = (σ,Λ, R′)(L).

If Λ covers U and is consistent on U , one then defines the action of σ endowed
with the set of local rules Λ, denoted by (σ,Λ), as follows:

(σ,Λ)(U) =
⋃
{(σ,Λ, R)(L) | R is a Λ-path of U and L ∈ R} .

Thus, (σ,Λ) is our notion of multidimensional substitution on pointed pat-
terns. It can be shown that it generalizes the substitutions on words as well as
the multidimensional substitutions described in [15]. The possibilities are much
larger, but it is in general not easy to obtain sets of local rules that are consistent
on a set of pointed patterns and cover this set: the next section presents a way
to obtain such sets of local rules.

2 Local rules derived from a global rule

Let σ be a non-pointed substitution and H be a set of pointed patterns. We are
here interested in a generic way to obtain sets of local rules for σ that cover H
and are consistent on it (that is, that cover any pointed pattern of H and are
consistent on any of them). We derive such sets of local rules from global rules:

Definition 2.1 A global rule on H for σ is a map Γ defined on the set of pointed
letters {L ∈ U | U ∈ H} such that:

• a pointed letter L is mapped to a realization of σ(L);

• pointed letters with distinct locations are mapped to disjoint pointed pat-
terns.

Let us denote by d(L,L′) the distance
∑
|xi−x′i| between the locations (xi)

and (x′i) of L and L′. We introduce a notion of weak connexity:
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Definition 2.2 The span between two pointed letters L and L′ of U ∈ H,
denoted by sp(L,L′), is the smallest integer D such that there exists a se-
quence (L1 = L,L2, . . . , Lk = L′) of pointed letters of U which verifies: ∀j,
d(Lj , Lj+1) ≤ D. The spans of U and H are then defined by:

sp(U) = sup
L,L′∈U

sp(L,L′) and sp(H) = sup
U∈H

sp(U).

For example, sp(U) = 1 if and only if U is 4-connected. Let us now derive a
set of local rules from a global rule:

Definition 2.3 Let H0 be a pointed pattern and Γ a global rule on H for σ. A
set Λ of local rules for σ is said to be derived from (H,H0,Γ) if it verifies:

1. if λ∗ is an initial rule of Λ with I(λ∗) = {L}, then L ∈ H0 and λ∗(L) =
Γ(L);

2. if λ is an extension rule of Λ with E(λ) = {L,L′}, then d(L,L′) ≤ sp(H),
λ(L) = Γ(L) and λ(L′) = Γ(L′);

3. if λ and λ′ are extension rules of Λ, then E(λ) and E(λ′) are not congruent.

Such derived sets of locals rules have interesting properties:

Proposition 2.4 If H0 is finite and sp(H) is bounded, then any set of local
rules derived from (H,H0,Γ) is finite.

Proof Let Λ be derived from (H,H0,Γ). There is no more than |H0| initial
rules in Λ. There are |A||(sp(H)+1)n/Zn| non-congruent pointed patterns {L,L′}
that verify d(L,L′) ≤ sp(H): it follows that there is a finite number of extension
rules in Λ. Thus, Λ is finite. �

Definition 2.5 A global rule Γ onH is said context-free if, for U ∈ H, L,L′ ∈ U
and x ∈ Zn such that L+ x, L′ + x ∈ U , one has:

v(Γ(L),Γ(L+ x)) = v(Γ(L′),Γ(L′ + x)).

We present examples of such global rules in Section 3.

Proposition 2.6 If Γ is a context-free global rule on H, then any set of local
rules derived from (H,H0,Γ) is consistent on H.

Proof Suppose that Γ is context-free, and let Λ be a set of local rules de-
rived from (H,H0,Γ). Let R = (R1, . . . , Rk) be a Λ-path of U ∈ H. Let us
prove by induction that for all i, (σ,Λ, R)(Ri) = Γ(Ri). Since R is a Λ-path,
there exists an initial rule λ∗ ∈ Λ such that I(λ∗) = {R1}, and since Λ is de-
rived from (H,H0,Γ), (σ,Λk, R)(R1) = λ∗(R1) = Γ(R1). Suppose now that
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(σ,Λk, R)(Ri) = Γ(Ri). According to Definition 1.3, there exists an exten-
sion rule λi ∈ Λ and xi ∈ Zn such that E(λi) = {Li, L

′
i} with Ri = Li + xi

and Ri+1 = L′i + xi, and (σ,Λk, R)(Ri+1) = λ(L′i) + v(λ(Li), (σ,Λk, R)(Ri)).
But Λ is derived from (H,H0,Γ), hence λ(Li) = Γ(Li) and λ(L′i) = Γ(L′i).
Moreover, (σ,Λk, R)(Ri) = Γ(Ri) = Γ(Li + xi). Thus, (σ,Λk, R)(Ri+1) =
Γ(L′i) + v(Γ(Li),Γ(Li + xi). Finally, since Γ is context-free, (σ,Λk, R)(Ri+1) =
Γ(L′i)+v(Γ(L′i),Γ(L′i+xi)) = Γ(L′i+xi) = Γ(Ri+1). It yields that Λ is consistent
on H. �

Proposition 2.7 If H0 intersects any pointed pattern of H, then there exist
sets of local rules derived from (H,H0,Γ) that cover H.

Proof Let us define E = {{L,L′} | L,L′ ∈ U, U ∈ H and d(L,L′) ≤ sp(H)},
and let E ′ be a maximal subset of E that does not contain congruent pointed
patterns. Let Λ be the set of the following local rules:

• for each L ∈ H0, the initial rule λ∗ defined on I(λ∗) = {L} by λ∗(L) =
Γ(L);

• for each {L,L′} ∈ E ′, the extension rule λ defined on E(λ) = {L,L′} by
λ(L) = Γ(L) and λ(L′) = Γ(L′).

One easily checks that Λ is derived from (H,H0,Γ). Let us prove that Λ covers
H. Let U ∈ H and L′ ∈ U . Since H0 intersects any pointed pattern of H, there
exists L ∈ U ∪H0. By definition, there also exists a sequence of pointed letters
(L1 = L,L2, . . . , Lk = L′) such that ∀i, d(Li, Li+1) ≤ sp(H). Then, for all i
there exists xi ∈ Zn such that {Li, Li+1} + xi ∈ E ′, and there exists an initial
rule of Λ defined on {L1}. It yields that (L1, . . . , Lk) is a Λ-path which contains
L′. Thus, Λ covers H �

We can resume the previous propositions in the following theorem:

Theorem 2.8 Let Γ be a context-free global rule on H for σ. If sp(H) is bounded
and if H0 ∈ P is a finite pointed pattern intersecting any pointed pattern of H,
then one can derive from (H,H0,Γ) a finite set of local rules that is consistent
on H and covers it.

We thus have a way to derive, from a context-free global rule, local rules
consistent on a given set of pointed pattern a covering this set. This result is
applied in the next section to a particular type of context-free global rule.

3 Sturmian hyperplane sequences and algebraicity

We first briefly resume the notion of generalized substitution (see e.g. [4, 5, 14]).
Let ~e1, . . . , ~en denote the canonical basis of Rn and let 〈., .〉 denote the canonical
scalar product on Rn.
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A face (x, i∗), for x ∈ Zn and i ∈ {1, . . . , n} is defined by:

(x, i∗) = {x+
∑
j 6=i

rj ~ej | 0 ≤ rj ≤ 1}.

Such faces generate the Z-module of the formal sums of weighted faces G =
{
∑
mx,i(x, i∗) | mx,i ∈ Z}, on which the lattice Zn acts by translation: y +

(x, i∗) = (y + x, i∗). Faces are used to approximate hyperplanes of Rn:

Definition 3.1 Let ~α ∈ Rn
+, ~α 6= 0. The hyperplane P~α of Rn is defined by:

P~α = {x ∈ Rn | 〈x, ~α〉 = 0}.

The stepped hyperplane S~α associated to P~α is defined by:

S~α = {(x, i∗) | 〈x, ~α〉 > 0 and 〈x− ~ei, ~α〉 ≤ 0} ,

and a patch of S~α is a finite subset of the set of faces of S~α.

Notice that a patch of S~α belongs to the Z-module G, but is geometric, that
is, without multiple faces. Let us recall that the incidence matrix Mσ of a
substitution on words σ gives at position (i, j) the number of occurences of the
letter i in the word σ(j). If detMσ = ±1, then σ is said unimodular.

Definition 3.2 The generalized substitution associated to the unimodular sub-
stitution σ is the endomorphism Θσ of G defined by:

∀i ∈ A, Θσ(0, i∗) =
∑3

j=1

∑
s:σ(j)=p·i·s

(
M−1

σ (f(s)), j∗
)
,

∀x ∈ Z3, ∀i ∈ A, Θσ(x, i∗) = M−1
σ x+ Θσ(0, i∗),

∀
∑
mx,i(x, i∗) ∈ G, Θσ (

∑
mx,i(x, i∗)) =

∑
mx,iΘσ(x, i∗),

where f(w) = (|w|1, |w|2, |w|3) and |w|i is the number of occurences of the letter
i in w.

The following type of substitution is particularly interesting:

Definition 3.3 A substitution σ is of Pisot type if its incidence matrix Mσ

has eigenvalues λ, µ1, . . . , µn−1 satisfying 0 < |µi| < 1 < λ. The generalized
substitution Θσ is then also said of Pisot type.

Indeed, the following result is proved in [4, 5]:

Proposition 3.4 ( [4, 5]) If σ is of Pisot type and if ~α is a left eigenvector
of Mσ for the dominant eigenvalue λ, then Θσ(S~α) ⊂ S~α and Θσ maps distinct
faces of the stepped hyperplane S~α to disjoint patches of S~α.
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The stepped hyperplane S~α is called the invariant hyperplane of Θσ. It is
also proved in [11]:

Proposition 3.5 ( [11]) If the modified Jacobi-Perron algorithm ( [8]) yields
a purely periodic (resp. eventually periodic) continued fraction expansion for
~α ∈ Rn, then the stepped hyperplane S~α is a fixed point (resp. the image by a
generalized substitution of a fixed point) of a generalized substitution of Pisot
type.

We then define hyperplane sequences, mapping stepped hyperplanes of Rn

to (n − 1)-dimensional sequences over the alphabet {1, . . . , n}. The following
proposition (proved in Appendix) resumes a result given in [2, 3]:

Proposition 3.6 Let V~α ⊂ Zn be the set of the vertices that belong to the faces
of S~α. Let v~α and π~α be the maps defined respectively on S~α and V~α by:

v~α(x, i∗) = x+ ~e1 + . . .+ ~ei−1 and π~α(x1, . . . , xn) = (x1−xn, . . . , xn−1−xn).

Then, v~α (resp. π~α) is a bijection from S~α onto V~α (resp. from V~α onto Zn−1).

Let φ~α be defined on S~α by φ~α(x, i∗) = (π~α(v~α(x, i∗)), i): it maps bijectively
the faces of S~α to the letters of a (n− 1)-dimensional sequence over {1, . . . , n}.
Notice that not all these (n − 1)-dimensional sequences over {1, . . . , n} corre-
spond to a stepped hyperplane. We thus introduce the following definition:

Definition 3.7 An hyperplane sequence is an (n−1)-dimensional sequence over
{1, . . . , n} defined, for ~α ∈ Rn, by φ~α(S~α). One denotes by H~α such an hyper-
plane sequence. Moreover, if ~α = (α1, . . . , αn) is such that 1, α1, . . . , αn are
linearly independent over Q, then H~α is called a Sturmian hyperplane sequence.

For n = 2, Sturmian hyperplane sequences are nothing but Sturmian se-
quences over {1, 2} (see [12]), and for n = 3, one retrieves the notion of two-
dimensional Sturmian sequence of [7]. Notice that an hyperplane sequence H~α

is defined on the whole Zn−1: it yields sp(H~α) = 1. Let us now derive, from
generalized substitution, context-free global rules on hyperplane sequences:

Proposition 3.8 Let σ be a Pisot unimodular substitution on words over
{1, . . . , n}. Let Θσ be the associated generalized substitution, and S~α its in-
variant stepped hyperplane. Let H~α = φ~α(S~α). We set L = Zn−1 × {1, . . . , n}
and define:

Γσ = φ~α ◦Θσ ◦ φ−1
~α and σ∗ : (0, i) ∈ L 7→ Γσ(0, i) ∈ P.

Then, Γσ is a context-free global rule on H~α for the non-pointed substitution σ∗.
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Proof For (x, i) ∈ H~α and y ∈ Zn−1, one computes:

Γσ((x, i) + y) = Γσ(x, i) + π~α(M−1
σ π−1

~α (y)).

It follows that Γσ(x, i) = Γσ(0, i) = σ∗
(

(0, i)
)

. Moreover, since Θσ maps dis-
tinct faces of S~α to disjoint patches of S~α (see Proposition 3.4) and since φ~α

maps bijectively the faces of S~α to the letters of H~α, Γσ = φ~α ◦Θσ ◦ φ−1
~α maps

letters with distinct locations to disjoint pointed patterns. Thus, Γσ is a global
rule on H~α for σ∗.

Then, if (x, i) ∈ H~α, (x′, i) ∈ H~α and y ∈ Zn−1, one has:

v(Γσ(x, i),Γσ((x, i) + y)) = π~α(M−1
σ π−1

~α (y)) = v(Γσ(x′, i),Γσ((x′, i) + y)).

Hence Γσ is context-free, according to Definition 2.5. �

Finally, combining Theorem 2.8 and Proposition 3.5 and 3.8, we obtain:

Theorem 3.9 If the modified Jacobi-Perron algorithm ( [8]) yields a purely pe-
riodic (resp. eventually periodic) continued fraction expansion for ~α ∈ Rn, then
the Sturmian hyperplane sequence H~α is a fixed point (resp. the image by a mul-
tidimensional substitution of a fixed point) of a multidimensional substitution.

This result can thus be seen as a multidimensional generalization of the
algebraic characterization resumed in the introduction, though it provides only
a sufficient condition for a Sturmian hyperplane sequence to be a fixed point of a
multidimensional substitution or the image by a multidimensional substitution of
such a fixed point. In fact, the proof of the algebraic characterization resumed in
the introduction uses the notion of return words of [10]. This notion has already
been generalized, in terms of tilings, in [13]: it thus gives us a possible way to
achieve the characterization of Theorem 3.9.

Example 3.10 Let σ be the classic substitution defined on {1, 2, 3} by σ(1) =
13, σ(2) = 1 and σ(3) = 2. One computes:

M−1
σ =

 0 0 1
1 0 −1
0 1 0

 , and Θσ :
(0, 1∗) 7→ ((1,−1, 0), 1∗) + (0, 2∗)
(0, 2∗) 7→ (0, 1∗)
(0, 3∗) 7→ (0, 2∗)

,

which yields the non-pointed substitution:

σ∗ : 10,0 7→ {10,0, 20,1}, 20,0 7→ {30,0}, 30,0 7→ {10,0},

which one can also represent as follows:

σ∗ : 1 7→ 2
1
, 2 7→ 3, 3 7→ 1.
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Let us define H = {Γn
σ((0, 0), 1), n ≥ 1}. One can prove in this particular case

that sp(H) = 1. Thus, one can compute (Theorem 2.8) a finite set of local rules
that covers H and is consistent on it. One obtains for example the initial rule
defined by:

λ∗ : ((0, 0), 1) 7→ {((0, 0), 1), ((0, 1), 2)},

and five extension rules, represented as follows (the bolded letters are mapped to
the bolded letters, so the information about relative locations is still conserved):

λ1 :
2
1
7→ 2

3 1
, λ2 : 3 1 7→

2
1
1
, λ3 :

1
1
7→

2
2 1
1

,

λ4 : 2 1 7→
2
1
3
, λ5

1
3
7→ 1 1

2
.

For example, computing the sequence (σ∗, {λ∗, λ1, . . . , λ5})n((0, 0), 1) for n =
1, . . . , 7 gives (the letter with location (0, 0) is bolded):

1 7→
2
1 7→

2
3 1 7→

2
3 1

1
7→

2
2 1

3 1
1

7→

2 2
3 1 2 1

3 1
1

7→

2 2
3 1 2 1

3 1
2 1

3 1
1

7→ . . .

We can in this way generate arbitrarely large patches of the hyperplane sequence
H~α, where ~α is a left eigenvector of Mσ. Moreover, H~α is a fixed-point of this
multidimensional substitution.
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Appendix

Proof (of Proposition 3.6) Let (x, i∗) and (y, j∗) be two faces of S~α such
that v~α(x, i∗) = v~α(y, j∗). If i < j, then x = y+ ~ei + . . .+ ~ej−1, and 〈x− ~ei, ~α〉 =
〈(y + ~ei+1 + . . . + ~ej−1, ~α〉 = 〈y, ~α〉 + 〈 ~ei+1 + . . . + ~ej−1, ~α〉. Since (y, j∗) ∈ S~α,
〈y, ~α〉 > 0. Moreover, 〈 ~ei+1 + . . . + ~ej−1, ~α〉 ≥ 0. Thus, i < j would yield
〈x−~ei, ~α〉 > 0, what would contradict (x, i∗) ∈ S~α. Similarly, i > j is impossible.
Hence i = j, and x = y follows. It proves that v~α is one-to-one from S~α to V~α.

If y ∈ V~α, then there exist (x, i∗) ∈ S~α and I ⊂ {1, . . . , n}, i /∈ I, such that
y = x +

∑
j∈I ~ej . Let us denote f : k 7→ 〈x +

∑
j∈I ~ej − ~e1 − . . . − ~ek, ~α〉. One

has:

f(0) = 〈x, ~α〉+
∑
j∈I

〈~ej , ~α〉 > 0, f(n) = 〈x− ~ei, ~α〉 −
∑

j /∈I,j 6=i

〈~ej , ~α〉 ≤ 0,

and f is decreasing. Let k0 such that f(k0 − 1) > 0 and f(k0) ≤ 0. Let y0 =
y− ~e1− . . .− ~ek0−1. Then, 〈y0, ~α〉 = f(k0−1) > 0, and 〈y0− ~ek0 , ~α〉 = f(k0) ≤ 0.
Thus, (y0, k

∗
0) ∈ S~α. Since v~α(y0, k

∗
0) = y, it proves that v~α is onto from S~α on

V~α.
Let us denote ~α by (α1, . . . , αn). Recall that the αi are positive and not all

equal to zero. Let then x = (x1, . . . , xn) ∈ V~α and (x′, i∗) = v−1
~α (x). One has

0 < 〈x′, ~α〉 ≤ 〈~ei, ~α〉 = αi. Thus:

0 <
n∑

j=1

xjαj −
i−1∑
j=1

αj ≤ αi.

Suppose now π~α(x) = (y1, . . . , yn−1). The previous formula yields:

0 <
n−1∑
j=1

yjαj + xn

n∑
j=1

αj ≤
i−1∑
j=1

αj + αi ≤
n∑

j=1

αj ,

and performing the division by
∑n

j=1 αj > 0, it then gives:

0 <

∑n−1
j=1 yjαj∑n

j=1 αj
+ xn ≤ 1,

that is, since xn ∈ Z:

xn = 1−

⌈∑n−1
j=1 yjαj∑n

j=1 αj

⌉
.

Conversely, given (y1, . . . , yn−1) ∈ Zn−1, setting xn ∈ Z as above and then, for
i = 1 . . . n − 1, xi = yi + xn yields π~α(x1, . . . , xn) = (y1, . . . , yn−1). Thus, π~α

is a bijection from V~α to Zn−1 (and the proof provides an explicit formula for
π−1

~α ). �



An automaton that recognizes the base of a

semiretract∗

Wit Foryś, Tomasz Krawczyk †

1 Introduction

Semiretracts of free monoids were introduced by Jim Anderson [1] and then were
investigated in [2], [3], [4], [5], [6], [7], [8], [9], [10], [11].

We present an algorithmic approach to the problem of finding the base of a
semiretract.

2 Basic Notions And Definitions

Let A∗ denote a free monoid generated by a finite set A. A retraction r : A∗ −→
A∗ is a morphism such that r ◦ r = r. A retract of A∗ is an image of A∗ by
a retraction. A semiretract of A∗ is the intersection of a family of retracts of
A∗. A word w ∈ A∗ is called a key-word if there is at least one letter in A that
occurs exactly once in w and the letter is called a key of w. A set C ⊂ A∗ of
key-words is called a key-code if there exists an injection (called key-injection)
key : C −→ A such that

1. for any w ∈ C, key(w) is a key of w,

2. the letter key(w) occurs in no word of C other than w itself.

Obviously any key-code is a code. For any key-word w in a key-code C and
fixed mapping key we use the notation w = l(a)ar(a) where a = key(w) is the
key of w and l(a), r(a) denote a suitable prefix and sufix of w. Given a key-code
C and a fixed key-injection key the set of all keys of words in C is denoted by
key(C).

The following characterization of retracts is due to T. Head [10].

Theorem 2.1 R ⊂ A∗ is a retract of A∗ if and only if R = C∗ where C is a
key-code.

In [2] T.Anderson proved the following, basic for our considerations theorem.
∗Supported by KBN grant no 3 T11C 010 27
†Jagiellonian University, Institute of Computer Science, Nawojki 11, 30-072 Krakow,
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Theorem 2.2 Let S = ∩n
i=1Ri be a semiretract given by retracts Ri with key-

codes Ci ⊂ A∗ for i = 1, . . . , n. There exist key-codes Di ⊂ A∗ such that

1. S = ∩n
i=1Ti where retracts Ti = D∗

i for i = 1, . . . , n

2. key(D1) = key(D2) = . . . = key(Dn)

Hence any semiretract S is an intersection of a family of retracts generated by
key-codes having the common set of keys.

An algorithm which produces such key-codes over the common set of keys is
a subject of the paper.

For a key word u = l(u)ar(u) with a as the key we enumerate all the positions
of letters in u putting 0 for the key letter, numbering sequentially position to
the right from the key by positive and to the left by negative integers. Hence
any key word u defines a discrete interval of positions [−p, r]. The first letter
of u has the position −p, the key of u is numbered by 0 and the last letter is
numbered by r. In the sequel we will use the notation u = a−p . . . a0 . . . ar from
which it is easy to find the key, the prefix l(u) and the sufix r(u) of the word u.

Any word u ∈ A∗ can be considered as a domino on a plane, where the
domino consists of | u | squares filled up in turn with the letters of u. Let
S = ∩n

i=1Ri be a semiretract where Ci ⊂ A∗ for i = 1, . . . , n denote key-codes
of Ri. We consider any key-code Ci as a set of dominoes and assume that all
dominoes in Ci are coloured by the colour i. Hence any domino is identified by
a key-word u and a color i ∈ {1, . . . , n} and so can be represented by a pair
(i, u). The set of dominoes of key-words in Ci is denoted by Ci or by {i}×Ci if
we want to point out the colour. For a semiretract S denote by V the set of all
dominoes , that is

V =
n⋃

i=1

{i} × Ci.

A word w is in S if and only if w is in every Ri, that is the word w is expressible
in the words of Ci for i = 1, . . . , n. It means that the following equalities are
true

w = u1
1.....u

1
m1

(1)
w = u2

1.....u
2
m2

(2)
....... ..............
w = un

1 .....u
n
mn

(n)

where ui
j ∈ Ci for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}.

Let T (w) be a table of the dimension {1, . . . , n}×{1, . . . , |w|}. The fact that
w satisfies equalities (1)-(n) is equivalent to the possibility of tilling the table
T (w) by dominoes according to the rule that in i−th row we use i−th color
domino-code and every square in the j-th column is filled up with j-th letter of
the word w, for all j ∈ {1, . . . , | w |}. It means that all the entries ti,j of the
table T (w) are identical for a fixed j ∈ {1, . . . , |w|} and i ∈ {1, . . . , n}. Any
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Figure 1: The table T (abcdegbhab).

domino in the table T (w) is identified by the color i, by the word u ∈ Ci and
by the position x of the key of word u counted from the left in the i−th row of
T (w). Hence any domino in the table T (w) has its identification triple (i, u, x)
where i ∈ {1, . . . , n}, u ∈ Ci and x ∈ Z. Note that if u = a−p . . . a0 . . . ar then
the domino (i, u, x) covers the entries (squares) from the set {(i, j) | x−p ≤ j ≤
x + r}. The set of squares covered by a domino (i, u, x) is denoted shortly by
[(i, u, x)].

Example 2.3 Consider the semiretract
⋂3

i=1C
∗
i ⊂ A∗ and assume that

ab, cde, gbh ∈ C1,

abc, d, egb, hab ∈ C2,

ab, cde, gb, h ∈ C3.

(the keys of the key words are overlined). Then the set V =
⋃3

i=1{i}×Ci contains
dominoes (1, a0b1), (1, c−1d0e1), (1, g−1b0h1), (2, a−2b−1c0), (2, d0), (2, e0g1b2),
(2, h0a1b2), (3, a0b1), (3, c−1d0e1), (3, g0b1), (3, h0).

As the word abcdegbhab can be factorized over codes C1, C2 and C3, then
abcdegbhab is in

⋂3
i=1C

∗
i . Hence we can tile the table T (abcdegbhab) of dimen-

sion {1, 2, 3} × {1, 2, . . . , 10} (see Figure 1) according to the rules given in the
previous paragraph.

Definition 2.4 Let A ⊂ V × Z. A is a configuration of dominoes if A fulfills
the following conditions:

1. the set of squares {[(i, u, x)] | (i, u, x) ∈ A} consists of pairwise disjoint ele-
ments for any i ∈ {1, . . . , n} (the dominoes do not overlap in the table A),

2. for any fixed j ∈ Z there is no two squares (i1, j) and (i2, j) in A filled up
with two different letters for i1, i2 ∈ {1, . . . , n}.

Note that however dominoes do not overlap in a configuration A there are
possible some gaps between them in A. If A is a configuration of dominoes, then
we denote by

• A7→z the shift of A by z ∈ Z, that is

A 7→z = {(i, u, x+ z) | (i, u, x) ∈ A}
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• [A] the set of squares covered by dominoes from A

[A] =
⋃
{[(i, u, x)] | (i, u, x) ∈ A}

We say that a configuration A is connected if for any colour i ∈ {1, . . . , n}
there are no gaps between dominoes coloured by i. It means that all dominoes
from A coloured by i occupy squares indexed in A by {i}× [l, r] for some l, r ∈ Z.

We say that two configurations A and B are equal with respect to the shift
if there exist z ∈ Z such that A 7→z = B.

3 Preliminary Results

Let S be a semiretract and consider a domino (i, u, x) that occurs in the table
T (w) for some word w ∈ S. Hence the domino (i, u, x) occurs in the i−th
row of the table T (w). Assume now that in the word u occurs a letter key(v)
which is the key letter for some v ∈ Cj and in this row there exists a square
(i, z) ∈ [(i, u, x)] which is filled up with a letter key(v). Since key(v) occurs only
once in the word v ∈ Cj and in no other word from Cj , then the only domino in
j−th row which covers the square (j, z) with a letter key(v) is (j, v, z). Hence,
the element (j, v, z) has to be in T (w). In general, a domino (i, u, x) that occurs
in T (w) in a i−th row enforces in others rows an occurence of these dominoes
that have as key-letters the letters occuring in u. To obtain a clear cut picture
of those dependiences we introduce the following relation E and a multidigraph
associated with S.

Definition 3.1 Let Ci ⊂ A∗ for i = 1, . . . , n denote key-codes of retracts Ri

and let V be the set of all dominoes. Let (i, u), (j, v) ∈ V be two dominoes such
that u = a−p . . . a0 . . . ar and v = b−s . . . b0 . . . bt. A triple ((i, u), z, (j, v)) is in
the relation E ⊂ V ×Z×V if and only if az = b0 for some z ∈ {−p, . . . , 0, . . . , r}.

We consider the relation E as the set of arrows between nodes in V labeled
by integers. We use in the sequel the notation (i, u) →z (j, v) for a triple
((i, u), z, (j, v)) in E and say that (i, u) binds (j, v).

Definition 3.2 Let Ci be key-codes of retracts Ri for i ∈ {1, . . . , n} and let
S = ∩n

i=1Ri denote a semiretract. A directed multigraph G = (V,E) where
V = ∪n

i=1{i} × Ci is the set of all dominoes and E considered as a relation on
V with integer labels is called a labeled multidigraph associated with S.

Example 3.3 As the letter e ∈ A is the key of domino (2, e0g1b2), then

(1, d0e1) 7→1 (2, e0g1b2) and (3, c−1d0e1) 7→1 (2, e0g1b2) .

For pathes in G = (V,E) we use the following notation.
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Definition 3.4 There is a path (i0, v0) →∗
x (im, vm) in a multidigraph G =

(V,E) associated with a semiretract S if there exist nodes (i0, v0), . . . , (im, vm) ∈
V and integers x1, . . . , xm ∈ Z such that

1. (v0, i0)→x1 (v1, i1)→x2 .....→xm (im, vm),

2.
∑m

i=1 xi = x.

Using introduced in the above notions our observations done at the begining of
this section can be summarized as follows.

Fact 3.5 If (i, u, x) is in T (w) for some w ∈ S, x ∈ {1, . . . , |w|} and (i, u)→z (j, v)
for some z ∈ Z, then (j, v, x+ z) is in T (w).

Definition 3.6 Let S denote a semiretract and a word w ∈ S. Let a domino
(i, u) ∈ V occurs in T (w) at the position x, that is (i, u, x) ∈ T (w) for some
x ∈ {1, . . . , |w|}. The set

B(i, u, x) = {(j, v, x+ z) ∈ T (w) | (i, u)→∗
z (j, v), (j, v) ∈ V, z ∈ Z}

is called a neighbourhood of (i, u, x) in relation to T (w).

In the other words, the neighbourhood B(i, u, x) of (i, u, x) is a part of the table
T (w) containing the domino (i, u, x) itself and all dominoes from T (w) that are
binded with it.

Example 3.7 The neighbourhood B(1, cde, 4) of dominoe (1, c−1d0e1, 4) con-
tains all elements included in the borded area (see Figure 1).

Let us denote by CC(G) the set of all strongly connected components W ⊂ V
of a multidigraph G = (V,E). For any such component W ∈ CC(G) we fix a
node (i, u) ∈ W and this node is called a representant of W . To express the
fact that (i, u) represents W we write W(i,u). The following lemma points out
a role of connected components of a multidigraph G = (V,E) associated with a
semiretract S.

Lemma 3.8 Let W(i,u) be a strongly connected component in G associated with
a semiretract S and represented by (i, u). Let a domino (i, u, x) occurs in a table
T (w) at the position x for some w ∈ S, x ∈ {1, . . . , |w|}. Then

1. for any dominoes (j1, v1), (j2, v2) ∈ W(i,u) there exists exactly one inte-
ger z ∈ Z such that (j1, v1) →∗

z (j2, v2). If (j1, v1) →∗
z (j2, v2), then

(j2, v2)→∗
−z (j1, v1),

2. if (j, v) ∈ W(i,u) and (i, u)→∗
z (j, v), then (j, v, x+ z) ∈ B(i, u, x) and the

neighbourhoods B(i, u, x) and B(j, v, x+ z) are equal;
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3. the sets Bs(W(i,u))7→x and B(W(i,u))7→x, where

Bs(W(i,u)) = {(j, v, z) | (i, u)→∗
z (j, v), (j, v) ∈W(i,u), z ∈ Z}

and
B(W(i,u)) = {(j, v, z) | (i, u)→∗

z (j, v), (j, v) ∈ V, z ∈ Z}

are subsets of T (w). All neighbourhoods of dominoes from Bs(W(i,u))7→x

coincides and are equal to B(W(i,u))7→x.

The defined in the above sets Bs(W(i,u)) and B(W(i,u)) are called a base of
W(i,u) and a neighbourhood of W(i,u) respectively. Note that these two notions
are defined in relation to a multidigraph G and a strongly connected component.
Now we define a link between these notions and a table T (w) for a word w ∈ S.
If a domino (i, u) occurs in the table T (w) at the position x for some w ∈ S,
x ∈ {1, . . . , | w |}, then all dominoes binded by (i, u) occur in the table. In other
words the strongly connected component W containing the domino (i, u) shifted
by some integer x is a part of the table. Note that this strongly connected
component is equal to the base Bs(W )7→x. Hence to locate the base Bs(W(i,u))
in the table T (w) it is enough to know a position of the representant of W(i,u)

which can be for example (i, u). This fact is reflected in the following definition.

Definition 3.9 Let w ∈ S. A strongly connected component W(i,u) ⊂ V repre-
sented by (i, u) occurs in the table T (w) at the position x if and only if (i, u, x) ∈
T (w). In this case the component is equal to the base Bs(W(i,u))7→x ⊂ T (w).
A neighbourhood of strongly connected component W(i,u) in T (w) is defined as
B(W(i,u))7→x ⊂ T (w).

Note that, in fact we have B(W(i,u))7→x = B(Bs((W(i,u))))7→x. Let CCS(G) ⊂
CC(G) denote the following set.

CCS(G) = {W(i,u) ∈ CC(G) |∃w ∈ S, x ∈ N, Bs(W(i,u))
7→x ⊂ T (w)}

We partially order the sets CC(G) and CCS(G) putting

W(j,v) vW(i,u) ⇔ ∃y ∈ Z : (i, u)→∗
y (j, v).

By maxCC(G) and maxCCS(G) we denote the set of all maximal elements of
the poset (CC(G),v) and (CCS(G),v) respectively.

Lemma 3.10 Let W(i,u) ∈ CCS(G) for a multidigraph G associated with a
semiretract S. Then

(1) the base Bs(W(i,u)) is a configuration of dominoes; the neighbourhood
B(W(i,u)) is a strongly connected configuration of dominoes;
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(2) the following equality is true

B(W(i,u)) = Bs(W ) ∪
⋃
{Bs(W(j,v))

7→y | (i, u)→∗
y (j, v), y ∈ Z}

and elements of the sum are pairwise disjoint;

(3) W(i,u) ∈ maxCCS(G) iff for every domino (j, v, z) ∈ Bs(W(i,u)) the column
z is covered by a dominoes from Bs(W(i,u));

(4) If B(W1)7→x ∈ T (w) for some w ∈ S, x ∈ {1, . . . , |w|}, then B(W1)7→x ⊂
B(W2)7→y for some W2 ∈ maxCCS(G), y ∈ {1, . . . , |w|}.

Now we present the main result.

Theorem 3.11 Let S = ∩n
i=1Ri be a semiretract given by retracts Ri with key-

codes Ci ⊂ A∗ for i = 1, . . . , n. There exist key-codes Di ⊂ A∗ for i = 1, . . . , n
such that

1. S = ∩n
i=1Ti where retracts Ti = D∗

i for i = 1, . . . , n

2. key(D1) = key(D2) = . . . = key(Dn)

Proof For S = {1} the conclusion is obvious. Hence assume that a nonempty
word w is in the base of a semiretract S = ∩n

i=1C
∗
i and consider the table

T (w). Let w = w1.....wk in the key-code C1. Denote by W1, . . . ,Wm all max-
imal strongly connected components that occur in T (w) and assume that the
components are ordered according to the to the order of w1, . . . , wk. Note that
any wi for i = 1, . . . , k occurs in some maximal strongly component Wj , how-
ever m ≤ k in general. Of course T (w) ⊂

⋃m
i=1B(Wi)7→xi . Now consider any

two subsequent component bases Bs(Wj) and Bs(Wj+1). It may happened that
B(Wj)7→xj ∩B(Wj+1)7→xj+1 is not an empty set. Let l be the smallest index enu-
merating columns in T (w) such that the l−column contains a square covered
by a domino from B(Wj+1)7→xj+1 . Denote by r the greatest index enumerating
columns in T (w) such that the r−column contains a square covered by a domino
from B(Wj)7→xj . It follows that l ≤ r. The squares in the table T (w) indexed
by {1, . . . , n} × [l, r] could be divided into three subsets:

• L - entries covered by dominoes from B(Wj)7→xj \B(Wj+1)7→xj+1 ;

• R - entries covered by dominoes from B(Wj+1)7→xj+1 \B(Wj)7→xj ;

• LR - entries covered by dominoes in [B(Wj)7→xj ∩B(Wj+1)7→xj+1 ].

Notice that the set R can be presented in the form

R = ({1, . . . , n} × [xj , r]) \ [B(Wj)7→xj ].

Hence R is fully determined by B(Wj). Observe that the triple (L,LR,R) de-
fined for B(Wj) is determined by R. The triple (L,LR,R) is called right anchor
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of B(Wj) as it fixes relative positions of B(Wj)7→xj and B(Wj+1)7→xj+1 in the
table T (w). In general, for any two words w1, w2 in S such that B(Wj) occurs in
T (w1) and in T (w2) it follows that the right anchor of B(Wj) is invariant respec-
tively to a shift, that is equal to (L,LR,R). The right anchor of B(Wm)7→xm

is equal to (∅, ∅, ∅) and we say that Wm is the final strongly connected compo-
nent. Any maximal strongly connected component with this property is called
final. In a quite similar way we define the notion of the left anchor and strongly
connected components that has the left anchor equal to (∅, ∅, ∅) we call an ini-
tial components. Hence, W1 is an initial component. With a neibourhood of a
maximal connected component B(Wj)7→xj , j ∈ {1, . . . ,m} we can associate n
words v1(Wi), . . . , vn(Wi). Any vi(Wj) is the word consisted of the letters from
the i-th row of B(Wj)7→xj \ B(Wi+1)7→xi+1 . Hence according to the previous
considerations, words determined by B(Wj)7→xj . Moreover, the words vi(Wj)
are key words with a common key letter. We can choose as a common key letter
the key of a representant of Wj . Finally, let us define

Di = {vi(W ) | W ∈ max(CCS(G))}

Continuing considerations of the word w we conclude the following equalities

w = v1(W1)....v1(Wm) (1)
w = v2(W1)....v2(Wm) (2)
....... ..............
w = vn(W1)....vn(Wm) (n)

It implies that C ⊂ D∗
i for all i ∈ {1, . . . , n}. On the other hand, if w ∈

⋂n
i=1D

∗
i ,

then there exist an initial component W1, final component Wm and components
W2,. . . , Wm such that the equalities (1) − (n) are true. Hence w ∈ C, since
we can reconstruct a table T (w). Finally by the construction in the above, the
codes Di are key-codes and the sets of keys are identical. �

4 An algorithm

The main theorem proved in the previous paragraph points out the importance
of strongly connected components in CCS(G), especially those in maxCCS(G).
Hence, our problem is to check out if W ∈ CC(G) represented by (i, u) is
a member of maxCCS(G). Basing on the results of the previous section the
following conditions W has to fulfill to be in maxCCS(G):

1. (W,E|W×Z×W ) is a graph - Lemma 3.6.(1);

2. Bs(W(i,u)) is a configuration of dominoes - Lemma 3.8.(1);

3. B(W(i,u)) is a connected configuration of dominoes - Lemma 3.8.(1);

4. for every domino (j, v, z) ∈ Bs(W(i,u)) the column z is covered by a domi-
noes from Bs(W(i,u)) - Lemma 3.8.(3).
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Let us denote by MAX(G) all components in CC(G) that fulfill the con-
ditions (1),(2),(3) and (4). Of course maxCCS(G) ⊂ MAX(G) but gener-
ally it may happened that maxCCS(G) 6= MAX(G). Since the anchors of
W ∈ maxCCS(G) are fully determined by B(W ), then also the left and right
anchor for W ∈MAX(G) are determined.

Definition 4.1 Let W1,W2 ∈MAX(G). We say that a component W1 is initial
(final) if the left (right) anchor of W1 is equal to (∅, ∅, ∅). We say that W2 follows
W1 if the right anchor of W1 is equal the left anchor of W2 with respect to the
shift.

Lemma 4.2 Let W1, . . . ,Wm ∈MAX(G) be a sequence such that

• (i) W1 is an initial component,

• (ii) Wi+1 follows Wi for i = 1, . . . ,m− 1,

• (iii) Wm is a final component

Then for i = 1, . . . ,m Wi ∈ maxCCS(G) and the word

w = v1(W1) . . . v1(Wm) = .... = vn(W1) . . . vn(Wm)

is in the base of semiretract S. Moreover, for any word w in C there exist a
sequence W1, . . . ,Wm ∈ maxCCS(G) such that the above is true.

Proof All the statements follows by Theorem 3.9. �

Any sequence W1, . . . ,Wm ∈MAX(G) fulfilling assumptions (i)-(iii) is called a
generating component sequence.

Lemma 4.3 W ∈MAX(G) is in maxCCS(G) if and only if (5) there exists a
generating component sequence W1, . . . ,Wm ∈MAX(G) such that W = Wi for
some i ∈ {1, . . . ,m}.

Now we are ready to present a sketch of an algorithm that produces key-codes
D1, . . . , Dn all with the same key set K and such that S =

⋂n
i=1D

∗
i .

1. construct the set CC(G); the poset (CC(G),v) is created automatically;

2. for every W in CC(G) in the order given by poset (CC(G),v):

(a) construct Bs(W ) and B(W ):

i. test if W satisfy the conditions (1),(2);
ii. construct B(W ) - use sets B(W1) where W1 vW for some W1 v

W if necessary - Lemma 3.8.(2).
iii. test if W satisfy (3);
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iv. test if W satisfy (4); if YES then insert W into MAX(G);

(b) for any W ∈ MAX(G) compute the left and the right anchor of W ;
insert the left and the right anchor into the set Dic;

(c) for any W ∈ MAX(G) test if W satisfy the condition (5); if YES
then insert W into maxCCS(G);

(d) for any W ∈ CCS(G) produce n key words v1(W ) ∈ D1, . . . , vn(W ) ∈
Dn by the rule given in the Theorem 3.9.

Observe that if a strongly connected component W does not fulfill the con-
dition (1) or (2) or (3) then we stop the computation for W and abandon com-
putations for all U ∈ CC(G) such that W v U and U binds W . Thus, just after
verifying that W does not fulfill (1) or (2) or (3) we stop the computations for W
and come back to the point (2). Using a dictionary Dic for storing all anchors of
W one can easily verify if W2 follows W1 for any W2,W1 ∈ max(G). Hence, we
can construct a data structure that stores words v1(W ) ∈ D1, . . . , vn(W ) ∈ Dn

for all W ∈ maxCCS(G) in time

O(max(n, log|A|) ∗ (|C1|+ . . .+ |Cn|)),

where |Ci| =
∑

w∈Ci
|w| and |A| is the number of elements in the alphabet over

which the codes C1, . . . , Cn were defined. Note that the length of the input is
equal to |C1|+ . . .+ |Cn|.

5 An automaton that recognizes the base of a semire-
tract S.

The last problem we want to deal with in this paper is construction of the
minimal, deterministic automaton AS that recognizes the base of a semiretract
S. In order to get a characteristics of words in the base of a semiretract, let us
introduce two equivalence relations λ and ρ on the set maxCCS(G).

Definition 5.1 We say that W1,W2 ∈ maxCCS(G) are in relation λ (ρ) if the
left (right) anchors of W1 and W2 are equal with respect to the shift.

Note that in maxCCS(G)/λ there exist an equivalence class (block) that con-
sists of all initial keys. This equivalence class is denoted by Linit. Dually in
maxCCS(G)/λ there exists a block that consists of all final keys. This block
is denoted by Rfinal. Suppose now that maxCCS(G)/λ = {Linit, L1, . . . , Lm}.
Hence, maxCCS(G)/ρ = {Rfinal, R1, . . . , Rm} where R1, . . . , Rm ⊂ CCS(G)
are such that W2 follows W1 if and only if W1 ∈ Rj and W2 ∈ Lj for some
j ∈ {1, . . . ,m}. Now we are ready to describe the procedure that gives generat-
ing component sequence W1, . . . ,Wp ∈ maxCCS(G) for a semiretract S:

1. choose a a component W1 from the block of initial components Linit;
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2. find a block R ∈ {Rfinal, R1, . . . , Rm} that contains W1;

3. if W1 is not a final component then find a block L ∈ {L1, . . . , Lm} that is
matched to R;

4. choose a component W2 from the block L;

5. repeat steps 2-4 until the chosen component is final;

6. write down all the obtained components in the order that they were pro-
duced.

This construction justifies the following theorem.

Theorem 5.2 Any sequence of component obtained by the above procedure is a
generating key sequence.

Assume now that for any j ∈ {1, . . . ,m} a triple (A,AB,B) is the common
anchor of components W1 ∈ Rj (right) and W2 ∈ Lj (left) and denote by anchj

the word consisted of all the letters from, for example, the first row of the
rectangle covered by (A,AB,B) (see Theorem 3.9). With any component W ∈
maxCCS(G) we associate two words left(W ), right(W ) ∈ A∗ according to the
following rules. Let key(W ) denote a common key of words v1(W ), . . . , vn(W ). If
W is an initial component, then for all i = 1, . . . , n we have vi(W ) = wkey(W )ui

for some w, u1, . . . , un ∈ A∗ and we put left(W ) = w. If W is a final component
then for i = 1, . . . , n we have vi(W ) = uikey(W )w for some w, u1, . . . , un ∈ A∗
and we put right(W ) = w. Finally, if W1 ∈ Rj and W2 ∈ Lj (W2 follows W1),
then for i = 1, ..n we have vi(W1)vi(W2) = uikey(W1)w1anchjw2vj for some
w1, w2 ∈ A∗ and u1, v1, . . . , un, vn ∈ A∗. Then we put right(W1) = w1 and
left(W2) = w2. It is not hard to verify that left(W ), right(W ) are properly
defined for any W ∈ maxCCS(G).

Hence the just introduced notions allow us to formulate the following state-
ment.

Lemma 5.3 Let W1, . . . ,Wm ∈ maxCCS(G) be a generating component se-
quence. Then the word

w = left(W1)key(W1)right(W1)anchi1 . . . anchip−1 left(Wp)key(Wp)right(Wp),

where for j = 1, . . . , p − 1 the index ij ∈ {1, . . . ,m} is such that Wi ∈ Rij and
Wi+1 ∈ Lij is in the base of semiretract S.

Moreover, if w is in the base of a semiretract then there exists a generating
key sequence W1, . . . ,Wm ∈ maxCCS(G) such that the above is true.

Now we present a construction of an automaton which recognizes the base
of a semiretract S. For any L ∈ {Linit, L1, .., Lm} let us consider the language
{left(W )|W ∈ L}. If the word w is a prefix of any word from {left(W )|W ∈ L}
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then w defines a state qw. The set of all states obtained in this way we denote
by Q(L). There is an edge (qw1 , a, qw2) between states qw1 , qw2 ∈ Q(L) if and
only if w1a = w2. The set of all edges obtained in that way we denote by E(L).
Note that for any W ∈ left(W ) there exist a state qleft(W ) ∈ Q(L) such that
there is a path from q1 (the state for the empty prefix) to qleft(W ) with left(W )
as the label.

For any R ∈ {Rfinal, R1, .., Rm} let us consider the language {right(W )|W ∈
R}. If the word w is a suffix of any word from {right(W )|W ∈ R} then w defines
a state qw. The set of all states obtained in this way we denote by Q(R). There
is an edge (qw1 , a, qw2) between states qw1 , qw2 ∈ Q(L) if and only if w1 = aw2.
The set of all edges obtained in this way we denote by E(R). Note that for
any W ∈ R there exist a state qright(W ) ∈ Q(R) such that there is a path from
qright(W ) to q1 (q1 is the state for empty suffix) with right(W ) as the label.

Let j ∈ {1, . . . ,m}. Suppose now that all states in Q(Lj) and Q(Rj) are
distinguishable. If it is necessary we write an upper index Rj or Lj to underline
that a state is in Q(Rj) or Q(Lj). Assume that anchj = w1 . . . wk. We define a
set

Q(Rj , Lj) = Q(Rj) ∪QLj ∪ {q1, . . . , qk−1}

and suppose that this sum is pairwise disjoint. Then define the set of edges
E(Rj , Lj) putting

E(Rj , Lj) = E(Rj) ∪ E(Lj) ∪ {(q
Rj

1 , w1, q1), (q1, w2, q2), . . . , (qk−1, wk, q
Lj

1 )}.

Note that by the construction, for anyW1 ∈ Rj ,W2 ∈ Lj there exists a path from
qright(W1) ∈ Q(Rj) to qleft(W2) ∈ Q(Lj) with the label right(W1)anchjleft(W2).

Finally, assume that all states in Q(Linit), Q(R1, L1), . . . , Q(Rm, Lm),
Q(Rfinal) are distinguishable. We define an automaton AS = (QS , ES , IS , TS)
that recognizes the base of semiretract S as follows. The set of states is equall
to QS = Q(Linit) ∪ Q(Rfinal) ∪

⋃m
j=1Q(Rj , Lj). Let W ∈ maxCCS(G) and

assume that W ∈ Rx and W ∈ Ly for some x, y ∈ {1, . . .m}. Then there exists
two states qleft(W ) ∈ Q(Ly) and qright(W ) ∈ Q(Rx). Let us connect this states
with an edge (qleft(W ), key(W ), qright(W )). We repeat that procedure for any
component W ∈ maxCCS(G) and we denote by E1 the set of all edges obtained
in this way. Hence, we put ES = E1 ∪ E(Linit) ∪ E(Rfinal) ∪

⋃m
j=1E(Rj , Lj).

Finally, we can take q1 ∈ Q(Linit) as the only initial state and q1 ∈ Q(Rfinal)
as the only terminal state.

By the construction of the automaton AS = (QS , ES , IS , TS) and by Lemma
5.3 we have the following statement.

Lemma 5.4 The automaton AS = (QS , ES , IS , TS) described above is minimal,
deterministic and recognizes the base of semiretract S.

Proof By construction, the automaton A is deterministic. It is not hard to
verify that the sets of all words L(q) for any q ∈ Q are pairwise different, where
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L(q) denotes the set of all words that occurs as a label on a path from q to the
terminal state. Hence, the automaton is minimal. �

To construct the automaton AS = (QS , ES , IS , TS) we can use an algorithm
presented in the previous paragraph. Moreover, it is possible to propose a data
structure that allows us to construct AS in time

O(max(n, log|A|) ∗ (|C1|+ . . .+ |Cn|)).
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Powers in a class of A-strict standard

episturmian words

Amy Glen∗

1 Introduction

Introduced by Droubay, Justin and Pirillo [8], episturmian words are a natural
extension of the well-known family of Sturmian words (aperiodic infinite words
of minimal complexity) to an arbitrary finite alphabet. In this paper, the study
of episturmian words is continued in more detail. In particular, for a specific
class of episturmian words (a typical element of which we shall denote by s),
we will explicitly determine all the integer powers occurring in its constituents.
This has recently been done in [6] for Sturmian words, which are exactly the
aperiodic episturmian words over a two-letter alphabet.

A finite word w is said to have an integer power in an infinite word x if
wp = ww · · ·w (p times) is a factor of x for some integer p ≥ 2. Here, our analysis
of powers occurring in episturmian words s hinges on canonical decompositions
in terms of their ‘building blocks’. Another key tool is a generalization of singular
words, which were first defined in [17] for the ubiquitous Fibonacci word, and
later extended to Sturmian words in [15] and the Tribonacci sequence in [16].
Our generalized singular words will prove to be useful in the study of factors of
episturmian words, just as they have for Sturmian words.

This paper is organized as follows. After some preliminaries (Section 2),
we define, in Section 3, a restricted class of episturmian words upon which we
will focus for the rest of the paper. A typical element of this class will be
denoted by s. In Section 4, we give some simple results which, in turn, lead us
to a generalization of singular words for episturmian words s. The index, i.e.,
maximal fractional power, of the building blocks of s is then studied in Section 5.
Finally, in Section 6, we determine all squares (and subsequently higher powers)
occurring in s. The main results are demonstrated via the k-bonacci word ; a
generalization of the Fibonacci word to a k-letter alphabet (k ≥ 2).

∗School of Mathematical Sciences, Discipline of Pure Mathematics, University of Adelaide,
South Australia, Australia, 5005, amy.glen@adelaide.edu.au
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2 Definitions and notations

2.1 Words

Let A denote a finite alphabet. A (finite) word is an element of the free monoid
A∗ generated by A, in the sense of concatenation. The identity ε of A∗ is
called the empty word, and the free semi-group, denoted by A+, is defined by
A+ := A∗\{ε}. Similarly, we define the setAω of all infinite words (or sequences)
x = x0x1x2 · · · over A, and set A∞ := A∗∪Aω. If u is a non-empty finite word,
then uω denotes the purely periodic infinite word uuu · · · .

If w = x1x2 . . . xm ∈ A+, each xi ∈ A, the length of w is |w| = m and
we denote by |w|a the number of occurrences of a letter a in w. (Note that
|ε| = 0.) The reversal of w is w̃ = xmxm−1 . . . x1, and if w = w̃, then w is called
a palindrome.

A finite word w is a factor of z ∈ A∞ if z = uwv for some u ∈ A∗, v ∈ A∞,
and we write w ≺ z. Further, w is called a prefix (resp. suffix ) of z if u = ε
(resp. v = ε), and we write w ⊆p z (resp. w ⊆s z). An infinite word x ∈ Aω is
called a suffix of z ∈ Aω if there exists a word w ∈ A+ such that z = wx. A
factor w of a word z ∈ A∞ is right (resp. left) special if wa, wb (resp. aw, bw)
are factors of z for some letters a, b ∈ A, a 6= b.

For x ∈ Aω, Ω(x) denotes the set of all its factors, and Ωn(x) denotes the
set of all factors of x of length n ∈ N, i.e., Ωn(x) := Ω(x) ∩ An. Moreover, the
alphabet of x is Alph(x) := Ω(x) ∩ A, and we denote by Ult(x) the set of all
letters occurring infinitely often in x. An infinite word y ∈ Aω is said to be
equivalent to x if Ω(y) = Ω(x), i.e., if y has the same set of factors as x.

Let w = x1x2 · · ·xm ∈ A∗, each xi ∈ A, and let j ∈ N with 0 ≤ j ≤ m − 1.
The j-th conjugate of w is the word Cj(w) := xj+1xj+2 · · ·xmx1x2 · · ·xj , and we
denote by C(w) the conjugacy class of w, i.e., C(w) := {Cj(w) : 0 ≤ j ≤ |w|−1}.
Observe that if w is primitive (i.e., not a power of a shorter word), then w has
exactly |w| distinct conjugates.

The inverse of w ∈ A∗, written w−1, is defined by ww−1 = w−1w = ε. It
must be emphasized that this is merely notation, i.e., for u, v, w ∈ A∗, the words
u−1w and wv−1 are defined only if u (resp. v) is a prefix (resp. suffix) of w.

A morphism on A is a map ψ : A∗ → A∗ such that ψ(uv) = ψ(u)ψ(v) for
all u, v ∈ A∗. It is uniquely determined by its image on the alphabet A.

2.2 Episturmian words

Let A be an arbitrary finite alphabet. An infinite word t ∈ Aω is episturmian if
Ω(t) is closed under reversal and t has at most one right special factor of length
n for each n ∈ N. Moreover, an episturmian word is standard if all of its left
special factors are prefixes of it.

Let t be a standard episturmian word over A and let u1 = ε, u2, u3, . . .
be the sequence of its palindromic prefixes (which exist by results in [8]). Then
there exists an infinite word ∆(t) = x1x2x3 . . ., each xi ∈ A, called the directive
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word of t, such that
un+1 = (unxn)(+), n ∈ N+, (2.1)

where the palindromic right-closure w(+) of a word w is the (unique) shortest
palindrome of which w is a prefix (see [7]). The important point here is that a
standard episturmian word t can be constructed as a limit of an infinite sequence
of its palindromic prefixes, i.e., t = limn→∞ un.

For each letter a ∈ A, define the morphism Ψa on A by Ψa(a) = a and
Ψa(x) = ax for all x ∈ A \ {a}. Further, let us define [12]

µn := Ψx1Ψx2 · · ·Ψxn , µ0 = Id,

and
hn := µn(xn+1), n ∈ N.

Then, we have the following useful formula [12]

un+1 = hn−1un;

and whence, for n > 1 and 0 < p < n,

un = hn−2hn−3 · · ·h1h0 = hn−2hn−3 · · ·hp−1up. (2.2)

Lemma 2.1 [12] For all n ∈ N,

(i) hn is a primitive word;

(ii) hn = hn−1 if and only if xn+1 = xn;

(iii) if xn+1 6= xn, then un is a proper prefix of hn.

Two functions can be defined with regard to positions of letters in a given
directive word. For n ∈ N+, let P (n) = sup{p < n : xp = xn} if this integer
exists, P (n) undefined otherwise. Also, let S(n) = inf{p > n : xp = xn} if
this integer exists, S(n) undefined otherwise. By the definitions of palindromic
closure and the words un, it follows that un+1 = unxnun (whence hn−1 = unxn)
if xn does not occur in un, and un+1 = unu

−1
P (n)un (whence hn−1uP (n) = un) if

xn occurs in un. Thus, if P (n) exists, then

hn−1 = hn−2hn−3 · · ·hP (n)−1, n ≥ 1. (2.3)

A standard episturmian word t, or any equivalent (episturmian) word, is
said to be A-strict (or |A|-strict) if Alph(∆(t)) = Ult(∆(t)) = A. The k-strict
episturmian words have complexity (k−1)n+1 for each n ∈ N (i.e., (k−1)n+1
distinct factors of length n for each n ∈ N). Such words are exactly the k-letter
Arnoux-Rauzy sequences, the study of which began in [1].
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2.3 Return words

Let x ∈ Aω be recurrent, i.e., any factor w of x occurs infinitely often in x. A
return word [9] of factor w of x is a factor of x that begins with w and ends
exactly before the next occurrence of w in x. Episturmian words are recurrent
and, according to [13, Corollary 4.5], each factor of an A-strict episturmian word
has exactly |A| return words.

3 A class of strict standard episturmian words

Given any infinite sequence ∆ = x1x2x3 · · · over a finite alphabet A, we can de-
fine a standard episturmian word having ∆ as its directive word (using (2.1)). In
this paper, however, we shall only consider a specific family of A-strict standard
episturmian words.

Let Ak denote a k-letter alphabet, say Ak = {a1, a2, . . . , ak}, and suppose t
is a standard episturmian word over Ak. Then the directive word of t can be
expressed as:

∆(t) = ad1
1 a

d2
2 · · · a

dk
k a

dk+1

1 a
dk+2

2 · · · ad2k
k a

d2k+1

1 · · · ,

where the di are non-negative integers. In what follows, we restrict our attention
to the case when all di > 0; that is, we shall only study the class of k-strict
standard episturmian words s ∈ Aω

k with directive words of the form:

∆ = ad1
1 a

d2
2 · · · a

dk
k a

dk+1

1 a
dk+2

2 · · · ad2k
k a

d2k+1

1 · · · , di > 0. (3.1)

This definition of s will be kept throughout the rest of this paper.
Let us define a sequence (sn)n≥1−k of words associated with s as follows:

s1−k = a2, s2−k = a3, . . . , s−1 = ak, s0 = a1,

sn = sdn
n−1s

dn−1

n−2 · · · s
d1
0 an+1, 1 ≤ n ≤ k − 1, (3.2)

sn = sdn
n−1s

dn−1

n−2 · · · s
dn−k+2

n−k+1 sn−k, n ≥ k.

Clearly, sn is a prefix of sn+1 for all n ≥ 0 (and hence (|sn|)n≥0 is a strictly
increasing sequence of positive integers).

Example 3.1 It is well-known that the standard Sturmian word cα of irrational
slope α = [0; 1+d1, d2, d3, . . .], d1 ≥ 1, (see [3] for definition) is the standard epis-
turmian word over A = {a, b} with directive word ∆(cα) = ad1bd2ad3bd4ad5 · · · .
We have cα = limn→∞ sn, where (sn)n≥−1 is the standard sequence associated
with cα, defined by

s−1 = b, s0 = a, sn = sdn
n−1sn−2, n ≥ 1.

This coincides with our definition (3.2) above. Observe that, for all n ≥ 0, |sn| =
qn, where qn is the denominator of the n-th convergent to [0; 1 + d1, d2, d3, . . .].
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For all m ≥ 1, let Lm := d1+d2+· · ·+dm. Then, writing ∆(cα) = x1x2x3 · · ·
with each xi ∈ A, we have xn+1 6= xn if and only if n is equal to some Lm. One
easily deduces that S(Lm) = Lm+1 + 1 and P (Lm+1 + 1) = Lm, and it can also
be shown that the hLm satisfy the same recurrence relation as the qm. Hence,
|hLm | = qm, and clearly we have hLm = sm (see Proposition 3.2, to follow).

Notation 3.1 Hereafter, let Ln := d1 + d2 + · · ·+ dn for each n ≥ 1.

Proposition 3.2 For any n ≥ 1, sn = hLn. Moreover, s = lim
n→∞

sn.

Accordingly, the words (sn)n≥1 can be viewed as ‘building blocks’ of s.

Example 3.3 The Tribonacci sequence is the standard episturmian word over
{a, b, c} directed by (abc)ω. Since all di = 1, we have Ln = n, and hence
hn = sn = sn−1sn−2sn−3, for all n ≥ 1.

4 Generalized singular words

Recall the standard Sturmian word cα of slope α = [0; 1 + d1, d2, d3, . . .], d1 ≥
1 (Example 3.1). Melançon [15] (also see [4]) introduced the singular words
(wn)n≥1 of cα defined by

wn =

{
asnb

−1 if n is odd,
bsna

−1 if n is even,

with the convention w−2 = ε, w−1 = a, w0 = b. Let us remark that sn = uLnab
(resp. sn = uLnba) if n is odd (resp. even).

Singular words are profoundly useful in studying properties of factors of cα
(e.g., [4,10,11,14,15,17]). It is for this very reason that we now generalize these
words to the case of standard episturmian words s. Firstly, however, we state
some basic results concerning the words sn and uLn , as detailed in the next
section. (Proofs will appear in the extended version of this paper.)

4.1 Useful results

For each n ≥ 0, set Dn := uLn+1 . Observe that, for any m ≥ 1,

|Dm| = (dm+1 − 1)|sm|+
m−1∑
j=0

dj+1|sj |. (4.1)

Indeed, using (2.2), one finds that

Dm = uLm+1 = hLm+1−2hLm+1−3 · · ·h1h0

= h
dm+1−1
Lm

hdm
Lm−1

h
dm−1

Lm−2
· · ·hd2

L1
hd1

0

= sdm+1−1
m sdm

m−1s
dm−1

m−2 · · · s
d2
1 s

d1
0 . (4.2)
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Also note that D0 = ad1−1
1 since D0 = ud1 = hd1−2hd1−3 · · ·h1h0 = hd1−1

0 . For
technical reasons, we shall set D−j := a−1

k+1−j and |D−j | = −1 for 1 ≤ j ≤ k.

Proposition 4.1 Let 1 ≤ i ≤ k. For all n ≥ 1 − k, ai ⊆s sn if n ≡ i − 1
(mod k).

Proposition 4.2 For all n ≥ 0, sn+1Dn−k+1 = snDn, and hence |Dn| −
|Dn−k+1| = |sn+1| − |sn|.

Proposition 4.3 For all n ≥ 1, |sn| > |Dn−1|.

Recall that the words Dn and sn are prefixes of s for all n ∈ N. Thus,
according to Proposition 4.3, the palindromes D0, D1, . . . , Dn−1 are prefixes of
sn. In fact, the maximal index i such that Di is a proper prefix of sn is i = n−1,
which is evident from the following result.

Proposition 4.4 For all n ≥ 0, Dn = s
dn+1
n Dn−k.

Proposition 4.5 For all n ≥ 0, sn = Dn−ks̃nD
−1
n−k.

Remark 4.6 This result shows, in particular, that s̃n = D−1
n−ksnDn−k, i.e., s̃n

is the |Dn−k|-th conjugate of sn for each n ≥ k. (For 0 ≤ n ≤ k − 1, s̃n is
the (|sn| − 1)-st conjugate of sn since s̃n = an+1sna

−1
n+1.) The following two

corollaries are direct results of the above proposition.

Corollary 4.7 For any n ≥ 0, the word s̃nD
−1
n−k is a palindrome. In particular,

let Un = Dn−k and Vn = s̃nD
−1
n−k. Then sn = UnVn is the unique factorization

of sn as a product of two palindromes.

Corollary 4.8 For all n ≥ 0, sn = Dns̃nD
−1
n .

Now, for each n ∈ N, we define the words Gn,r by

sn = Dn−rGn,r, 1 ≤ r ≤ k − 1.

For example, in the case of Sturmian words cα, r = 1 and sn = uLnGn,1 for
all n ≥ 1, where Gn,1 = ab or ba, according to n odd or even, respectively.

Let us note that since Dn−r = a−1
k+1+n−r for 0 ≤ n < r, we also set

Gn,r = ak+1+n−rsn, 0 ≤ n < r. (4.3)

Proposition 4.9 For all n ≥ 1, snsn−1G
−1
n−1,k−1 = sn−1snG

−1
n,1.

Remark 4.10 Recall Example 3.1. For cα with α = [0; 1 + d1, d2, d3 . . .], it
is well-known that, for all n ≥ 2, snsn−1(xy)−1 = sn−1sn(yx)−1, where x, y ∈
{a, b}, x 6= y, and xy ⊆s sn−1. This is known as the Near-Commutative Property
of the words sn and sn−1. Because snsn−1(xy)−1 = snDn−2 and sn−1sn(yx)−1 =
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sn−1Dn−1, Proposition 4.9 is merely an extension of this property to standard
episturmian words s. It is also worthwhile noting that Proposition 4.9 shows
that sn is a prefix of sn−1sn.

Proposition 4.2 implies that |sn+1| − |Dn| = |sn| − |Dn−k+1|, and hence
|Gn+1,1| = |Gn,k−1|. In fact:

Proposition 4.11 For all n ≥ 1, Gn,1 = G̃n−1,k−1.

Proposition 4.12 Let 1 ≤ i ≤ k and 1 ≤ r ≤ k − 1. For all n ≥ 0,

(i) ai ⊆p Gn,r if n ≡ i+ r − 1 (mod k);

(ii) ai ⊆s Gn,r if n ≡ i− 1 (mod k).

Hereafter, we set d−j = 0 for j ≥ 0.

4.2 Singular n-words of the r-th kind

By definition of the words (sn)n≥1−k (see (3.2)) and the fact that s = limn→∞ sn,
one deduces that, for any n ≥ 0, s can be written as a concatenation of blocks
of the form sn, sn−1, . . . , sn−k+1, i.e.,

s = [((sdn+1
n sdn

n−1 · · · s
dn−k+3

n−k+2 sn−k+1)dn+2sdn+1
n · · · sdn−k+4

n−k+3 sn−k+2)dn+3

(sdn+1
n sdn

n−1 · · · s
dn−k+3

n−k+2 sn−k+1)dn+2sdn+1
n · · · sdn−k+5

n−k+4 sn−k+3]dn+4 · · · . (4.4)

We shall call this unique decomposition the n-partition of s. This will be a
useful tool in our subsequent analysis of powers of words occurring in s (Section
6, to follow).

Remark 4.13 Since each factor of s has exactly k different return words, two
consecutive sn+1−i blocks (1 ≤ i ≤ k) of the n-partition are separated by a word
V , of which there are k different possibilities. From now on, it is advisable to
keep this observation in mind.

Lemma 4.14 Let 1 ≤ r ≤ k − 1. For any n ∈ N+, a factor u of length |sn| of
s is a factor of at least one of the following words:

• Cj(sn), 0 ≤ j ≤ |sn| − 1;

• sdn−r+1−1
n−r · · · sdn−k+2

n−k+1 sn−ks
dn
n−1 · · · s

dn−r+2

n−r+1 sn−rsn if n ≥ r;

• an+1sna
−1
n+1an−r+k+1sn if n < r.

Remark 4.15 The word sdn−r+1−1
n−r · · · sdn−k+2

n−k+1 sn−ks
dn
n−1 · · · s

dn−r+2

n−r+1 sn−r (1 ≤ r ≤
k − 1) has length |sn|.
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Lemma 4.16 Let 1 ≤ r ≤ k − 1. For any n ≥ r, we have

s
dn−r+1−1
n−r · · · sdn−k+2

n−k+1 sn−ks
dn
n−1 · · · s

dn−r+2

n−r+1 sn−r = Dn−rG̃n,r,

and for 1 ≤ n < r, an+1sna
−1
n+1an−r+k+1 = G̃n,r.

Whence, it is now plain to see that each word G̃n,rsn = G̃n,rDn−rGn,r is a
factor of s. We will now partition the set of factors of length |sn| of s into k
disjoint classes.

Theorem 4.17 Let 1 ≤ r ≤ k− 1. For any n ∈ N+, the set of factors of length
|sn| of s can be partitioned into the following k disjoint classes:

• Ω0
n := C(sn) = {Cj(sn) : 0 ≤ j ≤ |sn| − 1};

• Ωr
n := {w ∈ A∗k : |w| = |sn| and w ≺ x−1G̃n,rDn−rGn,rx

−1}, where x is
the last letter of Gn,r.

That is, Ω|sn|(s) = Ω0
n

�
∪ Ω1

n

�
∪ · · ·

�
∪ Ωk−1

n .

Let us remark that Ω̃r
n := {w̃ : w ∈ Ωr

n} = Ωr
n since x−1G̃n,rDn−rGn,rx

−1

is a palindrome. We shall call the factors of s in Ωr
n the singular n-words of

the r-th kind. Such words will play a key role in our study of powers of words
occurring in s.

Evidently, for Sturmian words cα, Ω1
n = {wn} and we have Ω|sn|(cα) =

C(sn) ∪ {wn}.

5 Index

A word of the form w = (uv)nu is written as w = zr, where z = uv and
r := n+ |u|/|z|. The rational number r is called the exponent of z, and w is said
to be a fractional power.

Now suppose x is an infinite word. For any w ≺ x, the index of w in x is
given by the number

ind(w) = sup{r ∈ Q : wr ≺ x},

if such a number exists; otherwise, w is said to have infinite index in x. Fur-
thermore, the greatest number r such that wr is a prefix of x is called the prefix
index of w in x. Obviously, the prefix index is zero if the first letter of w differs
from that of x, and it is infinite if and only if x is purely periodic.

The next two results extend those of Berstel [2].

Lemma 5.1 For all n ≥ 1, the prefix index of sn in s is 1 +dn+1 + |Dn−k|/|sn|.

Lemma 5.2 For all n ≥ 1, the index of sn as a factor of s is ind(sn) = 2 +
dn+1 + |Dn−k|/|sn|, and hence s contains cubes.
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6 Powers occurring in s

For each m, l ∈ N with l ≥ 2, let us define the following set of words:

P(m; l) := {w ∈ A∗k : |w| = m, wl ≺ s},

where s is the k-strict standard episturmian word over Ak = {a1, a2, . . . , ak}
with directive word ∆ given by (3.1). Also, let p(m; l) := |P(m; l)|.

The next theorem is a generalization of Theorem 1 in [6]. It gives all the
lengths m such that there is a non-trivial power of a word of length m in s.
Firstly, let us define the following k sets of lengths for fixed n ∈ N+:

D1(n) := {r|sn| : 1 ≤ r ≤ dn+1},

Di(n) := {|sr
ns

dn
n−1 · · · s

dn+3−i

n+2−i sn+1−i| : 1 ≤ r ≤ dn+1}, 2 ≤ i ≤ k − 1,

Dk(n) := {|sr
ns

dn
n−1 · · · s

dn+3−k

n+2−k sn+1−k| : 1 ≤ r ≤ dn+1 − 1}.

Theorem 6.1 Let m, n ∈ N+ be such that |sn| ≤ m < |sn+1| and suppose
m 6∈

⋃k
i=1Di(n). Then p(m; l) = 0 for all l ≥ 2.

Remark 6.2 Put simply, the above theorem states that if m 6∈
⋃k

i=1Di(n) for
some n, then there are no l-th powers of words of length m in s for any l ≥ 2.
Equivalently, if wl ≺ s with |sn| ≤ |w| < |sn+1|, then |w| ∈

⋃k
i=1Di(n). For

instance, if k = 3 and |sn| ≤ m < |sn+1| with

m 6∈ {|sr
n|, |sr

nsn−1| : 1 ≤ r ≤ dn+1} ∪ {|sr
ns

dn
n−1sn−2| : 1 ≤ r ≤ dn+1 − 1},

then p(m; l) = 0 for all l ≥ 2. For the particular case of the Tribonacci sequence,
this implies that if wl is a factor, then |w| ∈ {|sn|, |sn| + |sn−1|} for some n,
where the lengths (|si|)i≥0 are the Tribonacci numbers: T0 = 1, T1 = 2, T2 = 4,
Ti = Ti−1 + Ti−2 + Ti−3, i ≥ 3.

The proof of Theorem 6.1 requires several lemmas (Lemmas 6.3–6.5 below).
Let us first observe that in the n-partition of s (see (4.4)) to the left of each sn

block, there is an sn+1−j block for some j ∈ [1, k]. Also note that each sn+1−j

is a prefix of sn. Furthermore, to the left of each sn+1−i block is another sn+1−i

block or an sn+2−i block, for each i ∈ [2, k].

Lemma 6.3 Let n ∈ N+. Consider a word w ≺ s of the form w = usnv for
some words u, v ∈ A∗k, u 6= ε.

(i) If w = u1u2, where u1 ⊆s sn+1−i for some i ∈ [1, k] and u2 ⊆p sn, then
u1 = u.

(ii) If w = u1sn+1−iu2 for some i ∈ [2, k], where u1 ⊆s sn+2−i and u2 ⊆p sn,
then u1 = u or u1sn+1−i = u.
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(iii) If w = u1sn+1−iu2 for some i ∈ [2, k−1], where u1 ⊆s sn+1−i and u2 ⊆p sn,
then u1 = u or u1sn+1−i = u.

Lemma 6.4 Let c ∈ Ak and n ∈ N be fixed. Consider an occurrence of csn in
s. Then the letter c is the last letter of a block sn+1−i of the n-partition of s, for
some i ∈ [1, k], and the integer i (equiv. the block sn+1−i) is uniquely determined
by c. In particular, in every occurrence of sn+1−isn in s, the word sn+1−i is a
block in the n-partition of s.

That is, occurrences of words w containing csn (c ∈ Ak) must be aligned to the
n-partition of s. Now we have an analogue of Lemma 3.5 in [5]:

Lemma 6.5 Let n ∈ N+ and suppose u ≺ s with |sn| ≤ |u| < |sn+1|. Then the
following assertions hold.

(1) For all i ∈ [1, k], there is at most one position in sn+1−i such that any
occurrence of u in s which starts in some sn+1−i block of the n-partition
of s must start at this particular position in sn+1−i.

(2) For all i ∈ [1, k − 1], if u can start at position l in sn+1−i and at position
m in sn−i, then l = m.

Notation 6.1 Given l ∈ N and w ∈ A∗k, denote by Prefl(w) the prefix of w of
length l if |w| ≥ l, w otherwise. Likewise, denote by Suffl(w) the suffix of w
of length l if |w| ≥ l, w otherwise. Recall that Ωr

n denotes the set of singular
n-words of the r-th kind (1 ≤ r ≤ k − 1), as defined in Theorem 4.17.

Lemma 6.6 Let n ∈ N+ and suppose w ∈ Ω1
n+1−i for some i ∈ [1, k− 1]. Then

w begins with v := Suffl(x−1G̃n+1−i,1) for some l ∈ N with 1 ≤ l ≤ |Gn+1−i,1|−1.
Moreover, the word vsn+1−i occurs at position p in s if and only if the n-partition
of s contains an sn starting at postion p+l and an sn−i ending at position p+l−1.
In particular, w occurs at exactly those positions where vsn+1−i occurs in s.

Note 6.7 It is assumed that n ≥ i.

Consider two distinct occurrences of a factor w in s, say

s = uwv = u′wv′, |u′| > |u|,

where v, v′ ∈ Aω
k . These two occurrences of w in s are said to be positively

separated (or disjoint) if |u′| > |uw|, in which case u′ = uwz for some z ∈ A+
k ,

and hence s = uwzwv′.

Lemma 6.8 For any n ∈ N+, successive occurrences of a singular word w ∈⋃k−1
j=1 Ωj

n in s are positively separated.

The next lemma follows from Lemmas 5.2, 6.6 and 6.8.
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Lemma 6.9 Let n ∈ N+ and suppose u ≺ s with |u| = |sn|. Then u2 ≺ s if and
only if u ∈ C(sn). In particular, if u is a singular word of any kind of s, then
u2 ⊀ s.

More generally, we have the following result.

Lemma 6.10 Let n ∈ N+ and suppose u2 ≺ s with |sn| ≤ |u| < |sn+1|. Then u
does not contain a singular word from the set Ω1

n+1−i for any i ∈ [1, k − 1].

6.1 Squares

The next two main theorems concern squares of factors of s of length m <
d1 + 1 = |s1| and length m ≥ |s1|, respectively.

A letter a in a finite or infinite word w is separating for w if any factor
of length 2 of w contains the letter a. For example, a is separating for the
infinite word (aaba)ω. If a is separating for an infinite word x, then it is clearly
separating for any factor of x. According to [8, Lemma 4], since the standard
episturmian word s begins with a1, the letter a1 is separating for s and its factors.
Moreover, a1 occurs in runs of length d1 or d1 + 1 in s (inspect the 0-partition
of s), and the following is deduced:

Theorem 6.11 For 1 ≤ r ≤ d1, we have

p(r; 2) =

{
1 if r ≤ (d1 + 1)/2,
0 if r > (d1 + 1)/2.

In particular, P(r; 2) = {(ar
1)2} for r ≤ (d1 + 1)/2, and P(r; 2) = ∅ for r >

(d1 + 1)/2.

Theorem 6.12 Let n, r ∈ N+.

(i) For 1 ≤ r ≤ dn+1,

p(|sr
n|; 2) =


|sn| if 1 ≤ r < 1 + dn+1/2,
|Dn−k|+ 1 if dn+1 is even and r = 1 + dn+1/2,
0 if 1 + dn+1/2 < r ≤ dn+1.

(6.1)

That is,

P(|sr
n|; 2) =


{Cj(sr

n) : 0 ≤ j ≤ |sn| − 1} if 1 ≤ r < 1 + dn+1/2,
{Cj(sr

n) : 0 ≤ j ≤ |Dn−k|} if dn+1 is even
and r = 1 + dn+1/2,

∅ if 1 + dn+1/2 < r ≤ dn+1.

(6.2)
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(ii) For 1 ≤ r ≤ dn+1 and i ∈ [2, k] (with r 6= dn+1 if i = k), we have

p(|sr
ns

dn
n−1 · · · s

dn+3−i

n+2−i sn+1−i|; 2) = |Dn+1−i|+ 1. (6.3)

That is,

P(|sr
ns

dn
n−1 · · · s

dn+3−i

n+2−i sn+1−i|; 2)

= {Cj(sr
ns

dn
n−1 · · · s

dn+3−i

n+2−i sn+1−i) : 0 ≤ j ≤ |Dn+1−i|}. (6.4)

Remark 6.13 For standard Sturmian words cα, we have sn = Dn−1xy, where
x, y ∈ {a, b} (x 6= y), and hence |Dn−1| = qn − 2 for all n ≥ 1. Accordingly,
Theorem 6.12 agrees with Theorem 3 in [6] for the case of a two-letter alphabet.

Theorem 6.11 is trivial, whereas the proof of Theorem 6.12 requires the
following two lemmas.

Lemma 6.14 Let n ∈ N+ and let u2 = u(1)u(2) be an occurrence of u2 in s,
where |sn| ≤ |u| < |sn+1|.

(i) For all n ≥ 1, if |u| = |sr
n| with 1 ≤ r ≤ dn+1, then u(1) begins in an sn

block of the n-partition of s. Moreover, u2 is a factor of sdn+1+2
n snv

−1 =
s
dn+1+2
n Dn−k, where |v| = |sn| − |Dn−k|.

(ii) Let i ∈ [2, k − 1]. For all n ≥ i− 1, if |u| = |sr
ns

dn
n−1 · · · s

dn+3−i

n+2−i sn+1−i| with
1 ≤ r ≤ dn+1, then u(1) starts in an sn block and contains an sn+1−i block
that is followed by an sn block in the n-partition of s. Moreover, u2 is a
factor of (sr

ns
dn
n−1 · · · s

dn+3−i

n+2−i sn+1−i)2Dn+1−i, which is a factor of

(sdn+1
n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i)2Dn+1−i.

(iii) For all n ≥ k−1, if |u| = |sr
ns

dn
n−1 · · · s

dn+3−k

n+2−k sn+1−k| with 1 ≤ r ≤ dn+1−1,
then u(1) starts in an sn block and contains an sn+1−k block of the n-
partition of s. Moreover, u2 is a factor of

(sr
ns

dn
n−1 · · · s

dn+3−k

n+2−k sn+1−k)2Dn+1−k ,

which is a factor of

s2n+1 = (sdn+1
n sdn

n−1 · · · s
dn+3−k

n+2−k sn+1−k)2.

Lemma 6.15 For all n, r ∈ N+ and i ∈ [2, k], the word

v := sr
ns

dn
n−1 · · · s

dn+3−i

n+2−i sn+1−i

is primitive.
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6.2 Cubes and higher powers

Our subsequent analysis of cubes and higher powers occurring in s is now an
easy task due to the above consideration of squares. Extending Theorem 6.12
(see Theorem 6.17 below), only requires the following lemma, together with
arguments used in the proof of Theorem 6.12.

Lemma 6.16 Let n ∈ N+ and suppose u3 ≺ s with |sn| ≤ |u| < |sn+1|. Then
u3 does not contain a singular word from the set Ω1

n+1−i for any i ∈ [1, k − 1].

Theorem 6.17 Let n, r, l ∈ N+, l ≥ 3.

(i) For 1 ≤ r ≤ dn+1,

p(|sr
n|; l) =


|sn| if 1 ≤ r < (dn+1 + 2)/l,
|Dn−k|+ 1 if r = (dn+1 + 2)/l,
0 if (dn+1 + 2)/l < r ≤ dn+1.

(6.5)

That is,

P(|sr
n|; l) =


{Cj(sr

n) : 0 ≤ j ≤ |sn| − 1} if 1 ≤ r < (dn+1 + 2)/l,
{Cj(sr

n) : 0 ≤ j ≤ |Dn−k|} if r = (dn+1 + 2)/l,
∅ if (dn+1 + 2)/l < r ≤ dn+1.

(6.6)

(ii) For 1 ≤ r ≤ dn+1 and i ∈ [2, k] (with r 6= dn+1 if i = k), we have

p(|sr
ns

dn
n−1 · · · s

dn+3−i

n+2−i sn+1−i|; l) = 0. (6.7)

Example 6.18 Let us define the k-bonacci word to be the standard episturmian
word ηk ∈ Aω

k with directive word (a1a2 · · · ak)ω. Since all di = 1, we have
sn = sn−1sn−2 · · · sn−k for all n ≥ 1 (and the lengths |sn| are the k-bonacci
numbers). Thus, for fixed n ∈ N+ and l ≥ 2, if wl ≺ ηk with |sn| ≤ |w| < |sn+1|,
then we necessarily have |w| = |sn|+ |sn−1|+ · · ·+ |sn+1−i| for some i ∈ [1, k−1]
(by Theorem 6.1). The preceding theorems reveal that

P(1; 2) = {a1}, P(|sn|; 2) = C(sn) = Ω0
n

and
P(|sn|; 3) = {Cj(sn) : 0 ≤ j ≤ |Dn−k|}.

Furthermore, for each i ∈ [2, k − 1], we have

P(|snsn−1 · · · sn+1−i|; 2) = {Cj(snsn−1 · · · sn+1−i) : 0 ≤ j ≤ |Dn+1−i|}.

All other P(|w|; l) = ∅, l ≥ 2. In particular, k-bonacci words are 4-power free.
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7 Concluding remarks

Theorems 6.11, 6.12 and 6.17 also suffice to describe all integer powers occurring
in any (episturmian) word t ∈ Aω

k that is equivalent to s. (See [12, Theorem
3.10] for a definition of such t.) The problem of determining all integer powers
occurring in general standard episturmian words (with not all di necessarily
positive) remains open.
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Post Correspondence Problem for

morphisms with unique blocks

Vesa Halava, Tero Harju, Juhani Karhumäki∗, Michel Latteux †

Abstract

In the Post Correspondence Problem (PCP) an instance (h, g) consists
of two morphisms h and g, and the problem is to determine whether or not
there exists a word w such that h(w) = g(w). Here we prove that the PCP
is decidable for instances with unique blocks and that the infinite PCP is
decidable for instance with unique continuation in the construction of the
solution. These results establish a new larger class of decidable instances
of the PCP, including the class of marked instances.

1 Introduction

In the Post Correspondence Problem (PCP, for short), we are given two mor-
phisms h, g : A∗ → B∗, where A and B are finite alphabets, and we are asked
whether or not there exists a nonempty word w ∈ A∗ such that h(w) = g(w).
The pair (h, g) is called an instance of the PCP and a word w ∈ A+ is a solution
of the instance (h, g) if h(w) = g(w). The set of all solutions,

E(h, g) = E(I) = {w ∈ A+ | h(w) = g(w)},

is called the equality set of the instance I = (h, g). The size of an instance I is
|A|, that is, the cardinality of the domain alphabet of the morphisms.

The PCP is undecidable in this general form (see [12]). The borderline
between decidable and undecidable sets of instances has been investigated in
several occasions by restricting the instances of the PCP. For example, it is an
easy exercise to show that the unary PCP, where the domain alphabet has only
one letter, is decidable. An instance (h, g) of the PCP, where h, g : A∗ → B∗,
is binary if |A| = 2. It was proved in [1] that the PCP is decidable for binary
instances; see also [5] or [6] for a somewhat simpler proof. On the other hand,
the PCP is undecidable for instances with domain alphabets A satisfying |A| ≥ 7
(see [11]).
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Cédex, France, latteux@lifl.fr

265



266 Words 2005

Another known borderline between decidability and undecidability is pro-
vided by marked and prefix morphisms. A morphism h : A∗ → B∗ is said to be
marked if the images h(a) and h(b) of any two different letters a, b ∈ A begin
with a different letter. The problem where the instances are pairs of marked
morphisms is called the marked PCP (consisting of marked instances). It was
proved in [9], that the marked PCP is decidable in general. On the other hand,
in [13] it was shown that the PCP is undecidable for instances of prefix mor-
phisms. A morphism is called prefix if no image of a letter is a prefix of an image
of another letter.

In this paper we study instances of the PCP, which are not necessary marked,
but they can be reduced to instances of the marked PCP. This reduction is due
to the unique condition satisfied by the original instance.

We also study the infinite PCP in the infinite solutions of the instances (h, g),
which satisfy the condition of the unique continuation. Two (finite) words u and
v are said to be comparable, if one is a prefix of the other. Let ω = a1a2 · · ·
be an infinite word over A where ai ∈ A for each index i = 1, 2, · · · . Note that
h(ω) = g(ω) if the morphisms h and g agree on ω, that is, if h(u) and g(u) are
comparable for all finite prefixes u of ω. We also say that such an infinite word
ω is an infinite solution of the instance I = (h, g).

The problem whether or not a given instance of the PCP has an infinite
solution is called naturally the infinite PCP, or ωPCP, for short. It was shown
by Ruohonen [13] that there is no algorithm to determine whether a general
instance of the PCP has an infinite solution. I

It was proved in [3] that the ωPCP is decidable for marked instances of the
PCP. Later, using the previous result, it was shown in [7] that the ωPCP is
decidable for all binary instances. Recently, it was proved in [4] that the ωPCP
is undecidable for instances of size 9.

We shall now fix some notation. The empty word is denoted by ε. The length
of a word u is denoted by |u|. A word u ∈ A∗ is said to be a prefix of a word
v ∈ A∗, denoted by u ≤ v, if v = uw for some w ∈ A∗. Also, if u 6= ε and w 6= ε
in v = uw, then u is a proper prefix of v, and this is denoted by u < v. Recall
that u and v are comparable, u ./ v, if u ≤ v or v ≤ u. The longest common
prefix of the words u and v is denoted by u ∧ v. If v = uw then we also write
u = vw−1 and w = u−1v.

A word u ∈ A∗ is said to be a suffix of a word v ∈ A∗, if v = wu for some
w ∈ A∗. If u 6= ε and u 6= v, then the suffix u is proper.

Finally, a morphism h is called non-erasing if h(w) = ε implies that w = ε,
i.e., no image of a letter is empty for h.

2 Unique block instances

The basic result on which we build the results of this paper is the following,
see [9] or [2] for proofs.
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Theorem 2.1 The PCP is decidable for marked instances of any size.

The basic idea of the proofs is the concept of blocks. We aim at a decision
method for the PCP, but we start with the following simpler problem:

Problem 2.1 Given an instance I = (h, g) of the marked PCP, where h, g :
A∗ → B∗, and b ∈ B. Does there exist x, y ∈ A+ such that h(x) = g(y) and
b ≤ h(x)?

We do not look for solutions for h(x) = g(x) here, but only for h(x) = g(y), and
we additionally require that h(x) begins with a specific letter b. This problem is
known to be decidable for two morphisms in general, the reasoning being that
the language h(A∗) ∩ bB∗ is regular, and there exist such words x and y if and
only if (

h(A∗) ∩ bB∗) ∩ (g(A∗) ∩ bB∗) 6= ∅, (2.1)

and the emptiness problem is decidable for regular languages. If h(u) = g(v)
and h(u′) 6= g(v′) for all ε < u′ ≤ u and ε < v′ ≤ v with (u′, v′) 6= (u, v), and
b ≤ h(u), then the pair (u, v) is called a block or a a block for the letter b, and
u and v are called the block words. Denote by Sb(h, g) or Sb, for short, the set
of all blocks for letter b.

If (u, v) is a solution of the equation h(x) = g(y), then there exist decompo-
sitions u = u1u2 · · ·uk and v = v1v2 · · · vk of u and v such that (ui, vi) ∈ Sbi

for
bi ∈ B for i = 1, . . . , k. Thus taking u = w = v, where w is a solution of the
marked instance (h, g), there exists a block decomposition of w,

w = u1u2 · · ·uk = v1v2 · · · vk, (2.2)

where (ui, vi) ∈ Sbi
for bi ∈ B for i = 1, . . . , k. This means that each solution is

a concatenation of blocks.
For marked instance (h, g) the block for every letter a is unique, and, there-

fore, every solution has unique block decomposition, see [9] or [2] for proofs.
Let us now define the first property of unique continuation:

UC1. The instance (h, g), where h, g : A∗ → B∗, of the PCP, is
called unique block instance if, for every letter a ∈ A,

1. the block (au, v) is unique, and

2. the block (u, av) is unique,

if they exist.

Note that in (UC1) we assume that every letter of a ∈ A is the first letter
of at most one block in block words of both h and g. Clearly, the condition
(UC1) implies that h and g are non-erasing. If an instance I satisfies (UC1),
and assume that (u, v) is a block and a ≤ u, a ∈ A, then we denote β(a) = (u, v).
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Example 2.2 We give an example of a non-marked unique block instance.

a b c d
h ab abc cccc b
g a babc cc bbc

has unique blocks, the blocks are (ab, ab), (c, cc) and (db, b). For example,
h(adci) ./ g(adcj) and h(aaci) ./ g(abcj) for all i and j, but there is no block
of the form (adci, adcj) or (aaci, abcj). Clearly, w = ab is a solution of the PCP
and ω = adcω is a solution of ωPCP for this instance.

Note that the instances satisfying the condition that, for all b ∈ B,

|Sb| ≤ 1,

is a subclass of (UC1). We leave the details for the reader.
Now the condition (UC1) ensures the reduction to marked PCP.

Theorem 2.3 The PCP is decidable for unique block instances.

Proof Assume that I = (h, g), where h, g : A∗ → B∗, is a unique block instance.
Now define the instance I ′ = (h′, g′) of the marked PCP, where h′, g′ : C∗ → A∗

and
C = {a ∈ A | β(a) exists} .

We set for a ∈ C and (the unique) block β(a) = (u, v)

h′(a) = u and g′(a) = v.

Clearly, h′ and g′ are marked by condition (UC1). Note that a ≤ h′(a) for all
a ∈ C.

We prove that I ′ has a solution if and only I has. Indeed, assume, that I
has a solution w, and let

u1u2 · · ·uk = w = v1v2 · · · vk

be its block decomposition, where (ui, vi) = β(ai). The block decomposition is
unique, since the first block (u1, v1) is unique for the letter a1 ≤ w etc. Now,
for w′ = a1a2 · · · ak,

h′(w′) = u1u2 · · ·uk = w = v1v2 · · · vk = g′(w′),

and w′ is a solution of I ′.
For the other direction, assume that I ′ has a solution w′ = a1a2 · · · ak. Now

w = h′(w′) = g′(w′) is a solution of I, since by the definition of I ′

h(h′(w′)) = h(u1u2 · · ·uk) = g(v1v2 · · · vk) = g(g′(w′)),

where (ui, vi) = β(ai) for some letters ai ∈ C for all i, since h(ui) = g(vi) for all
i.

The result follows by Theorem 2.1. �



269

An effective decision procedure uses exactly the same technique as the algo-
rithm for marked PCP in [9]. Indeed, for an instance I = (h, g) of the marked
PCP, the successor I ′ = (h′, g′) is build as in the proof of Theorem 2.3. This
successor construction is iterated and a successor sequence I(i) = (h(i), g(i)) is
defined. The conclusion is that this sequence is ultimately periodic, that is, there
exist numbers n and d such that I(i) = I(i+d) for all i ≥ n. Finally, there exists
a solution beginning with a letter a for I if and only if h(i)(a) = a = g(i)(a) for
all i ≥ n. See [9] for more detailed study and proofs. Note that for an instance
I of the marked PCP the letters for which a minimal solution appears can be
detected and the minimal solution for each letter is unique, that is,

Emin(I) = E(I) \ E(I)2

= {w1, w2, . . . , wk | wi is the minimal solution for letter ai} .

Now by the proof of Theorem 2.3, we obtain

Corollary 2.4 Let I = (h, g) be a unique block instance of the PCP and assume
that the domain alphabet is A. The following sets can be effectively found:

1. S = {a ∈ A | there exists a solution w for I, a ≤ w}

2. Emin(I) is a finite marked set effectively computable. Marked here means
that every element of E(I) begins with different letter.

In order to make use of Theorem 2.3, we must be able to prove that we may
detect the unique block instances. Therefore, we need to prove

Theorem 2.5 It is decidable, whether or not an instance (h, g) of the PCP is
a unique block instance.

Proof We establish a procedure for deciding whether or not an instance is a
unique block instance.

Let I = (h, g), where h, g : A∗ → B∗, be an instance of the PCP. For a
letter a ∈ A, construct the minimal deterministic finite automata for the regular
language

Ha = h(aA∗) ∩ g(A∗).

This can be done by the usual tricks in the theory of finite automata, by first
defining automata for languages h(aA∗) and g(A∗), and then using the con-
struction in [10] for intersection. The minimal automaton can be found with
so called The Method of Quotients in [10]. Let A be the automaton. Now I
satisfies condition 1 in (UC1) for the letter a only if A is not branching, that is,
there is a unique path from initial state to the final state in A reading a word
wa ∈ Ha. Indeed, then Ha = w∗a. We still need to check that the word au such
that h(au) = wa is unique, but this can be checked simply by trying all possible
coverings of wa by images of h. Now, only if au is unique, the condition 1 in
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(UC1) is satisfied. We still need to decide whether or not the condition 2 holds,
but this can done similarly to the check of uniqueness of au for all wa, that is,
check that the words v such that g(v) = wa are unique. Still, we need to check
that all these (now unique) v’s for wa’s begin with different letters.

�

Now the property (UC1) does not help in the ωPCP, since no reduction
to marked infinite PCP can be established. Indeed, unique block instance can
have an infinite solution without block decomposition and still be non-ultimately
periodic.

For the ωPCP we need a more stronger unique continuation condition to
have a decidable ωPCP.

3 Unique continuation instances

UC2. The instance (h, g), where h, g : A∗ → B∗, of the PCP, is
called unique continuation instance, if, for u, v ∈ A∗, h(u) < g(v)
or g(v) < h(u), then there exists at most one letter x such that
h(ux) ./ g(v) or h(u) ./ g(vx), respectively.

First of all,

Theorem 3.1 It is decidable, whether or not an instance of the PCP is a unique
continuation instance.

Proof Let I = (h, g), where h, g : A∗ → B∗, be an instance of the PCP. We
define the following procedure called Continuation. The input is (a, h, g) for
a ∈ A:

(1) Set i = 1, x1 = a and y1 = ε, Sg = Sh = ∅.

(2) If h(xi) = g(yi), then return Unique, case 1.

(3) Else if g(yi) < h(xi), then if si = g(yi)−1h(xi) ∈ Sh return Unique, case
2. Else set Sh := Sh ∪ {si}.
If the letter b such that g(yib) ./ h(xi) is unique, then set xi+1 = xi,
yi+1 = yib and i = i+ 1, GOTO 2. If no such b exists, return No block.
Else return Not unique.

(4) Else if h(xi) < g(yi), then if si = h(xi)−1g(yi) ∈ Sg return Unique, case
2. Else set Sg := Sg ∪ {si}.
If the letter b such that h(xib) ./ g(yi) is unique, then set yi+1 = yi,
xi+1 = xib and i = i+ 1, GOTO 2. If no such b exists, return No block.
Else return Not unique.
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Now the instance satisfies condition (UC2) if and only if, for all a ∈ A, the
procedure Continuation returns unique for both inputs (a, h, g) and (a, g, h).

�

The following theorem follows, since a unique continuation instance is unique
block instance. Indeed, the procedure Continuation can be transformed into
a procedure which determines the unique block also, simply by returning the
pair (xi, yi) if the procedure stop in the command line (2). Note that the words
si in the procedure Continuation are called suffix overflows.

Theorem 3.2 The PCP is decidable for unique continuation instances.

The difference between unique block instances and unique continuation in-
stances is that for unique block instance we may find several letters each overflow
in steps command lines (3) and (4) both the equality h(xi) = g(yi) is eventu-
ally satisfied only for one choice of the letter b. But in the unique continuation
morphisms the choice of the next letter is always deterministic according to the
overflow. Using this determinism we are able to prove that the ωPCP is de-
cidable for unique continuation instances. The proof of the decidability of the
ωPCP for unique continuation instances uses the idea of the proof of the next
theorem proved in [3].

Theorem 3.3 The ωPCP is decidable for marked instances.

We are ready to prove our main theorem on ωPCP.

Theorem 3.4 The ωPCP is decidable for unique continuation instances.

Proof Assume that I = (h, g), where h, g : A∗ → B∗, is an instance of the
ωPCP, and I is a unique continuation instance. First of all assume that E(I) = ∅,
since for any nonempty w ∈ E(I), wω is an infinite solution and we are done.

The infinite solutions of I are of two type, either they have a block decom-
position, or they do not have a block decomposition. We prove that the infinite
solutions of both type can be detected. Note that we say that an infinite solution
ω ∈ Aω has a block decomposition, if

ω = u1u2 · · · = v1v2 · · · , (3.1)

and (ui, vi) is block for some letter ai for i = 1, 2, . . . . Assume that I ′ = (h′, g′)
constructed as in the proof of Theorem 2.3. It is easy to prove that there
exists an infinite solution ω with block decomposition in (3.1) for I if and only if
ω′ = a1a2 · · · is an infinite solution of the instance I ′ of the marked ωPCP. Since
the marked ωPCP is decidable (see [3]), the solution with block decomposition
can be detected. Note that, for any infinite solution ω′ of the instance I ′, h′(ω′)
is an infinite solution of I.
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The harder case is the infinite solution without block decomposition. Assume
that ω is such an infinite solution, that is,

ω = u1u2 · · ·ukω1 = v1v2 · · · vkω2, (3.2)

where (ui, vi) are blocks for i = 1, . . . , k and ω1, ω2 ∈ Aω, and k is maximal. The
maximality here means, that ω1 and ω2 do not have block words as a prefix. We
shall describe a procedure which detects these infinite solutions.

Since there is no block as a prefix of ω1 and ω2, it is necessary, that they
both begin with letters such that no block exist for these letters. Otherwise,
by unique continuation, there would be a whole block. Clearly, such letters
are those for which the procedure Continuation returns ”unique case 2”. In
this case, a suffix overflow appears again, and, since the instance is unique
continuation instance, necessarily the overflows appear cyclically. Assume, that
(xi, yi) = (u, u′) is the pair when the first repeated overflow appears the first
time, and (xj , yj) = (uv, u′w) when the same overflow appears the second time.
It is immediate that h(uvω) = g(u′wω). Therefore, ω1 = uvω and ω2 = u′wω

for some letters b ≤ u and c ≤ u′ and for any block (x, y), b � x and c � y.
We achieve that all possible ω1 and ω2 can be determined. For each letter that
disappears, that is, there is no block for them, we construct the words ω1 and
ω2 if they exist. Note that we check also whether or not ω1 = ω2 which would
immediately imply that ω1 is an infinite solution.

What we still need is to prove that for all a1 the block part in (3.2) can be
effectively found. Note that we know that the number k is finite, since, otherwise,
there would be an infinite solution with block decomposition beginning with a1,
which would be already be detected by the first case.

We construct the word u1 . . . uk and v1 . . . vk using the same idea as in pro-
cedure Continuation. Clearly, there exists a solution (3.2) if and only if either

(u1 · · ·uk)−1(v1 · · · vk) = cz or (v1 · · · vk)−1(u1 · · ·uk) = bz

for some word z, according to whether or not |u1 · · ·uk| < |v1 · · · vk| or not. Our
algorithm works as the Continuation for (a1, h, g), but the sequence (xi, yi)
is constructed so that for each step we check that xi ./ yi. If at some step
i, xi and yi are not comparable, there is no infinite solution for a1. Similarly,
if Continuation returns ”no block”, that is no next letter for xi or yi exists
and h(xi) 6= g(yi). Now if Continuation stops in the case h(xi) = g(yi)
(and xi ./ yi), we have that xi = yidz or yi = xidz, for some letter d and
word z. In the first case, if there is a block word for g beginning with d,
we set xi+1 = xi and yi+1 = yid, and continue according to the procedure
Continuation. Otherwise, there is no block word for g beginning with d, and
xi = u1 · · ·uk and yi = v1 · · · vk. In the other case, where yi = xidz, we reason
similarly. Note that dz 6= ε, since E(I) = ∅. Since there is no infinite solution
with block decomposition, this algorithm necessarily stops.
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Finally, we need to check whether or not for the letter d there exists the
infinite words ω1 = uvω and ω2 = u′wω as above, and that

u1u2 · · ·ukuv
ω = v1v2 · · · vku

′wω.

These words are ultimately periodic and, therefore, their equality can be deter-
mined in a trivial way. �

The structure of the solutions of the marked infinite PCP was studied in [8],
and the infinite solutions of the unique continuation instances have the same
structure. Indeed, it was proved that the set of infinite solutions for the marked
instances i is of the form

Emin(I)ω ∪ Emin(I)∗ (P ∪ F ) , (3.3)

where P is a finite set of ultimately periodic words, and F is a finite set of
morphic images of fixed points of D0L systems. In the proof of Theorem 3.4 it
was proved that the solutions with block decomposition are morphic images of
solutions of a marked instance, and the solution without block decomposition
are ultimately periodic. Since the morphic images of ultimately periodic words
in P are ultimately periodic and the morphic images of morphic images of F are
of the type F , we get that

Theorem 3.5 The infinite solutions of the instance with unique continuation
property have the structure of (3.3).

Finally, we give another uniqueness property for the instances of the PCP.

UC3. The instance (h, g), where h, g : A∗ → B∗, of the PCP, is called
unique equality continuation instance, if, for u ∈ A∗ and a, b ∈ A,
h(ua) ./ g(ua) and h(ub) ./ g(ub), then either h(u) = g(u) or a = b.

We leave the following two questions as open problems: Is the PCP is decid-
able for unique equality continuation instances or not? Is it decidable whether
or not an instance of the PCP satisfies the property (UC3)?

Note that for a unique equality continuation instance I, Emin(I) is finite and
marked as well, and the set of infinite solutions of I has the structure as in (3.3).
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On systems of word equations with simple

loop sets

Štěpán Holub∗, Juha Kortelainen†

Abstract

Consider the infinite system S of word equations

{x0ui
1x1ui

2x2 · · ·ui
mxm = y0vi

1y1vi
2y2 · · ·vi

nyn | i ∈ N}

For each k ∈ N+, let Tk be the subsystem of S given by i ∈ {k, k+1, k+2}.
We prove two properties of the above system.

1) Let k ≥ 1. If ϕ is a solution of Tk such that primitive roots of
ϕ(u1), ϕ(u2), . . . , ϕ(um) are conjugated, as well as primitive roots of
ϕ(v1), ϕ(v2), . . . , ϕ(vn), then ϕ is a solution of the whole S.

2) If n = 1 then, for any k ≥ 2, a solution ϕ of Tk is also a solution of S.

1 Introduction

Classical examples of language families whose elements possess some kind of
a pumping property are regular, context-free, bounded, and commutative lan-
guages. When considering, for instance, the decidability of morphism (or some
other mapping) equivalence or effective existence of a test set for those languages,
we are led to systems of word equations where pumping in one or several points
in an equation can appear.

Throughout the paper we will study the infinite system S of word equations:

{x0ui
1x1ui

2x2 · · ·ui
mxm = y0vi

1y1vi
2y2 · · ·vi

nyn | i ∈ N}

Its subsystem of cardinality three, given by i ∈ {k, k+ 1, k+ 2}, with k ∈ N,
will be denoted Tk.

By the validity of Ehrenfeucht Conjecture [2], [4], [11], the system S has a
finite subsystem that is equivalent to S. Let us briefly survey what is known
about our system up to now.

In [1] it is shown that the single equation

un
1 = vn

1v
n
2 · · ·vn

n
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is equivalent to
{ui

1 = vi
1v

i
2 · · ·vi

n | i ∈ N}.

This fact was generalized in [6]. The results of [7] imply that if all the midwords
xi and yi are empty, the system S is equivalent to its subsystem Tk, whenever
k ≥ 2. The paper [5] considers S when max{m,n} = 3. It is proved that
in such a case it is equivalent to the subsystem induced by i = 0, 1, 2, 3, 4, 5.
Finally, in [9] it is shown that S is equivalent to its subsystem induced by
i = 0, 1, 2, . . .m+ n+ 2.

It is not known (see Open Problem 1 ), whether S has an equivalent subsystem
of a constant size, i.e., a size independent of m and n. In this paper we give
small equivalent subsystems in two special cases. It is organized as follows.

In the second section some preliminaries, definitions and well-known results
in the theory of combinatorics on words are given.

In the third section, the first of our cases is studied. We impose an additional
condition on the structure of loops, and prove that if for some k ≥ 1 there is a
solution ϕ of Tk such that the primitive roots of ϕ(u1), ϕ(u2), . . . , ϕ(um) are con-
jugated, and also the primitive roots of ϕ(v1), ϕ(v2), . . . , ϕ(vn) are conjugated,
then ϕ is a solution of whole S.

Section four explains in some generality a method, which in section five is
used to prove that if n = 1 then S is equivalent to Tk for any k ≥ 2. That is
our second special case, in which the system contains just one loop on one side.
Note that the number of loops on the other side is arbitrary.

In the sixth section some open problems and topics of further investigation
are presented.

2 Preliminaries

We suppose that the reader is familiar with basic concepts of combinatorics on
words as it can be found in [10], where also a proof is given for the following two
results belonging to the folklore of combinatorics on words.

Lemma 2.1 Let x and y be nonempty words. The following three conditions
are equivalent.

1. The words x and y are conjugate ;

2. The words x and y are of equal length and there exist unique words t1, and
t2, with t2 nonempty, such that t = t1t2 is primitive and x ∈ (t1t2)+ and
y ∈ (t2t1)+;

3. There exists a word z such that xz = zy.

Furthermore, assume that any of the three conditions above holds and that t1
and t2 are as in condition (2). Then, for each word w, we have xw = wy if and
only if w ∈ (t1t2)∗t1.



277

In the setting of the previous lemma we say that x and y are conjugated by
z.

Lemma 2.2 Two nonempty words commute if and only if they are powers of
the same (primitive) word, i.e., they have the same primitive root.

Recall that the primitive root of a word u is the shortest word r such that
u = ri for some integer i ≥ 1.

One of the strongest results in the elementary theory of combinatorics on
words is the Periodicity Lemma. A slight modification of it can be stated as
follows (for the proofs, see for instance [3], [8] and [10]).

Lemma 2.3 If two powers um and vn of nonempty words u and v have a com-
mon subword of length at least |u|+ |v| − d (d being the greatest common divisor
of |u| and |v|), then the primitive roots of u and v are conjugated.

Note that if in the previous lemma um and vn have a common prefix of length
at least |u| + |v| − d, then u and v have the same primitive root, so they are
powers of the same (primitive) word.

For each word w, the infinite word ww · · · is denoted by wω. In our consid-
erations we will also need the following lemma.

Lemma 2.4 Let u and v be words such that |u| ≤ |v| and each factor of v of
length |u| is conjugated with u. Then v is a factor of uω.

Proof Let arb be a factor of v of length |u|+1, where a and b are letters. Since
both ar and rb are conjugated with u, we deduce a = b from |ar|a = |rb|a = |u|a.
The claim follows. �

3 Conjugated primitive roots

In this section we prove the result announced in the introduction. To simplify
notation, we like to formulate it in the following way.

Theorem 3.1 Let m, n be positive integers, and x0, . . . , xm, y0, . . . , yn, u1, . . . ,
um, v1, . . . , vn words such that for each i, j ∈ {1, 2, . . . ,m} the primitive roots of
ui and uj are conjugated, and similarly for each i, j ∈ {1, 2, . . . , n} the primitive
roots of vi and vj are conjugated. Let k ≥ 1 be a positive integer. If

x0u
i
1x1u

i
2x2 · · ·ui

mxm = y0v
i
1y1v

i
2y2 · · · vi

nyn (i = k, k + 1, k + 2) (3.1)

then also

x0u
i
1x1u

i
2x2 · · ·ui

mxm = y0v
i
1y1v

i
2y2 · · · vi

nyn (i = 0, 1, 2, 3, . . . ) . (3.2)
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Proof We first introduce several additional assumptions which do not harm
generality.

Clearly, we may suppose that the words ui, i ∈ {1, . . . ,m}, and vi, i ∈
{1, 2, . . . , n}, are non-empty. Assume also that y0 = ε and that either xm = ε or
yn = ε.

Let i ∈ {1, . . . ,m−1} be such that xi is empty. We then may suppose that ui

and ui+1 do not commute, since otherwise we merge them by writing (uiui+1)j

instead of uj
iu

j
i+1.

We say that two nonempty words u and v are marked if they do not begin
with the same symbol.

Let i ∈ {1, 2, . . . ,m} be such that xi is nonempty. The reasoning below
verifies that we may consider, without loss of generality, only cases in which ui

and xi, are marked.
Suppose that z is the longest nonempty prefix of xi, which is also a prefix of

uixi . Let x′i−1 = xi−1z, u′i = z−1uiz, and x′i = z−1xi. It is not difficult to see
that x′i−1, x′i and u′i are well defined, and for any j the word

x0u
j
1x1u

j
2x2 · · ·uj

mxm

does not change if we substitute xi−1, xi, and ui by x′i−1, x′i, and u′i. Repeating
the procedure finitely many times we shall obtain the markedness.

Analogously we assume that for each i ∈ {1, 2, . . . , n − 1} such that yi = ε,
the words vi and vi+1 do not commute and that for each j ∈ {1, 2, . . . , n} such
that yj 6= ε, the words vj and yj are marked.

The proof of the theorem will now proceed by induction with respect to the
number m+ n.

Suppose that m+n ≤ 2. An obvious length argument yields that m = n = 1,
x1 = ε, |x0| = |y1|, and |u1| = |v1|. From equalities

x0u
i
1 = vi

1y1 (i = k, k + 1) (3.3)

one obtains that v1 and u1 are conjugated by x0u
k
1 = vk

1y1. Lemma 2.1 now
easily implies that (3.2) holds.

Suppose that m+ n > 2. We distinguish two main cases:

1◦ |x0| > |vk
1 |;

2◦ |x0| ≤ |vk
1 |.

Consider the first case. If |y1| > 0 then the words x0, v1 and y1 begin with the
same symbol, and v1, y1 are not marked, which is against our assumptions.

x0

vk
1

y1

vk
1

v1
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Let therefore y1 = ε.
If

|x0u
k
1| ≥ min{|vk+1

1 |, |vk
1v2|}

then the words v1 and v2 are comparable, i.e., one of them is a prefix of the
other. Since the primitive roots of v1 and v2 are conjugated, they coincide, and
v1 and v2 commute, again a contradiction with the global assumption.

x0 uk
1

vk
1

v1

vk
1

v2

Suppose, on the other hand, that

|x0u
k
1| < min{|vk+1

1 |, |vk
1v2|}.

Then the word d = v−k
1 x0 is a prefix of both v1 and v2. Surely

|uk
1| < min{|v1|, |v2|}.

From (3.1) we have

dui
1x1u

i
2x2 · · ·ui

mxm = vi−k
1 vi

2y2 · · · vi
nyn (i = k, k + 1, k + 2) . (3.4)

Let z1 and z2 be words such that

v1 = duk
1z1 and v2 = duk

1z2.

x0 d uk
1

vk
1

v1 z1

vk
1

v2 z2

By (3.4),

ui
1x1u

i
2 · · ·ui

mxm = (uk
1z1d)i−k(uk

1z2d)i−1uk
1z2y2 · · · vi

nyn (3.5)

for i = k, k + 1, k + 2.

d uk
1 u2

1

z1 d uk
1

z1 d uk
1

z2

Consider the common prefix of uk+2
1 and (uk

1z1d)2uk
1.

If
|uk+2

1 | > |u1|+ |uk
1z1d| − 1
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then, by the Periodicity Lemma, the words u1 and uk
1z1d have the same primitive

root t. Since v1 and v2 have conjugated primitive roots and their common prefix
is longer than t, they commute.

Assume that
|v1| = |uk

1z1d| > |uk+1
1 |+ 1.

If x1 6= ε, then the words u1 and x1 are not marked.

d uk
1

x1

d uk
1

u1

v1

Suppose therefore that x1 = ε. Then (3.5) implies that uk+2
1 is a prefix

of uk
1z1du1, and uk

1z1du1 is comparable with uk+1
1 u2. Therefore also uk+2

1 and
uk+1

1 u2 are comparable, and since primitive roots of u1 and u2 are conjugated,
they commute.

d uk
1 u2

1

d uk+1
1

u2

z1 d uk
1

z1 d uk
1

z2

The second main case was |x0| ≤ |vk
1 |. If

|uk+2
1 | ≥ |u1|+ |v1| − 1 and |vk+2

1 | − |x0| ≥ |u1|+ |v1| − 1 (3.6)

then, by the Periodicity Lemma, primitive roots of u1 and v1 are conjugated.
Clearly they are conjugated by x0.

x0 uk+2
1

vk+2
1

Now the number n+m can be decreased by eliminating u1 (if |u1| > |v1|) or v1
(if |v1| > |u1|) or both (if |u1| = |v1|), and we are through by induction.

Let us be more more rigorous. Using Lemma 2.1, let t = t1t2 be a primitive
word, and q, r and s positive integers such that u1 = (t1t2)q, v1 = (t2t1)r and
x0 = t2(t1t2)s. Suppose that q + s ≥ r (the opposite case being similar). Now
(3.1) allows us to deduce that

t2(tq+s−r)ix2u
i
2 · · ·ui

mxm = y1v
i
2y2 · · · vi

nyn (i = k, k + 1, k + 2) . (3.7)

By induction, we deduce that

t2(tq+s−r)ix2u
i
2 · · ·ui

mxm = y1v
i
2y2 · · · vi

nyn (i = 0, 1, 2, . . . ) (3.8)

is true. Obviously, also

t2(tq+s)ix2u
i
2 · · ·ui

mxm = ((t2t1)r)iy1v
i
2y2 · · · vi

nyn (i = 0, 1, 2, . . . ) (3.9)
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holds, and we are done.
Assume that (3.6) does not hold because of

|v1| > |uk+1
1 |+ 1. (3.10)

If x1 6= ε, the words u1 and x1 are not marked. Suppose that x1 = ε. If

|vk+1
1 | ≥ |x0|+ |uk+2

1 |

then u1 and u2 commute.

x0 uk+1
1

u1

x0 uk+1
1

u2

vk+1
1

Suppose
|vk+1

1 | < |x0|+ |uk+2
1 |.

This implies, together with (3.10), that |vk
1 | < |x0u1|. Let d = v−k

1 x0u1. Note
that d is a prefix of v1.

If y1 6= ε then v1 and y1 are not marked. Therefore y1 = ε and d is comparable
with v2. If |d| ≥ |v2| then v1 and v2 commute.

x0 u1

vk
1

v1

vk
1

v2

GF ED
d

Suppose the contrary, which implies that d is a prefix of v2 (as well as of v1).
Then both x0u

k+2
1 and x0u

k+1
1 u2 are comparable with vk+1

1 d. Since

|vk+1
1 d| = |x0u1|+ |v1| > |x0u

k+2
1 |,

the words u1 and u2 are comparable, and therefore commute.

x0 uk+1
1

u1

x0 uk+1
1

u2

vk
1

v1 d

Suppose then that the second inequality of (3.6) is not true, that is |vk+1
1 | <

|x0u1| − 1. Then either v1 and y1 are not marked, or (if y1 = ε) the words v1
and v2 commute.

x0 u1

vk
1

v1

vk
1

y1v2

The proof is now complete. �



282 Words 2005

In the rest of the paper we shall prove our second result:

Theorem 3.2 Let k ≥ 2 be a positive integer. The system of equations S:

{x0ui
1x1ui

2x2 · · ·ui
mxm = y0viy1 | i ∈ N} (3.11)

is equivalent to its subsystem Tk given by i ∈ {k, k + 1, k + 2}.

4 Characteristic equation

In this section we explain the method to be used in the proof of the Theorem
3.2. It was first introduced in [7].

Let X = {x1, . . . , xk} be a set of unknowns, and e = (w1, w2) ∈ X∗ ×X∗ an
equation, such that alph(e) = X.

Consider a non-erasing morphism ϕ : X∗ → Σ∗ solving e, i.e., ϕ(w1) =
ϕ(w2), and denote di = |ϕ(xi)|.

Having got such a solution we choose a new alphabet of unknowns H, con-
struct a new equation e = (w1, w2) ∈ H∗ ×H∗, and define a length-preserving
morphism ϕ : H∗ → Σ∗.

The set H consists of letters xi,j , for i = 1, . . . , k and j = 1, . . . , di. Infor-
mally, alphabet H is a set of names of all positions in images of ϕ. This naturally
induces the morphism ψ : X∗ → H∗ defined by

ψ(xi) = xi,1 · · ·xi,di
.

With help of that morphism, the equation e is given by

wi = ψ(wi),

i = 1, 2. The equation e = (w1, w2) is called the characteristic equation of e with
respect to the morphism ϕ. Clearly the characteristic equation only depends on
the values di, . . . , dk.

Finally, the morphism ϕ is defined by

ϕ ◦ ψ = ϕ.

It should be clear that ϕ is well defined and length-preserving. Indeed, it maps
H into Σ, since ϕ(xi,j) is the jth letter of ϕ(xi) for each j and i.

The definition also immediately implies that ϕ is a solution of e:

ϕ(w1) = ϕ ◦ ψ(w1) = ϕ(w1) = ϕ(w2) = ϕ ◦ ψ(w2) = ϕ(w2).

Example 4.1 Consider equation yzxy = xyyz and its solution ϕ:

ϕ(x) = ab, ϕ(y) = a, ϕ(z) = ba.
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Then we may denote letters in the new alphabet by

H = {x1,x2,y1, z1, z2},

the characteristic equation is

y1z1z2x1x2y1 = x1x2y1y1z1z2,

morphism ψ is defined by

ψ(x) = x1x2, ψ(y) = y1, ψ(z) = z1z2,

and ϕ by

ϕ(x1) = a, ϕ(x2) = b,

ϕ(z1) = b, ϕ(z2) = a,

ϕ(y1) = a.

The reason for introducing the characteristic equation e is that it allows to
produce linear equalities, which can yield—as we shall see in the next section—
important information about e.

The linear equalities are obtained in the following way. Let p be a factor
of the word w = ϕ(w1) = ϕ(w2). The number of occurrences of p in w can be
expressed in two different ways, using w1 and w2, respectively.

Let’s first introduce some more notation. By F(w) denote the set of all
factors of a word w, and by |w|p the number of occurrences of the word p in w.

Now, given an arbitrary word p ∈ Σ∗, we have∑
ϕ(α)=p

|w1|α =
∑

ϕ(α)=p

|w2|α = |w|p. (4.1)

Proof (Proof of (4.1)) Fix i ∈ {1, 2}. Recall that ϕ = ϕ ◦ψ and wi = ψ(wi).
Each occurrence of p in ϕ(wi) is therefore an image of some α ∈ F(ψ(wi))
mapped by ϕ. The number |w|p is given by the number of such preimages α in
wi. �

Example 4.2 (Example continued) Consider p = aa. The word

w = ϕ(yzxy) = ϕ(xyyz) = abaaba

contains one occurrence of p. There are nine words α ∈ H∗ satisfying ϕ(α) = aa,
namely

α1 = x1x1, α2 = x1y1, α3 = x1z2,

α4 = y1x1, α5 = y1y1, α6 = y1z2,

α7 = z2x1, α8 = z2y1, α9 = z2z2.
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Therefore (4.1) has the form

9∑
i=1

|ψ(yzxy)|αi =
9∑

i=1

|ψ(xyyz)|αi . (4.2)

The equality holds, since |ψ(yzxy)|αi is equal to one for i = 7, and is zero
otherwise, while |ψ(xyyz)|αi is one just for i = 5.

Informally, we can say that the factor aa comes on the left side of the equation
from a different source than on the right side. The formalism of the characteristic
equation is designed to express and exploit that fact.

5 One loop systems

We are now ready to prove Theorem 3.2. The theorem deals with the systems
S and Tk when n = 1, hence we define

X = {u1, . . . ,um,v1,x0, . . . ,xm,y0,y1}.

Fix k ≥ 2, and a morphism ϕ, which solves the system Tk. Define H, morphisms
ψ and ϕ as in the previous section. Our task is to show that ϕ solves S as well.
It will be done by showing that the primitive roots of all ϕ(u1), ϕ(u2), . . . , ϕ(um)
are conjugated. Theorem 2.1 then applies.

Denote

`i = x0ui
1x1ui

2x2 · · ·ui
mxm,

ri = y0viy1

for i = k, k + 1, k + 2. Recall that, for each i,

(`i, ri) = (ψ(`i), ψ(ri))

is the characteristic equation of (`i, ri) with respect to ϕ.
Define the word p, whose number of occurrences will be counted. Let t be

the shortest among the primitive roots of words ϕ(u1), ϕ(u2), . . . , ϕ(um). Then
p is defined by the following conditions:

(i) The word p is a factor of tω.

(ii) There exist a word α ∈ H+ such that

• α is a factor of `k+2,

• ψ(uk+2
j ) is a factor of α for some j ∈ {1, 2, . . . ,m}; and

• ϕ(α) = p;

(iii) If p′ satisfies (i) and (ii) then |p| ≥ |p′|.
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Proof (Example) We shall illustrate the definition of p. Let k = 2, m = 2
and

ϕ(x0) = b ϕ(x1) = aba6b ϕ(x2) = b

ϕ(u1) = a ϕ(u1) = ab.

Note that ϕ is not a solution of the considered system, but it is not important
for the definition of p.

In this case t = a, and we look for the largest power of a in `4, which covers
the image of some ϕ(ui) as required by the condition (ii). Therefore p = a5.
Although a6 is also a factor of `4, it does not satisfy (ii). �

Lemma 5.1 Let i be in {k, k + 1} and α ∈ F(`i) be a word such that ϕ(α) = p.
Then

|`k+1|α − |`k|α = |`k+2|α − |`k+1|α. (5.1)

Proof We first show that no factor of ψ(uk+1
j ), longer than |ψ(u2

j )|, is a factor
of α. Suppose the contrary. Then, by the Periodicity Lemma, the word ϕ(uj)
commutes with a conjugate of t. This implies that we can find a factor α′ of `k+2,
longer than α, such that ϕ(α′) is also a factor of t∞. It is enough, informally
speaking, to extend in α each factor of ψ(uk+1

j ), longer than |ψ(u2
j )|, to ψ(uk+2

j ).
This is a contradiction with the maximality of p.

xi−1 ui ui ui xi+1

xi−1 ui ui ui ui xi+1

GF ED
α

GF ED
α′

~~}}
}}

}}
}

��?
??

??
??

This implies that α hits some ψ(xj) for at most one j. Therefore if it contains
at least one letter of some ψ(xj) then it occurs exactly once in all `k, `k+1 and
`k+2, i.e.,

|`k|α = |`k+1|α = |`k+2|α = 1.

Note that the previous argument would not work for k = 1.
The only remaining possibility is that α is a factor of ψ(uk+1

j ), shorter than
ψ(u2

j ).
Then it is easy to see that

|`k+1|α − |`k|α = |`k+2|α − |`k+1|α = 1.

The proof is now complete. �
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Equality (4.1) yields

|ϕ(`i)|p =
∑

ϕ(α)=p

|`i|α

for i = k, k + 1, k + 2. In this point we shall exploit the requirement (ii) in the
definition of p. The condition guarantees that there is at least one word α ∈ H+

satisfying ϕ(α) = p, which is a factor of `k+2 and is neither a factor of `k nor of
`k+1. That implies, together with (5.1), that

|ϕ(`k+2)|p − |ϕ(ϕ(`k+1)|p > |ϕ(`k+1)|p − |ϕ(`k)|p. (5.2)

Confronting the last inequality with the structure of the right side of our
equations we get the following claim.

Lemma 5.2 The primitive root of ϕ(v1) is conjugated with t.

Proof Let α be a word from F(rk) ∪ F(rk+1) satisfying ϕ(α) = p. In a similar
manner as in Lemma 5.1 one can show that for our α the equality

|rk+1|α − |rk|α = |rk+2|α − |rk+1|α. (5.3)

holds. Then from (5.2) we deduce that there must exist at least one factor α of
rk+2, which is neither a factor of rk nor of rk+1, such that ϕ(α) = p. Such an α
necessarily contains the factor ψ(vk+1). The Periodicity Lemma concludes the
proof. �

Now, it can be intuitively clear that there cannot exist a loop, the primitive
root of which is not conjugated with t. A proof of this fact is given in the
following lemma.

Lemma 5.3 For any i ∈ {1, 2, . . . ,m} the primitive root of ϕ(ui) is conjugated
with t.

Proof Let j ∈ {1, 2, . . .m} and γ be a factor of ψ(u2
j ) of length |t| such that

s = ϕ(γ) is not conjugated with t. From the structure of `k and `k+1 it is
straightforward to see that |ϕ(`k)|s < |ϕ(`k+1)|s.

Let us now turn our attention to rk and rk+1. Their structure clearly implies
that the equality |ϕ(`k)|s = |ϕ(`k+1)|s holds; the preimages of s have to hit either
y0 or y1, otherwise s is conjugated with t. We have achieved a contradiction,
therefore for any j ∈ {1, 2, . . . ,m} all factors of ϕ(u2

j ) of length |t| are conjugated
with t. Lemma 2.4 and the Periodicity Lemma conclude the proof. �

By the results above, the primitive roots of words u1, u2, . . . , um are conju-
gated and, by Theorem 2.1, we are done.



287

6 Some open problems

The following problem still remains open:

Open Problem 1. Does there exist q ∈ N such that (for any m and n in N), the
system S is equivalent to the subsystem induced by i = 0, 1, 2, . . . , q?

We also wish to mention

Open Problem 2. Is the system {ui
1 = vi

1v
i
2 · · · vi

n | i ∈ N} equivalent to the
subsystem induced by i = 1, 2, 3?
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A note on the number of distinct squares in

a word∗

Lucian Ilie†

Abstract
Fraenkel and Simpson [2] proved that the number of distinct squares in

a word of length n is at most 2n. Based on the numerical evidence, it has
been conjectured that this number is actually less than n; see also [6]. We
improve here this bound to 2n−Θ(log n).

1 Introduction and basic definitions

Fraenkel and Simpson [2] investigated the number of distinct squares in a word
and showed it to be at most twice the length of the word. Based on the numerical
evidence, it has been conjectured that this number is actually less than the
length; see also [6]. We improve here this bound slightly.

Let us fix first some notation. For an alphabet A, A∗ denotes the set of finite
words over A; ε is the empty word. The length of w ∈ A∗ is denoted |w|. For
x, y, w ∈ A∗, if w = xy, then x is a prefix of w, denoted x ≤ w; if also x 6= w,
then x is called proper prefix, denoted x < w. If w = xyz, then y is a factor of
w; if y = xx, for some word x 6= ε, then y is called a square. For notions and
results from combinatorics on words, we refer to [4, 5].

We next recall briefly the approach in [2]. Fraenkel and Simpson counted
each square at the beginning of its last occurrence in the word. For a word
w ∈ A∗ of length n, consider the sequence s(w) = s1s2 . . . sn, where si is the
number of squares whose last occurrence in w starts at i. Recall that we count
distinct squares. Without this restriction the problem is trivial. They proved
that no three words can have the last occurrence starting at the same position,
that is, si ≤ 2, for all i; put otherwise, s(w) ∈ {0, 1, 2}∗. This obviously implies
the result.

The proof in [2] uses a rather intricate combinatorial result of Crochemore
and Rytter [1] concerning the lengths of three squares which are prefixes of each
other. The same proof is included also in Lothaire’s second book [5, p.281-2]. A
very short proof of is given in [3].

The main idea here is to look closer at consecutive 2s in s(w). We prove
some upper bounds on the lengths of such runs and then use those to improve
slightly the bound of [2].

∗Research supported in part by NSERC.
†Department of Computer Science, University of Western Ontario, London, ON, N6A 5B7,

Canada, ilie@csd.uwo.ca
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px x q-r x r-p x’’x p-1 x’’x q-r-1x’ x’x’
w

w

w

Figure 1: Three mutually overlapping occurrences of w

2 Runs of 2s in s(w)

We start with a useful technical lemma which concerns three occurrences of the
same word which mutually overlap.

In what follows we shall need the following synchronization property for prim-
itive words: a word w is primitive if and only if w has exactly two occurrences
as factor of ww, namely as a prefix and as a suffix.

Lemma 2.1 Let w be a word and let three mutually overlapping occurrences
of w be z1z2z3 = z2z3z4 = z3z4z5 = w, for some zi ∈ A∗ − {ε}. Then there
exist x ∈ A∗ primitive and 1 ≤ p ≤ r < q such that x = x′x′′, for x′, x′′ ∈ A∗,
x′′ non-empty, and z1 = xp, z2 = xq−r, z3 = xr−px′, z4 = x′′xp−1x′, and
z5 = x′′xq−r−1x′; see Fig. 1.

Proof For simplicity, let us denote wi = zizi+1zi+2, 1 ≤ i ≤ 2. Put z1 = xp,
x primitive, p ≥ 1. The overlap between w1 and w2 gives w = xqx′, q ≥ p, x′

a proper prefix of x; put also x = x′x′′. Then, the overlap between w2 and w3

is longer than |z1| and so longer than |x|. Thus z3 contains a full x which has
to synchronize with the ones in w3. Hence, z3z4 = xrx′, for some r ≥ p. This
implies the claimed values of zi, 2 ≤ i ≤ 5. �

We say that u2 is a “square at position i” if the last occurrence of u2 starts at
i. The next lemma gives a relation between the lengths of squares at neighboring
positions.

Lemma 2.2 If v2 < u2 are two squares at i and w2 is a square at i + 1, then
either |w| ∈ {|v|, |u|} or |w| ≥ 2|v|.

Proof Asssume first that |w| < |v|. Because these are the last occurrences of
the three squares in w, we get that aw < v < u < w2 < v2 < u2, for some letter
a ∈ A; see Fig. 2. We have then three occurences of w as follows: the second w
in w2, the one at the beginning of the second v (in the prefix aw of v) and the
one at the beginning of the second u – shown with bold lines in Fig. 2.

We apply Lemma 2.1 to these there occurrences of w. Using the notations
there, (the first) w has a prefix xp and (the last) w has a suffix x′′xq−r−1x′. We
can write the second v as v = awt, for a prefix t of w such that |t| = |xp| − 1.
Denoting by b the letter following v2 in u2, we obtain that tb and the suffix



291

px
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vv

b
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ww

uu

Figure 2: v2 < u2 squares at i and w2 square at i+ 1 with |w| < |v|

x′′xq−r−1x′ of w are prefixes of each other. If p ≥ 2, then t contains as prefix
one full x and using synchronization, we have x′ = ε, x′′ = X, and so w = xq

appears also |x| positions later, a contradiction. If p = 1, then |tb| = |x| and so
a = b, x′ = ε, and we obtain the same contradiction.

Consider next the case |v| < |w| < |u|. The reasoning is similar with the
above. Denoting v = av′, we obtain three mutually overlapping occurrences of v′:
the suffix of the second v, the prefix of the second w, and the one occurring in the
prefix av′ of the second u. Applying Lemma 2.1 for these three v′s and using
synchronization we can show as above that v2 appears later, a contradiction.
(Two cases are distinguished, depending on which of aw2 and uv is longer, but
they are treated similarly.)

If |u| < |w| < 2|v|, we obtain a similar contradiction concerning v2. This
proves the lemma. �

We now consider the impact of Lemma 2.2 on the lengths of runs of consec-
utive 2s in s(w). It is clear intuitively that the more such 2s the longer they
should become and ultimately impact on the length of w but we shall make this
precise. Lemma 2.2 says that the squares at any position have either the same
lengths as the ones at the previous position or at least twice larger. The next
result investigates the case when the lengths of the squares are preserved.

Lemma 2.3 Let m ≥ 1 such that, for any i, 1 ≤ i ≤ m, we have si = 2,
v2
i < u2

i are the squares at i, and |ui| = p, |vi| = q. Then (i) |u|+m ≤ 2|v|, (ii)
|u| ≥ |v|+m+ 1, and (iii) p ≥ 3m+ 2, q ≥ 2m+ 1.

Proof It is clear that m ≤ |v| as otherwise v2 appears again |v| positions later.
Denote u1 by u, v1 by v and let z be the common prefix of length m − 1 of u
and v. (All squares are circular shifts of u and v respectively.)

For (i), we must have that |u| + |z| < 2|v| since otherwise v2 appears later
as prefix of uz.

On the other hand, if |u| ≤ |v|+ |z|, then v is a factor of vz which is neither a
prefix nor a suffix. The synchronization property implies that v is not primitive
and also it appears later, a contradiction. In fact |u| = |v|+|z|+1 still implies the
same thing. (If we denote by b the letter following v2z in u2, then v = zay = yzb,
for some word y, and so a = b and we finally obtain the same contradiction.)
Therefore, we must have |u| ≥ |v|+ |z|+ 2, which proves (ii).
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From the two inequalities we obtain |v| ≥ 2|z| + 3 and |u| ≥ 3|z| + 5 which
gives (iii). �

Remark 2.4 The inequalities in Lemma 2.3 are very close to optimal. Consider
for example z = (ab)na, v = zazbaa, u = vzaab; here |v| = 2|z| + 4 and
|u| = 3|z|+ 7.

Finally, we formulate the impact of runs of 2s in s(w) on the length of w in
the following result.

Lemma 2.5 If s(w) has a prefix of length m such that si = 2 for all 1 ≤ i ≤ m,
then |w| > 2m.

Proof Let us write the prefix of length m of s(w) as

s1 . . . si1si1+1 . . . si1+i2 . . . si1+···+ik ,

where i1 + · · ·+ ik = m and, for any i` < i < j ≤ i`+1, the lengths of the squares
at i are the same as those at j. Denote the lengths of the square at i` by q`, p`,
with q` < p`. By Lemma 2.2, we have p`+1 ≥ q`.

Using Lemma 2.3(iii), we obtain first q1 ≥ 2i1 + 1, p1 ≥ 3i1 + 2. Then using
(i)-(iii) in the same lemma, we have

p` ≥ 2q`−1,

q` ≥
1
2

(p` + i`) ≥ q`−1 +
1
2
i`,

p` ≥ q` + i` + 1 ≥ q`−1 +
3
2
i` + 1.

Therefore

pk ≥
1
2

k∑
j=1

ij +
3
2
i1 + ik + 2,

which implies

|w| ≥
k−1∑
j=1

ij + 2pk + ik > 2m.

�

Remark 2.6 The result in Lemma 2.5 can be improved but the proof becomes
more complicated and our main result in the next section does not change much.

I think the optimal bound is essentially the one given by Lemma 2.3(iii).
However, as discussed in the next section, we need more than that to prove the
conjecture.
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3 The improved bound

We can consider now the impact of the above results on the number of distinct
squares.

Theorem 3.1 The number of distinct squares in a word of length n is at most
2n−Θ(log n).

Proof By Lemma 2.5, the number of 2s at the beginning of w cannot exceed
n/2 since otherwise the squares would fall off the end of w. Therefore, we need
a 1 in the first half of s(w). Similarly, we need another 1 in the first half of what
is left of s(w), and so on. The result follows. �

The improvement we obtained is not very big. Essentially we proved that
the number of distinct squares in w is bounded away from 2n. Still, it is the
only non-trivial improvement we know of. Moreover, Fraenkel and Simpson [2]
considered of importance even improving the bound by a constant amount: they
spent some effort to obtain the bound 2n−8, for n ≥ 5, and 2n−29, for n ≥ 22.
Sgnificant improvements of this bound seem difficult.

To prove the conjecture by the above idea, or at least to improve it, some
bounds for arbitrary sequences s(w) would have to be found. Computing such
bounds seems difficult. What might help is the fact that the 2s in s(w) seem
to decrease the number of distinct squares by the repetitions they introduce. In
the example with n − o(n) squares from [2], the sequence s(w) consist almost
entirely of 1s.
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Isomorphism Between Classes Counted by

Fibonacci Numbers

Asep Juarna∗, Vincent Vajnovszki †

Abstract

An isomorphism between two combinatorial classes is a closeness pre-
serving bijection, that is, two objects in a class are close if and only if
their images by this bijection are also close. Isomorphism allows us to
find out some results concerning a class X if similar results are found for
the preimage of X. Results that are usually to be found out are exhaustive
and random generation, ranking and unranking algorithms or diameter and
Hamiltonicity of the graph induced by the combinatorial class.

Simion and Schmidt in 1985 presented a constructive bijection between
two combinatorial classes counted with the Fibonacci numbers: the set
Fn−1 of length (n−1) binary strings with no two consecutive 1s, and the set
Sn(τ3) of length n permutations avoiding the patterns τ3 = {123, 132, 213}.
In 2003, by rather analytical methods, Egge and Mansour generalized this
result showing that Sn(τp), the set of permutations avoiding the patterns
τp = {12 . . . p, 132, 213}, is counted by (p− 1)th order Fibonacci numbers.

In this paper we show that Simion-Schmidt’s bijection can be extended
to Sn(τp) by giving a constructive bijection from the set of Fibonacci strings
F

(p−1)
n−1 , i.e. the set of length (n − 1) binary strings with no (p − 1) con-

secutive 1s, to the set Sn(τp). Moreover, we show that this bijection is
a combinatorial isomorphism. Furthermore we illustrate how this allows
to obtain a Gray code (or equivalently Hamiltonian path) and exhaustive
generating algorithm for the set of permutations avoiding given patterns
from known similar results for Fibonacci strings.

This is also the first paper which deals with isomorphism on combi-
natorial classes or with Gray codes and exhaustive generation of pattern
avoiding permutations.

Keywords: Pattern(s) avoiding permutations, generalized Fibonacci strings, Gray
codes, combinatorial isomorphism.

1 Introduction and motivation

Let S` be the set of all permutations of {1, 2, . . . , `}. Let π ∈ Sn and τ ∈ Sk be
two permutations, k ≤ n. We say that π contains τ if there exists a subsequence

∗LE2I - UMR CNRS, Université de Bourgogne, B.P. 47 870, 21078 DIJON - Cedex (France),
akang92@yahoo.com

†vincent.vajnovszki@ubourgogne.fr, Corresponding author
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1 ≤ i1 < i2 < . . . < ik ≤ n such that (π(i1) . . . π(ik)) has all of pairwise
comparisons the same as τ ; in this context τ is usually called a pattern. We
say that π avoids τ , or is τ -avoiding, if such a subsequence does not exist. The
set of all τ -avoiding permutations in Sn is denoted by Sn(τ) and |Sn(τ)| is its
cardinality. For an arbitrary finite collection of patterns T , we say that π avoids
T if π avoids any τ ∈ T ; the corresponding subset of Sn is denoted by Sn(T )
and |Sn(T )| is its cardinality.

The fundamental questions of the problems of pattern avoiding permutations
are to determine |Sn(T )|, viewed as a function of n for given T , to find an explicit
bijection between Sn(T ) and Sn(T ′) if |Sn(T )| = |Sn(T ′)|, and to find relations
between Sn(T ) and other combinatorial structures. By determining |Sn(T )| we
mean finding explicit formula, or ordinary or exponential generating functions.
From these researches, a number of enumerative results have been proved, new
bijections found, and connections to other fields established.

The problems of pattern avoiding permutations were appeared since Knuth
[1] posed, in his text book, the problem of sorting with a single stack. The prob-
lem actually was the 312-pattern avoiding permutations. In the other section
of his book, he showed that the cardinality of all three length patterns avoid-
ing permutations is the Catalan numbers. The investigations of the problems
of pattern avoiding permutations then become wider to some set of patterns of
length three, four, five, and so on, some combinations of these patterns, general-
ized patterns, and permutations avoiding some patterns while in the same time
containing exactly a numbers of other patterns.

Pattern avoiding permutations has proved to be useful language in a variety
of seemingly unrelated problems, from theory of Kazhdan-Lusztig polynomials,
to singularities of Schubert varieties, to Chebyshev polynomials, to rook polyno-
mials for a rectangular board, to various sorting algorithms, sorting stacks and
sortable permutations [2].

The first systematic study of patterns avoiding permutations was undertaken
in 1985 when Simion and Schmidt [3] solved the problem for every set of patterns
in S3. Two of their propositions are:

1. For every n ≥ 1, |Sn(τ3)| = fn+1, where τ3 = {123, 132, 213} and {fn}n≥0

is the Fibonacci numbers, initialized by f0 = 0, f1 = 1.

2. For each n ≥ 1, there is a constructive bijections between Sn(τ3) and the
set F (2)

n−1 of binary strings of length (n−1) having no two consecutive ones.

In 2004, Egge and Mansour [4] generalized the first point above and showed that
for all integers n and p ≥ 2, |Sn(τp)| = f

(p−1)
n+1 , where τp = {12 . . . p, 132, 213}

and f
(p)
n is the p-th order Fibonacci number.

In this paper we extend the Simion-Schmidt bijection (the second point),
from F

(2)
n−1 → Sn(τ3) to F

(p−1)
n−1 → Sn(τp), where F

(p)
n is the set of length n

binary strings with no p consecutive ones. We also show that this bijection is
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actually an isomorphism and we give a Gray code for the set Sn(τp) which is the
image through this isomorphism of a known Gray code for F (p−1)

n−1 [5]. Finally,
we give some graph theoretic and algorithmic considerations.

2 SSEM (Simon-Schmidt-Egge-Masour) bijection

The p-th order n-th Fibonacci set, F (p)
n , is the set of all length n binary strings

with no p consecutive ones, and it can be defined recursively by [5]:

F (p)
n =


{λ} n = 0
{0, 1}n 1 ≤ n < p

0 · F (p)
n−1 ∪ 10 · F (p)

n−2 ∪ . . . ∪ 1p−10 · F (p)
n−p n ≥ p

(2.1)

where λ is the empty string, and for arbitrary string α and set of strings F we
mean α · F as concatenation of α to each string of F . It is easy to show that:

|F (p)
n | = f

(p)
n+p (2.2)

where f (p)
n+p is p-right shifting of f (p)

n , and the latter is the pth order n-th Fi-
bonacci numbers defined by:

f (p)
n =


0 0 ≤ n < p− 1
1 n = p− 1∑n−1

j=n−p f
(p)
j n ≥ p.

(2.3)

For p = 2 the above relation gives the well-known Fibonacci integer sequence
f

(2)
n , which is usually (and also in this paper) written just as fn.

Simion and Schmidt [3] showed that the cardinality of Sn(τ3) is given by

|Sn(τ3)| = fn+1. (2.4)

Here is their nice proof. Let π ∈ Sn(τ3) and π−1 its inverse, that is π−1(π(i)) = i.
It is trivial to verify the result for n ≤ 2. Indeed, S1(τ3) consists of a single length
one permutation and S2(τ3) contains two permutations, namely (12) and (21).
If n ≥ 3, then π−1(n) ≤ 2, else either 123 or 213 could not be avoided. If
π(1) = n, then (π(2), . . . , π(n)) ∈ Sn−1(τ3). If π(2) = n, then we must have
π(1) = n − 1, else 132 could not be avoided; thus (π(3), . . . , π(n)) ∈ Sn−2(τ3).
Hence, for n ≥ 3, |Sn(τ3)| = |Sn−1(τ3)| + |Sn−2(τ3)|; this recurrence relation is
satisfied by the Fibonacci numbers given in (2.3) with p = 2.

Simion and Schmidt also given a constructive bijection between the set F (2)
n−1

and Sn(τ3). Their construction is as follows. Let s = s1s2 . . . sn−1 ∈ F (2)
n−1; its

corresponding permutation π ∈ Sn(τ3) is obtained by determining π(i), 1 ≤ i <
n, as follows: if Xi = {1, 2, . . . , n} − {π(1), . . . , π(i− 1)} then

π(i) =
{

largest element in Xi if si = 0
second largest element in Xi if si = 1.

(2.5)
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Figure 1: The permutation (5674312) ∈ S8(τ4) corresponding to the binary
string 110001 ∈ F (3)

7 .

Now, we will show that the SSEM bijection is a combinatorial isomorphism,
that is, it and its inverse map close objects onto close objects.

In a permutation, we define a left block as a sequence of increasing consecutive
integers which can not be extended at left. For instance, in (56734128) ∈ S8,
the sequences 56, 567, 34, 12, and 8 are left blocks. Notice that 67 is not a left
block since it can be extended at left as 567. Right block is defined similarly.
Also notice that 8 is a left block and at once also a right block.

Definition 2.3

1. Two permutations in Sn(τp) are close if one is obtained from the other by
a transposition of two adjacent blocks of total length less than p, one a
left block and the other a right block;

2. Two binary strings are close if they differ in a single position.

Example 2.4 The permutations π = (73 45612) and π′ = (7456 312) in S7(τ5)
are close since π is obtained from π′ by transposing the right block 3 with the
left block 456 in π′; or conversely, π′ is obtained from π by transposing the right
block 456 with the left block 3 in π; see Figure 2.

Theorem 2.5 The SSEM bijection is a combinatorial isomorphism, that is, two
binary strings in F (p−1)

n−1 are close if and only if their images under this bijection
are close in Sn(τp).

Proof Let s, s′ ∈ F (p−1)
n−1 which differ just in position i, like the following scheme:

s = s1s2 . . . st−20 1 . . . 1︸ ︷︷ ︸
i−t

si 1 . . . 1︸ ︷︷ ︸
u−i−1

0 su+1 . . . sn−1

s′ = s1s2 . . . st−20 1 . . . 1︸ ︷︷ ︸
i−t

s′i 1 . . . 1︸ ︷︷ ︸
u−i−1

0 su+1 . . . sn−1
(2.8)

7

Figure 1: The permutation (5674312) ∈ S8(τ4) corresponding to the binary string
110001 ∈ F (3)

7 .

Finally, π(n) is the unique element in Xn.

Example 2.1 By this bijection (564231) ∈ S6(τ3) corresponds to 10010 ∈ F (2)
5

and (7563412) ∈ S7(τ3) corresponds to 010101 ∈ F (2)
6 .

Simion-Schmidt counting relation (2.4) has been generalized by Egge and
Mansour [4] to Sn(τp) = Sn({12 . . . p, 132, 213}):

|Sn(τp)| = f
(p−1)
n+p−2. (2.6)

But f (p−1)
n+p−2 is the cardinality of F (p−1)

n−1 , the set of all binary strings of length
(n − 1) having no (p − 1) consecutive ones. (2.6) is the generalization of (2.4)
and now we extend (2.5) by giving a constructive bijection between F

(p−1)
n−1 and

Sn(τp).
Let s1s2 . . . sn−1 ∈ F (p−1)

n−1 , Xi as above, and let π be the length n permutation
defined by:

π(i) =



largest element in Xi if si = 0
2nd largest element in Xi if si = 1 and

(either si+1 = 0 or i = n− 1)
3rd largest element in Xi if si = si+1 = 1 and

(either si+2 = 0 or i = n− 2)
...
(p− 2)th largest element in Xi if si = si+1 = . . . = si+p−4 = 1

and (either si+p−3 = 0 or i = n− p+ 3)
(p− 1)th largest element in Xi if si = si+1 = . . . = si+p−3 = 1

(2.7)

and π(n) is the unique element in Xn. It is routine to verify that this construc-
tion yields a bijection from F

(p−1)
n−1 to Sn(τp) and in the following we refer it as

the SSEM bijection.

Example 2.2
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• SSEM bijection maps 110001 ∈ F (3)
7 into (5674312) ∈ S8(τ4).

• SSEM bijection between F (4)
6 and S7(τ5) maps 011101 into (7345612), and

011001 into (7456312).

See Figures 1 and 2 and Table 1.

Now, we will show that the SSEM bijection is a combinatorial isomorphism,
that is, it and its inverse map close objects onto close objects.

In a permutation, we define a left block as a sequence of increasing consecutive
integers which can not be extended at left. For instance, in (56734128) ∈ S8,
the sequences 56, 567, 34, 12, and 8 are left blocks. Notice that 67 is not a left
block since it can be extended at left as 567. Right block is defined similarly.
Also notice that 8 is a left block and at once also a right block.

Definition 2.3

1. Two permutations in Sn(τp) are close if one is obtained from the other by
a transposition of two adjacent blocks of total length less than p, one a
left block and the other a right block;

2. Two binary strings are close if they differ in a single position.

Example 2.4 The permutations π = (73 45612) and π′ = (7456 312) in S7(τ5)
are close since π is obtained from π′ by transposing the right block 3 with the
left block 456 in π′; or conversely, π′ is obtained from π by transposing the right
block 456 with the left block 3 in π; see Figure 2.

Theorem 2.5 The SSEM bijection is a combinatorial isomorphism, that is, two
binary strings in F (p−1)

n−1 are close if and only if their images under this bijection
are close in Sn(τp).

Proof Let s, s′ ∈ F (p−1)
n−1 which differ just in position i, like the following scheme:

s = s1s2 . . . st−20 1 . . . 1︸ ︷︷ ︸
i−t

si 1 . . . 1︸ ︷︷ ︸
u−i−1

0 su+1 . . . sn−1

s′ = s1s2 . . . st−20 1 . . . 1︸ ︷︷ ︸
i−t

s′i 1 . . . 1︸ ︷︷ ︸
u−i−1

0 su+1 . . . sn−1
(2.8)

where st . . . si−1 and si+1 . . . su−1 are, possibly empty, contiguous sequences of
1s and s′i = 1− si. Without any loss of generality suppose si = 1 (and therefore
s′i = 0) and in this case u− t (the length of contiguous sequence of 1s , including
si, in s) is less than or equal to p− 1.

The shape of π and π′, the images of s and s′ through the SSEM bijection,
are:

π = (π(1) . . . π(t− 1) π(t) . . . π(i− 1)π(i)π(i+ 1) . . . π(u) π(u+ 1) . . . π(n))
π′ = (π(1) . . . π(t− 1) π′(t) . . . π′(i− 1)π′(i)π′(i+ 1) . . . π′(u) π(u+ 1) . . . π(n)) .

(2.9)
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By relation (2.7), π(t) . . . π(i) . . . π(u) is at once left and right block in π and
so are π′(t) . . . π′(i) and π′(i+ 1) . . . π′(u) in π′. Since {π(t), . . . , π(i), . . . , π(u)}
and {π′(t), . . . , π′(i), . . . , π′(u)} are equal (as sets, but different as sequences) and
π′(u) < π′(t) (actually π′(u) = π′(t)− 1) we have π(t) . . . π(i)π(i+ 1) . . . π(u) =
π′(i+ 1) . . . π′(u)π′(t) . . . π′(i). �

3 Gray code for Sn(τp)

In this section we show how the SSEM isomorphism transforms a known Gray
code for Fibonacci strings into a Gray code for the set of permutations Sn(τp).

By definition, a Gray code for a combinatorial family is a listing of objects in
the family so that successive objects differ in some pre-specified, usually small,
way [6]. In [5] is given a Gray code list for the set of Fibonacci strings defined by
(2.1). In this list successive strings differ in a single position and its definition
is:

F (p)
n =


λ if n = 0

0, 1 if n = 1
0 · F (p)

n−1 ◦ 10 · F (p)
n−2 ◦ . . . ◦ 1p−10 · F (p)

n−p if n > 1
(3.1)

where ◦ is the operator of concatenation of two lists, F is the list obtained by
reversing F , and with two conventions: (1) the list α · F (p)

−1 consists of the single

string list obtained from α by deleting its last bit, and (2) F (p)
−t is the empty list

for t > 1.
By applying the SSEM bijection to each binary string in the list F (p)

n one
obtains a list for the set Sn+1(τp+1); or equivalently, by the SSEM bijection, the
Gray code F (p−1)

n−1 is transformed into the list Sn(τp) for the set Sn(τp) defined

where st . . . si−1 and si+1 . . . su−1 are, possibly empty, contiguous sequences of
1s and s′i = 1− si. Without any loss of generality suppose si = 1 (and therefore
s′i = 0) and in this case u− t (the length of contiguous sequence of 1s , including
si, in s) is less than or equal to p− 1.

The shape of π and π′, the images of s and s′ through the SSEM bijection,
are:

π = (π(1) . . .π(t− 1) π(t) . . .π(i− 1)π(i)π(i + 1) . . .π(u) π(u + 1) . . .π(n))
π′ = (π(1) . . .π(t− 1) π′(t) . . .π′(i− 1)π′(i)π′(i + 1) . . .π′(u) π(u + 1) . . .π(n)) .

(2.9)
By relation (2.7), π(t) . . .π(i) . . .π(u) is at once left and right block in π and

so are π′(t) . . .π′(i) and π′(i + 1) . . .π′(u) in π′. Since {π(t), . . . ,π(i), . . . ,π(u)}
and {π′(t), . . . ,π′(i), . . . ,π′(u)} are equal (as sets, but different as sequences) and
π′(u) < π′(t) (actually π′(u) = π′(t)− 1) we have π(t) . . .π(i)π(i + 1) . . .π(u) =
π′(i + 1) . . .π′(u)π′(t) . . .π′(i). !

!
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Figure 2: π = (7345612) and π′ = (7456312) in S7(τ5) are the images of 011101
and 011001 in F (4)

6 , respectively. π′ is obtained from π by transposing the left
block 3 with the right block 456 in π.

3 Gray code for Sn(τp)

In this section we show how the SSEM isomorphism transforms a known Gray
code for Fibonacci strings into a Gray code for the set of permutations Sn(τp).

By definition, a Gray code for a combinatorial family is a listing of objects in
the family so that successive objects differ in some pre-specified, usually small,
way [6]. In [5] is given a Gray code list for the set of Fibonacci strings defined by
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where st . . . si−1 and si+1 . . . su−1 are, possibly empty, contiguous sequences of
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The shape of π and π′, the images of s and s′ through the SSEM bijection,
are:

π = (π(1) . . .π(t− 1) π(t) . . .π(i− 1)π(i)π(i + 1) . . .π(u) π(u + 1) . . .π(n))
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6 , respectively. π′ is obtained from π by transposing the left
block 3 with the right block 456 in π.

3 Gray code for Sn(τp)

In this section we show how the SSEM isomorphism transforms a known Gray
code for Fibonacci strings into a Gray code for the set of permutations Sn(τp).

By definition, a Gray code for a combinatorial family is a listing of objects in
the family so that successive objects differ in some pre-specified, usually small,
way [6]. In [5] is given a Gray code list for the set of Fibonacci strings defined by
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Figure 2: π = (7345612) and π′ = (7456312) in S7(τ5) are the images of 011101 and
011001 in F (4)

6 , respectively. π′ is obtained from π by transposing the left block 3 with
the right block 456 in π.



301

by:

Sn(τp) =


(1) if n = 1

(21), (12) if n = 2
n · Sn−1(τp) ◦ (n− 1)n · Sn−2(τp)◦
· · · ◦ (n− p+ 2) . . . n · Sn−p+1(τp) if n > 2.

(3.2)

with the conventions: (1) the list α · S0(τp) = α, and (2) S−t(τp) is the empty
list for t > 0. Table 1 shows for the lists F (2)

5 and F (3)
4 with their images S6(τ3)

and S5(τ4), respectively.
Since any two consecutive strings in F (p−1)

n−1 are two close, by Theorem 2.5,
so are their images through SSEM bijection, hence the Hamming distance be-
tween consecutive permutations in Sn(τp) is less than p. The following lemma
formalizes this result using different approach from Theorem 2.5.

Lemma 3.1 The Hamming distance between any two consecutive elements of
Sn(τp) is upper bounded by the minimum between (p− 1) and n.

Proof We consider p fixed and for notational convenience we omit ‘(τp)’ in this
proof. Obviously, the Hamming distance between two consecutive elements in
Sn is less than or equal to n. Suppose n ≥ p and let

(n− k)(n− k + 1) . . . n · Sn−k−1 (3.3)

and
(n− k − 1)(n− k) . . . n · Sn−k−2 (3.4)

be two (not empty) consecutive sublists in the definition (3.2), for n > 2, with
0 ≤ k ≤ p − 3. We show that the Hamming distance between the last element
in the list (3.3) and the first one in (3.4) is less than p.

last
(
(n− k)(n− k + 1) . . . n · Sn−k−1

)
= (n− k)(n− k + 1) . . . n · last(Sn−k−1)
= (n− k)(n− k + 1) . . . n · first(Sn−k−1)
= (n− k)(n− k + 1) . . . n(n− k − 1) · first(Sn−k−2).

So, the last element in the list (3.3) differs from the first element in the list
(3.4) in exactly k + 2 ≤ p − 1 positions. The induction on n completes the
proof. �

The following remark is useful to the generating algorithm sketched in the
last section.

Remark 3.2 Let s and s′ be two binary strings in the list F (p−1)
n−1 with s′ the

successor of s and π and π′ their images by SSEM bijection as in schemes (2.8)
and (2.9). If s differs from s′ in position i then either i = n−1 or si+1 = s′i+1 = 0,
see [5] . With the notations in the proof of Theorem 2.5
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Table 1: (a) The list F (2)
5 and its image S6(τ3) = S6(123, 132, 213), and (b) The list

F (3)
4 and its image S5(τ4) = S5(1234, 132, 213) together with the Hamming distances

between consecutive permutations. Notice that the Hamming distance between any two
consecutive elements of S6(τ3) is two.

(a) (b)

F (2)
5 S6(τ3)

01001 645312
01000 645321
01010 645231
00010 654231
00000 654321
00001 654312
00101 653412
00100 653421
10100 563421
10101 563412
10001 564312
10000 564321
10010 564231

F (3)
4 S5(τ4) distance

0110 52341
0100 53421 3
0101 53412 2
0001 54312 2
0000 54321 2
0010 54231 2
0011 54123 3
1011 45123 2
1010 45231 3
1000 45321 2
1001 45312 2
1101 34512 3
1100 34521 2

• if si = 0 then π′ is obtained from π by transposing the block πt . . . πi (with
t = i if i = 1 or si−1 = 0) with the single element block πi+1,

• if si = 1 then π′ is obtained from π by transposing the single element block
πt with the block πt+1 . . . πi+1.

See Figure 2.

Notice that when p = 3 consecutive permutations in Sn(τ3) differ by the
transposition of two adjacent elements.

4 Graph theoretic and algorithmic considerations

The isomorphism shown by Theorem 2.5 also has a graph theoretical meaning.
Let X be a class of combinatorial objects and G(X) be the graph induced by
X, i.e., the graph with vertex set X, and edges connecting close vertices. With
this terminology, a Gray code for X is a Hamiltonian path for G(X).

Theorem 2.5 implies that the SSEM bijection is a graph isomorphism between
G(F (p−1)

n−1 ) and G(Sn(τp)); this isomorphism transforms the Hamiltonian path

F (p−1)
n−1 defined by (3.1) into the Hamiltonian path Sn(τp) defined by (3.2). Figure

3 shows the graphs G(F (3)
4 ) and G(S5(τ4)) where the Hamiltonian paths F (3)

4

and S5(τ4) are in bold.

Now, we explain how a slight modification of an efficient exhaustive gen-
eration algorithm for the list F (p−1)

n−1 transforms it into a similar algorithm for
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SSEM−→
isomorphism1010

0000

0100

0110

0101 1100

0001

00110010 1011

1101

10011000

53421

52341

4532154321

45123

45312

54231 54123 45231

34512

54321

3452153412

F (3)
4 S5(τ4)

Figure 3: Graph isomorphism between F (3)
4 and S5(τ4). Two vertices in F (3)

4
are connected if their Hamming distance is one, while two vertices in S5(τ4) are
connected if one is obtained from the other by transposing two adjacent blocks
of size at most three. Bold lines are Hamiltonian paths.

[5] Vincent Vajnovszki. A Loopless Generation of Bitstring without p Con-
secutive Ones. Proceeding of 3-rd Discrete Mathematics and Theoretical
Computer Science (2001), pp.227-239.

[6] J.T. Joichi, D.E. White, and S.G. Williamson. Combinatorial Gray Codes.
SIAM Journal on Computing (1980) 9, No. 1, pp. 130-141

[7] J.F. Korsh and S. Lipschutz. Generating multiset permutations in constant
time. J. Algorithms (1997) 25, No. 1, pp. 321–335

12

Figure 3: Graph isomorphism between F
(3)
4 and S5(τ4). Two vertices in F

(3)
4 are

connected if their Hamming distance is one, while two vertices in S5(τ4) are connected
if one is obtained from the other by transposing two adjacent blocks of size at most
three. Bold lines are Hamiltonian paths.

Sn(τp). In [5] is presented the loopless procedure next which after a linear-time
precomputation step (and using additional data structures) computes, in con-
stant time, the position i where the current string belonging to F (p−1)

n−1 must be
changed in order to obtain the next one. next subsequently computes the length
of the contiguous sequence of 1s ending in position i− 1 (that is, i− t with the
notations in the proof of Theorem 2.5).

The following scheme yields a generating algorithm for Sn(τp). Initialize
s by the first string in F (p−1)

n−1 as in [5] and π by its image through the SSEM
bijection; then, run next and update π as in Remark 3.2. The time complexity of
the obtained algorithm is given by the second step—the blocks transposition—
and it is O(p) per permutation, independent on n. A linked representation for
π can down this complexity to O(1); see [7] for a detailed explanation of this
technique.
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Transposition Invariant Words∗

Arto Lepistö,†Kalle Saari ‡

Abstract

We define a special type of finite words, so-called transposition invari-
ant words. After presenting a few basic results from the point of view of
combinatorics on words, and thus attempting to justify our interest in this
concept, we give a full characterization of these words in terms of number
theory. The characterization reveals a rather surprising connection to prime
numbers; it divides prime numbers into two sets which we call favorable
and unfavorable primes. We establish the infiniteness of favorable primes.
Finally, we give two conjectures concerning unfavorable prime numbers and
transposition invariant words.

Keywords: transposition invariant word, partition generated by a subgroup, favorable
prime number.

1 Introduction

Let w = w0w1 · · ·wn be a word, that is, a string of symbols over a finite alphabet
Σ. The length of w is denoted by |w|, so that |w| = n+ 1. We will use the same
notation for the cardinality of a set later in this paper, but this should cause no
ambiguity. Assume then that |w| = n + 1 = pq for some integers p, q > 0, and
consider the p× q-matrix

A =


w0 w1 · · · wq−1

wq wq+1 · · · w2q−1
...

...
w(p−1)q w(p−1)q+1 · · · wpq−1

 .

By reading the entries of this matrix row by row starting from the upper left
corner, we obtain the word w. When reading the entries column by column, we
get another word

wT = w0wq · · ·w(p−1)q w1wq+1 · · ·w(p−1)q+1 · · ·wq−1w2q−1 · · ·wpq−1 .

Equivalently, we obtain wT by reading the transpose matrix AT row by row.
∗Supported by the Academy of Finland under grant 203354.
†Department of Mathematics, University of Turku, 20014 Turku, Finland, alepisto@utu.fi
‡Turku Centre for Computer Science, 20520 Turku, Finland, kasaar@utu.fi
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If wT = w, we say that w is p×q–invariant. The word w is (|w|)–transposition
invariant, or just (|w|)–invariant, if it is p× q–invariant for all integers p, q > 0
for which pq = |w|. If the subword w1w2 · · ·wn−1 of w is unary, then w is trivially
invariant. In this case we say that w is trivial.

Note that, in classic cryptography, transposition invariant words are the
words that are immune to the rail fence cipher without padding.

For example, the Finnish word möhömahat —the people with a big belly—
is 3× 3–invariant word. Moreover, as 3 · 3 is the only proper factorization of 9,
it follows that möhömahat is a non-trivial transposition invariant word. Similar
examples in English are Malayalam and votometer. The last example is the
Latin sentence

S A T O R
A R E P O
T E N E T
O P E R A
R O T A R,

which translates roughly as “The seed man Arepo uses wheels in his work”
(thanks to M. Hirvensalo for pointing out this example).

From now on, we use notations w = w0w1 · · ·wn and w = w(0)w(1) · · ·w(n)
interchangeably.

The following lemma is a direct consequence of the definition:

Lemma 1.1 The word w is p× q-invariant if and only if

w(ip+ j) = w(jq + i) (1.1)

for all 0 ≤ i < q and 0 ≤ j < p.

2 Basic Results

We begin by showing that certain finite prefixes of the celebrated Thue-Morse
word t are invariant. The Thue-Morse word is generated by iterating the mor-
phism µ : 0 7→ 01, 1 7→ 10 on 0 ad infinitum. Thus

t = lim
n→∞

µn(0) = 0110100110010110100 · · · .

Proposition 2.1 For all positive integers k, the prefix of length 2k of the Thue-
Morse word is transposition invariant.

Proof Let t = t(0)t(1)t(2) · · · be the Thue-Morse word. It can be proved that
t(i) is the number (mod 2) of symbols 1 in the binary expansion of i (see [6]).
Using this property, it is easy to see that

t(2ei+ j) = t(i) + t(j) (mod 2)
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for all integers i ≥ 0 and 0 ≤ j < 2e.
Let u be the prefix of t of length 2k. We have to show u is p × q–invariant

whenever pq = |u| = 2k, that is, whenever p = 2e and q = 2f with e+ f = k.
Assume 0 ≤ i < q = 2f and 0 ≤ j < p = 2e. Then

u(ip+ j) = t(ip+ j) = t(i2e + j) = t(i)+ t(j) (mod 2) = t(j2f + i) = u(jq+ i) .

Thus by Lemma 1.1 the word u is p × q–invariant. Since this is true for all
appropriate p and q, the word u is 2k–invariant. �

Next we show that there exist periodic non-trivial transposition invariant
words.

Proposition 2.2 For all integers k,m ≥ 0, the word w = 1(0k1)m is transpo-
sition invariant.

Proof Assume |w| = 1+m(k+1) = pq. We will show that w is p×q–invariant.
To do this, let 0 ≤ i < q and 0 ≤ j < p. Then w(ip+ j) = 1 implies

ip+ j = l(k + 1) (2.1)

for some 0 ≤ l ≤ m. After multiplying the equation (2.1) by q, using the identity
pq = 1 +m(k + 1), and rearranging the terms, we get qj + i = (lq − im)(k + 1)
and hence w(qj + i) = 1. Using symmetry, we may deduce that w(ip + j) = 1
if and only if w(jq + i) = 1. By Lemma 1.1 w is p× q–invariant. Since p and q
were arbitrary, w is transposition invariant. �

Corollary 2.3 There exists a non-trivial transposition invariant word of length
l > 4 whenever integer l is odd, a perfect square, or l ≡ 4 (mod 6).

Proof In view of Proposition 2.2, take the transposition invariant word 1(0k1)m.
Then, for every integer n > 0, we have

|1(0k1)m| = 1 +m(k + 1) =


1 + 2n if k = 1 and m = n,
n2 if k = n and m = n− 1,
4 + 6n if k = 2n and m = 3.

So assume that l is an integer greater than 4. Now if l is odd, perfect square, or
congruent to 4 (mod 6), that is, if l = 2n+1, l = n2, or l = 4+6n, respectively,
then n ≥ 2, n ≥ 3, or n ≥ 1, respectively. In each case, the corresponding word
1(0k1)m is non-trivial. �

Proposition 2.4 If the word w is non-unary, then there exist a rational number
α ≥ 1 and integers p, q > 1 such that wα is a non-trivial p× q–invariant word.
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Proof Assume |w| = n. Let two positive integers k and p satisfy the conditions
kn+1 = p and p prime. The existence of such integers is guaranteed because, by
Dirichlet’s Theorem (see [1]), every arithmetic progression with relatively prime
coefficients contains infinitely many primes.

Now set α = p2/n, so that |wα| = α|w| = p2. We show that wα is p × p–
invariant. To do so, assume 0 ≤ i, j < p. Using the fact that wα has a period n,
we get

wα(ip+ j) = wα (ikn+ i+ j) = wα(i+ j) = wα(jkn+ j + i) = wα(jp+ i) .

Again, by Lemma 1.1 wα is p× p–invariant. Moreover, it is non-trivial because
α > 1 and w is not unary. �

3 A Characterization of Transposition
Invariant Words

Throughout this section, we assume that w = w0w1 · · ·wn and |w| = n+1 = pq,
where p, q > 0 are integers. Moreover, <p> is the cyclic subgroup generated by
p in the multiplicative group Z∗n. Note that <p> = <q> because p = q−1 in
Z∗n. The notation k<p>, where k ∈ Zn, is understood as the set of positions, or
indices, in w obtained by multiplying the elements in <p> by k and taking the
positive residue (mod n).

Proposition 3.1 The word w is p× q-invariant if and only if

w(h) = w(k) (3.1)

for all k ∈ Zn and for all h ∈ k<p>.

Proof First, we show that the Condition (1.1) in Lemma 1.1 is equivalent to
the condition

w(k) = w
(
kp (mod n)

)
(3.2)

for all k ∈ Zn. This is true because k = jq + i, with 0 ≤ i < q and 0 ≤ j < p, if
and only if

j =
⌊
k

q

⌋
and i = k (mod q) .

Furthermore, in this case

ip+ j = (k −
⌊
k

q

⌋
q)p+

⌊
k

q

⌋
= kp− (pq − 1)

⌊
k

q

⌋
= kp (mod (pq − 1))
= kp (mod n) .
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Thus the Condition (1.1) is equivalent to the Condition (3.2).
Using the identity in (3.2) repeatedly, we see that

w(k) = w( kp (mod n) ) = w( kp2 (mod n) )
= w( kp3 (mod n) ) = w( kp4 (mod n) ) = · · ·

for all k ∈ Zn. But this is exactly the requirement in Condition (3.1). Thus it
follows that (3.1) is equivalent to (3.2), which concludes our proof. �

Now we are ready to establish a number theoretic characterization for trans-
position invariant words. With the same considerations we can prove a somewhat
more general result. To do that, let Sn be the set of all positive divisors of n+1,
that is,

Sn = {d > 0 : d | (n+ 1)} .

Let S ⊆ Sn. We say that the word w is S–invariant if it is p × (n + 1)/p –
invariant for all p ∈ S. Then the concepts p × q–invariant and transposition
invariant coincide with {p}–invariant and Sn–invariant, respectively.

Proposition 3.2 Let S ⊆ Sn. Then the word w is S–invariant if and only if,
for every k ∈ Zn, all letters at positions indicated by the set k<S> are the same.

Proof Assume w is S–invariant, that is, w is p× (n+ 1)/p–invariant for every
p ∈ S. Let r, s ∈ S. Using the condition (3.1), we see that krisj ∈ kri<s>
implies w(krisj) = w(kri), and, moreover, kri ∈ k<r> implies w(kri) = w(k).
Thus, for all elements h ∈ k<r><s> = k<r, s>, we have w(h) = w(k). It
follows by induction that, for every h ∈ k<S>, w(h) = w(k) .

Conversely, assume that w(h) = w(k) for every h ∈ k<S>. Then, because
<p> ⊆ <S> for all p ∈ S, it certainly holds that w(h) = w(k) for every
h ∈ k<p>. According to Proposition 3.1, the word w is p× (n+ 1)/p–invariant
for every p ∈ S, that is, S–invariant. �

Next we will find the maximal number of distinct letters in S–invariant words.
But first we need a lemma. The following lemma has a short and straightforward
proof, so we omit it.

Lemma 3.3 Let S ⊆ Z∗n and k, h ∈ Zn. Then either

k<S> = h<S> or k<S> ∩ h<S> = ∅ .

This Lemma implies that every subset S ⊆ Z∗n induces a partition of Zn by
means of <S> ≤ Z∗n, the subgroup Z∗n generated by S. More precisely, there
exist integers k1, k2, . . . , kr ∈ Zn such that

Zn =
⋃

1≤i≤r

ki<S>
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and the sets ki<S> and kj<S> are disjoint if i 6= j. We call this partition the
partition of Zn generated by the set S ⊆ Z∗n and denote it by Πn(S), that is,

Πn(S) = {k1<S>, . . . , kr<S>} .

Note that by Proposition 3.2 the maximal number of distinct letters in an S–
invariant word is the number of elements in Πn(S) plus one (remember that
|w| = n + 1 and that Proposition 3.2 does not put any constraint to the last
letter in w).

Assume that S ⊆ Z∗n and that d > 1 is a divisor of n. In what follows,
we use the notation <S>d for the subgroup generated by S in the group Z∗d.
Clearly this is a sound definition since, for all a ∈ S, (a, n) = 1 and d |n implies
(a, d) = 1.

Proposition 3.4 Let S ⊆ Z∗n. Then

|Πn(S)| =
∑
d|n

[Z∗d : <S>d] =
∑
d|n

ϕ(d)
|<S>d|

,

where ϕ denotes the Euler totient function.

Proof For all ki<S> ∈ Πn(S), write ki = aidi, where di = gcd(ki, n) and
ai = ki/di, so that

Πn(S) = {a1d1<S>, . . . , ardr<S>} .

We need a few auxiliary results to prove the statement. They are numbered
accordingly.

If gcd(a, n) = 1, then adi ≡ adj (mod n) if and only if di ≡ dj (mod n), and
thus

1) |ad<S>| = |d<S>| .

Consider next the mapping d<S> −→ <S>n/d defined by di 7→ i. First of
all, this mapping is well-defined because gcd(i, n) = 1 implies gcd(i, n/d) = 1.
Moreover, it is injective, which is easily seen by using the equivalence di ≡ dj
(mod n) if and only if i ≡ j (mod n/d) . Consequently,

2) |d<S>| ≤ |<S>n/d| .

Now let us define the mapping β as follows:

β : Πn(S) −→
⋃
d |n

Z∗n/d/<S>n/d , ad<S> 7→ a<S>n/d .

We leave it to the reader to verify that β is both well-defined and injective.
Consider the number αd of the sets in Πn(S) of the form ad<S> with gcd(a, n) =
1. Clearly

αd = {i : d =
ki

ai
} ,
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so that ∑
d|n

αd = |Πn(S)| . (3.3)

It follows from the definition and injectivity of β that αd is at most the
number of elements in the quotient group Z∗n/k/<S>n/d, that is to say,

3) αd ≤ [Z∗n/d : <S>n/d] .

Now we are ready to employ these observations. Recall that Πn(S) is a
partition of Zn, and hence

n =
∑

ad<S>∈Π(S)

|ad<S>| 1)
=

∑
ad<S>∈Π(S)

|d<S>|

=
∑
d |n

αd |d<S>|
2) , 3)

≤
∑
d |n

[Z∗n/d : <S>n/d] |<S>n/d| (3.4)

=
∑
d |n

ϕ(
n

d
) = n (see, e.g., [1], Theorem 2.2).

Thus Inequality (3.4) is actually an equality. Consequently, inequalities in 2)
and 3) also are equalities. Hence αd = [Z∗n/d : <S>n/d], and this, together with
(3.3), attests the statement. �

We introduce the notation

ιn(S) = |Πn(S)| =
∑
d|n

ϕ(d)
|<S>d|

.

Also, we say that an S–invariant word is alphabetically maximal if there does
not exist another S–invariant word with more distinct letters occurring in it.

By merging the previous considerations to Proposition 3.2, we can sum up
our conversation about S–invariant words as follows:

Theorem 3.5 Let S ⊆ Sn and Πn(S) be the partition of Zn generated by S.
Then word w of length n + 1 is S–invariant if and only if, for every set P ∈
Πn(S), we have |w(P )| = 1. Hence there exists, up to renaming, a unique
alphabetically maximal S–invariant word, and it has ιn(S) + 1 distinct letters.
Furthermore, there are exactly

kιn(S)+1

S–invariant words over k-letter alphabet.
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4 Favorable Prime Numbers

We begin with an example: let the word w = w0w1 · · ·wn of length n + 1 over
four letter alphabet A = {a, b, c, d} be determined by the condition

wi =


a if i = 0,
b if gcd(i, n) = 1,
c if gcd(i, n) > 1 and i < n,
d if i = n

for all 0 ≤ i ≤ n. Then w is transposition invariant, for if 0 ≤ i, j ≤ n,
where gcd(i, n) = 1 and gcd(j, n) > 1, then i<S> ∩ j<S> = ∅. Moreover, if
n is composite, then both letters b and c occur in w, and thus w is non-trivial.
We conclude that if a positive integer n is composite, then there always exist
non-trivial S–invariant words of length n+ 1 for every S ⊆ Sn.

This leads us to the next result:

Theorem 4.1 Let S ⊆ Sn. Then there exist only trivial S–invariant words of
length n+ 1 if and only if n is prime and <S> = Z∗n.

Proof Assume there exist only trivial S–invariant words of length n+ 1. This
is equivalent to the condition that the partition of Zn generated by <S> has
only two elements, {0} and {1, 2, . . . , n− 1}, which then have to be 0<S> and
1<S>, respectively. This is equivalent to <S> = Zn \ {0}, which, in turn,
happens exactly when n is prime and <S> = Zn \ {0} = Z∗n. �

Motivated by Theorem 4.1, we say that a prime number n is favorable (for
the existence of non-trivial invariant words) if there exists a non-trivial (n+ 1)–
invariant word, that is, if <Sn> 6= Z∗n. Next we will prove that there exist
infinitely many favorable primes. This is done number theoretically by using
quadratic residues (see, e.g., [1] or [5]). First we need the following lemma:

Lemma 4.2 If a positive integer n is prime and n ≡ 7 (mod 8), then every
integer dividing n+ 1 is a quadratic residue (mod n).

Proof Since the product of two quadratic residues (mod n) is a quadratic
residue, it is enough to show that each prime divisor of n + 1 is a quadratic
residue (mod n). So assume that p is prime and p |n+ 1. We have to consider
the case p = 2 separately. Since n ≡ 7 (mod 8), we have(

2
n

)
= 1 ,

where
(

2
n

)
is the Legendre’s symbol. Thus 2 is a quadratic residue (mod n).

Now we may assume that p > 2. Then, by using the basic principles of residue
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computing, we get( p
n

)
= (−1)

p−1
2
·n−1

2

(
n

p

) (
law of quadratic reciprocity

)
= (−1)

p−1
2

(
n

p

) (
n ≡ 7 (mod 8) implies

n− 1
2

odd
)

= (−1)
p−1
2

(
−1
p

) (
n ≡ −1 (mod p)

)
= (−1)

p−1
2 · (−1)

p−1
2

= 1 .

Hence p is a quadratic residue (mod n). This completes our proof. �

Theorem 4.3 There exist infinitely many favorable primes.

Proof Let n be a prime number with n ≡ 7 (mod 8). Dirichlet’s classic theorem
about arithmetic progressions (see [1]) says that there exist infinitely many such
primes n. By Lemma 4.2, every integer in the set Sn is a quadratic residue
(mod n). Thus every integer in the set <Sn> also is a quadratic residue. But
exactly half of all the integers in Z∗n are quadratic residues (mod n); the other
half is the set of quadratic non-residues (mod n). Therefore, <Sn> 6= Z∗n, and
non-trivial (n+ 1)–invariant words exist. Now, by definition, n is favorable. �

The question as to whether or not there exist infinitely many unfavorable
primes seems to be more difficult. Computer aided calculations encourages us
to formulate the following conjecture (see Table 1 for the unfavorable primes up
to 1000):

Conjecture 4.4 There exist infinitely many unfavorable primes.

3 5 11 13 17 19 29 37 41 53 59 61 67 83 89
97 101 107 109 113 131 137 139 149 163 173 179 181 197 211
227 229 233 251 257 269 281 293 307 317 347 349 353 373 379
389 401 419 421 433 443 449 461 467 491 499 509 521 523 541
547 557 563 569 571 587 593 601 613 617 619 641 643 653 659
661 677 683 701 709 757 761 769 773 787 797 809 821 827 829
853 857 859 877 881 883 907 929 937 941 947 953 971 977

Table 1: The unfavorable primes less than 1000

By Theorem 4.1 there only exist trivial p× q–invariant words if and only if
n = pq − 1 is prime number and p its primitive root. Since primitive roots are
of general interest in number theory, we also give the following conjecture:

Conjecture 4.5 There exist infinitely many primes n having a primitive root
that divides n+ 1.
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Using the terminology of transposition invariant words, Conjecture 4.5 says
that there are infinitely many positive integers p, q for which all p× q–invariant
words are trivial.

Remark 4.6 All the primes in Table 1 satisfy the condition of Conjecture 4.5
except the prime 571: it does not have a primitive root that divides 572. However
<S571> = Z∗571, so by the definition, 571 is an unfavorable prime.

5 Notes

There is no reason to limit the concept of invariant words to matrices, i.e., to
two dimensions. In fact, there is a natural generalization to the third dimension,
and it gives rise to new questions and problems.

In general, questions concerning primitive roots modulo a prime number are
extremely difficult. However, our conjectures are considerably less strict than
Artin’s Conjecture for primitive roots (see [2] and [4]), which says that, given
any non-zero integer a other than 1,−1, or a perfect square, there exist infinitely
many primes p for which a is a primitive root (mod p). In our case, it would
be enough to show that Artin’s conjecture holds true for a = 2. It is known
that one of the primes 2, 3, or 5 is a primitive root (mod p) for infinitely many
primes p (see [3]).
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On the equation XL = LX∗

Paolo Massazza†

Abstract

Given a language L ⊆ Σ?, the centralizer of L is the largest subset
of Σ? commuting with L, that is, the maximal solution of the equation
XL = LX. In this paper we show that if the smallest word (with respect to
a lexicographic order) of a language L is primitive and prefix distinguishable
in L, then the centralizer of L is L?.

1 Introduction

Equations with languages as variables have been considered with particular in-
terest since the work of Chomsky and Schützenberger [4]. For example, in [2]
special systems of equations (called left language equations) have been studied
for their relation with boolean automata and sequential networks. The equation
Xp = L, for instance, has been studied in [11], where the problem of the exis-
tence of the solution has been shown to be decidable when L is a recognizable
set over a free monoid. In [1] it has been studied how to decompose a language
by writing it as union of powers of a simpler language, showing that a rational
language admits a rational decomposition.

The equation XL = LX has been deeply investigated since 1971, when
Conway raised a problem concerning the commutation with rational sets ( [5]).
More precisely, his question was about the centralizer of a rational set L, that
is, the maximal solution of the equation XL = LX: given a rational set L, is
the centralizer of L rational?
Several interesting results concerning the commutation of languages have been
presented since then. In particular, in the case of codes, in [10] it has been shown
that if a code L and a circular code X commute, then L = Xk for a suitable
integer k. Moreover, for each prefix code L (no word is a prefix of another)
its centralizer is always L?. Ratoandromanana also raised a conjecture that
was solved several years later: in fact, in [7] it has been shown that a language
commutes with a code X if and only if it is a union of powers of the primitive
root of X, ρ(X) (this was done by first proving that the centralizer of a code X
is always ρ(X)∗).

∗Partially supported by the Project M.I.U.R. COFIN 2003-2005 “Formal languages and
automata: methods, models and applications”.

†Università degli Studi dell’Insubria, Dipartimento di Informatica e Comunicazione, Via
Mazzini 5, 21100 Varese (Italy), paolo.massazza@uninsubria.it

315



316 Words 2005

Partial answers to the Conway’s problem have been given recently. In [3]
the commutation with a two-word set L has been studied, showing that the
centralizer is A+ where either A = L (if L consists of two noncommuting words)
or A = {t} and t is a primitive word (if L consists of two commuting words
x = tr, y = ts). Later on, a similar result has been given for three-word sets
(see [6], [7]).
More recently, a definitive and negative answer to the question raised by Conway
has been found. In fact, a finite language whose centralizer is not recursively
enumerable is shown in [8].

So, since the centralizer of a very simple language (like a finite language) can
be very complex, it is interesting to look for sufficient conditions that guarantee
that the centralizer is as simple as possible. According to this goal, in this paper
we show that if the smallest word (with respect to a lexicographic order) of a
language L is primitive and prefix distinguishable in L (i.e. it is not a prefix
of other words in L) then the centralizer of L is L?, that is, the submonoid
generated by L.

2 Preliminaries

Let Σ be a finite alphabet and 6 a linear order on Σ. For σ, τ ∈ Σ we write
σ < τ if σ 6 τ and σ 6= τ . A language on Σ is a subset of the free monoid
generated by Σ, L ⊆ Σ?. Given a word w ∈ Σ? we denote its length by |w|. The
word of length 0 is the empty word ε. For two words x,w ∈ Σ?, we say that x
is a prefix of w, and write x ≤ w, if and only if w = xy for a suitable y ∈ Σ?.
If y 6= ε we say that x is a proper prefix of w and write x < w. Analogously, a
word y is a suffix of w if and only if w = xy for a suitable word x.
Given a word w and an integer e, 0 ≤ e ≤ |w|, we denote by prefe(w) (sufe(w))
the prefix (suffix) of w having length e, that is, the string x ∈ Σe such that
w = xy (w = yx) for a suitable y ∈ Σ|w|−e. Two words x, y are said to be prefix
incomparable if x 6≤ y and y 6≤ x. A word w ∈ L is said prefix distinguishable in
L if and only if for any y ∈ L \ {w}, w and y are prefix incomparable.

We can extend the relation 6 on Σ in order to define a lexicographic order ≤lex

on Σ?. Given x, y ∈ Σ?, we write x ≤lex y if and only if either x ≤ y or there
exist α, u, v ∈ Σ? and σ, τ ∈ Σ such that x = ασu and y = ατv with σ < τ .
We write x <lex y if x ≤lex y and x 6= y. We denote by minlex(L) the smallest
word of L with respect to ≤lex, that is, the word x ∈ L such that x ≤lex y for
all y ∈ L. Some useful and elementary properties of the relation ≤lex are listed
below.

(a0) wu ≤lex wv implies u ≤lex v;

(a1) u ≤lex v implies wu ≤lex wv for all w;

(b) u ≤lex v and u 6≤ v implies uw ≤lex vz for all w, z;
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(c) if uw ≤lex vz for some u, v, w, z with u 6= v and |u| = |v|, then u <lex v;

(d) if w0 = minlex(L) is prefix distinguishable in L then for each Y ⊆ Σ? the
condition w0y ∈ LY implies y ∈ Y .

We say that X ⊆ Σ? commutes with L if and only if XL = LX. Note that
if S and R commute with L then S ∪ R commutes with L. So, we define the
centralizer of L ⊆ Σ? as the largest subset of Σ? that commutes with L, that
is, the maximal solution of the equation XL = LX. We indicate by C(L) the
centralizer of L; note that if A commutes with L then A ⊆ C(L). In particular,
since for any L we have L?L = LL?, the submonoid generated by L is always
contained in C(L).
It is immediate to see that if ε belongs to L then C(L) is Σ?. Henceforth, we are
interested in the centralizer of languages that do not contain ε.
A word w is called primitive if w = ur implies u = w and r = 1. We recall here
one of the oldest results in combinatorics on words regarding the commutation
of words (see, for example, [9]).

Theorem 2.1 Let u, v ∈ Σ?. The following properties are equivalent

1. uv = vu,

2. there exist t ∈ Σ? and r, s ∈ N such that u = tr, v = ts.

3 Auxiliary results

In this section we consider some lemmata that state useful properties associated
with commuting languages. We point out that all the results we present are
obtained by purely combinatorial methods based on Properties (a0)-(d) shown
above and on Theorem 2.1. A first lemma regards the smallest words of L and
C(L) \ {ε}.

Lemma 3.1 Let L ⊆ Σ+ and α0 = minlex(L), w0 = minlex(C(L) \ {ε}). If α0 is
prefix distinguishable in L then

α0w0 = w0α0 = minlex((C(L) \ {ε})L) = minlex(L(C(L) \ {ε})).

Proof Let β1 = minlex(L(C(L) \ {ε})) and β2 = minlex((C(L) \ {ε})L). Since
α0, the smallest word of L, is prefix distinguishable in L, we have α0 ≤lex αi

and α0 6≤ αi for all αi ∈ L, i 6= 0. So, by Property (b) we have α0w0 ≤lex αiwj

for all αi ∈ L and wj ∈ C(L) \ {ε}, that is,

β1 = α0w0.

Note that β1 belongs to C(L)L (since LC(L) = C(L)L) and β1 6= α for all α ∈ L
(recall that α0 is prefix distinguishable in L). This implies

β1 = wrαs
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for suitable wr ∈ C(L) \ {ε}, αs ∈ L. Now, since α0 ≤lex αi, by Property (a1) we
obtain

β2 = wpα0

for a suitable wp ∈ C(L) \ {ε}. Note that we cannot have β2 ∈ L since otherwise
we would have β2 <lex α0 because β2 ≤lex β1 = α0w0 and α0 6< α for all α ∈ L.
So, β2 belongs to L(C(L) \ {ε}) and we immediately get

β2 = β1 = α0w0.

Finally, the condition β2 = wpα0 implies |wp| = |w0|: this and the inequality
wpα0 ≤lex w0α0 imply wp = w0 (see Property (c)). �

The following lemma is of technical nature and it is mainly thought to help
the proof of the main result in Section 4.

Lemma 3.2 Let L ⊆ Σ+ such that α0 = minlex(L) is primitive and prefix
distinguishable in L. Then, for any A ⊆ Σ? commuting with L, if there are
w1, w2 ∈ A such that w1 ≤lex w2 and w2 = α0u, w1 = uα for suitable u ∈ Σ+,
α ∈ L, then w1 ≤ w2.

Proof (By contradiction) We suppose w1 6≤ w2 and show that we can find a
word in AL that is not in LA.
Let us consider γ, t1, t2 ∈ Σ? and σ, τ ∈ Σ, with σ < τ , such that

w1 = γσt2, w2 = γτt1.

Since w1 ≤lex w2 and w2 = α0u, w1 = uα, we can find k ∈ N, e ∈ {0, . . . , |α0|−1}
and y ∈ Σ? such that

w1 = αk
0prefe(α0)σt2, w2 = αk

0prefe+1(α0)y

with
prefe(α0)σ <lex prefe+1(α0) ≤lex α0.

Now, we distinguish two cases.

(k = 0) We observe that for any β1, β2 ∈ L and z ∈ A we have

w1β1 = prefe(α0)σt2β1 6= β2z

because for each v ≤ w1β1 we have v <lex α0. This means that there is a
word in AL that is not in LA.

(k > 0) Since AL = LA and α0 < w1, for each β ∈ L we have

w1β = α0z1 ∈ LA.
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Then, by Property (d) it follows that z1 ∈ A,

z1 = αk−1
0 prefe(α0)σt2β.

If k − 1 > 0 we proceed by considering the word z1β = α0z2 with z2 ∈ A
(by Property (d)),

z2 = αk−2
0 prefe(α0)σt2β2.

Then, after k iterations, we get a word zk ∈ A,

zk = prefe(α0)σt2βk,

such that for any δ ∈ L and z ∈ A we have

zkβ = prefe(α0)σt2βk+1 6= δz,

that is, zkβ ∈ AL and zkβ /∈ LA.

�

The following lemma states an important property associated with the left-
product by a language whose smallest word is prefix distinguishable.

Lemma 3.3 Let L ⊆ Σ+ and A1, A2 ⊆ Σ? such that LA1 = LA2. If α0 =
minlex(L) is prefix distinguishable in L then A1 = A2.

Proof (By contradiction) Suppose A1 6= A2 and, without loss of generality,
let w̃ = minlex(A2 \ A1). Let us consider the word w = α0w̃ and note that
w ∈ LA1 because LA1 = LA2. Since α0 is prefix distinguishable in L, by
Property (d) we have w̃ ∈ A1. �

4 Main result

In this section we prove our main result about the centralizer of languages whose
smallest word is primitive and prefix distinguishable. For the sake of clarity, we
first prove in the following theorem a fundamental property on which our result
is based.

Theorem 4.1 Let L ⊆ Σ+ such that α0 = minlex(L) is primitive and prefix
distinguishable in L. Then, for any A1, A2 ⊆ Σ? commuting with L such that
L ∪ {ε} ⊆ A1 ⊂ A2 we have

minlex(A2L \A1L) = α0minlex(A2 \A1) = minlex(A2 \A1)α0.
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Proof We first observe that A2L \ A1L = LA2 \ LA1 6= ∅ because Lemma
3.3 states that A2 = A1 if LA2 = LA1. So, let w = minlex(A2L \ A1L) and
w̃ = minlex(A2 \A1). Since A2L = LA2, we have

w = w1αs = αtw2

for suitable w1, w2 ∈ A2 \ A1, and αs, αt ∈ L with w̃ ≤lex w1, w2. Note that
αt = α0 since otherwise α0w2 <lex w and then α0w2 would belong to LA1, that
is, w2 would belong to A1 (by Property (d)).
A similar reasoning shows that w2 = w̃ and then

w1αs = α0w̃.

Since α0 is primitive, Lemma 3.1 and Theorem 2.1 imply

w0 = minlex(C(L) \ {ε}) = αk
0 .

Now, let n = |α0| and note that |w1| ≥ n since otherwise w1 < α0 and then
w1 <lex w0. Moreover, w1 6= α0 because w1 ∈ A2 \A1 and α0 ∈ L ⊆ A1. Hence,
there exists u ∈ Σ+ such that

w1αs = α0uαs = α0w̃,

that is, w1 = α0u and w̃ = uαs with w̃ ≤lex w1. So, by Lemma 3.2 we obtain
w̃ ≤ w1 and then there are e ∈ {0, . . . , n− 1} and j > 0 such that

w1 = αj
0prefe(α0), w̃ = αj−1

0 prefe(α0)αs.

Note that if e = 0, from w̃ = αj−1
0 αs ≤lex w1 = αj

0, by Property (a0) we obtain
αs ≤lex α0. Therefore, in this case we have αs = α0 and w1 = w̃. Similarly, if
α0 = αs we conclude by observing that from w1α0 = α0w̃ we get |w1| = |w̃| and
then w1 = w̃ since w̃ ≤ w1.

Finally, we show that if e 6= 0 and α0 <lex αs we can find a word in A1 that
is smaller than w0.
Recalling that w̃ ≤ w1, from

αj−1
0 prefe(α0)αs ≤ αj

0prefe(α0),

we get
prefe(α0)αs ≤ α0prefe(α0). (4.1)

From α0 <lex αs and Property (a1) we obtain prefe(α0)α0 <lex prefe(α0)αs and
then, by (4.1) and Property (b),

prefe(α0)α0 <lex α0prefe(α0). (4.2)

Now, we consider the word w1α0 = αj
0prefe(α0)α0 and observe that it belongs to

A1L (and to LA1) since w1α0 <lex w. So, by Property (d) there exists y1 ∈ A1,

y1 = αj−1
0 prefe(α0)α0,

such that w1α0 = α0y1. Then, we distinguish two cases.
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(j − 1 = 0) By (4.2) we have y1 = prefe(α0)α0 <lex α0prefe(α0) and so there
are γ, x1, x2 ∈ Σ? and σ, τ ∈ Σ with σ < τ , such that

y1 = prefe(α0)α0 = γσx1, α0prefe(α0) = γτx2.

If |γ| < n then we have found a word y1 such that y1 <lex α0 ≤lex w0,
otherwise we have y1 = α0sufe(α0) with

sufe(α0) <lex prefe(α0). (4.3)

In this case we consider the word

y1α0 = α0ỹ

and, by Property (d), we obtain a word ỹ ∈ A1, ỹ = sufe(α0)α0. Then,
(4.3) and Property (b) imply ỹ <lex α0 ≤lex w0.

(j − 1 > 0) We consider the word y1α0 ∈ A1L. Since A1L = LA1, we have
y1α0 = α0y2 with y2 = αj−2

0 prefe(α0)α2
0 ∈ A1 (by Property (d)). By

iterating the process, we eventually get a word yj ∈ A1,

yj = prefe(α0)αj
0.

Lastly, as shown in the previous case, we obtain a word ŷ ∈ A1 that
satisfies ŷ <lex α0 ≤lex w0 by setting either ŷ = yj if (α0 6≤ yj) or ŷ = ȳ (if
yj = α0ȳ).

�

It is now easy to prove that if the smallest word of a language L is prefix
distinguishable in L and the centralizer of L properly contains L?, then the
smallest word of L is not primitive. More formally, we have the following:

Theorem 4.2 Let L ⊆ Σ+, U = C(L) \ L? and α0 = minlex(L). If α0 is prefix
distinguishable in L and U 6= ∅ then α0 is not primitive.

Proof We trivially have L? ⊆ C(L) and L?L = LL?. So, if U 6= ∅ let w̃ =
minlex(U) and consider the languages (commuting with L) A1 = L?, A2 = C(L).
Since L ∪ {ε} ⊆ A1 ⊂ A2 then, by Theorem 4.1, we have

minlex(A2L \A1L) = α0w̃ = w̃α0.

Now, by Theorem 2.1 there are z ∈ Σ+ and two integers a, b such that α0 = za

and w̃ = zb. Note that if a = 1 then w̃ = αb
0 ∈ Lb and so w̃ cannot belong to U .

Hence a > 1 and α0 is not primitive. �

Finally, we have:

Theorem 4.3 Let L ⊆ Σ+ and α0 = minlex(L). If α0 is primitive and prefix
distinguishable in L then C(L) = L?.

Proof Trivial. Suppose C(L) 6= L?. Then we have C(X) \ X? 6= ∅ and so
Theorem 4.2 states that α0 is not primitive. �
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5 Conclusions and open problems

Given a language L, let P(L) be true if and only if the smallest word of L (with
respect to ≤lex) is primitive and prefix distinguishable in L. We have shown
that P is a sufficient condition that a language L might satisfy in order to admit
as centralizer the submonoid L?. Obviously, P is not necessary, as we can easily
see, for instance, by constructing a three-word code that does not satisfy P and
recalling that the centralizer of every three-word code L is L? (see [6]). So, it is
an open problem to characterize the class of languages L with C(L) = L?.
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Parkization of words and its algebraic

applications

Jean-Christophe Novelli, Jean-Yves Thibon∗

Abstract

The notion of parkization of a word, a variant of the classical standard-
ization, allows one to define a Hopf algebra based on parking functions, and
to introduce an internal product on it. A subalgebra based on a Catalan
set is stable under this operation and contains the descent algebra as a left
ideal.

1 Introduction

The notion of standardization of a word over an ordered alphabet is of funda-
mental importance in the study of various sorting algorithms. It is also essential
to the understanding of the Robinson-Schensted correspondence and of most its
generalizations, and provides a simple explanation of the existence of a Hopf
algebra based on permutations.

Recall that the standardized Std(w) of a word w is the permutation obtained
by iteratively scanning w from left to right, and labelling 1, 2, . . . the occurrences
of its smallest letter, then numbering the occurrences of the next one, and so
on. Alternatively, σ = Std(w)−1 can be characterized as the unique permuta-
tion of minimal length such that wσ is a nondecreasing word. For example,
Std(bbacab) = 341625.

This characterizes completely the sequences of transpositions effected by the
bubble sort algorithm on w. An elementary observation, which is at the basis
of the constructions of [1], is that the noncommutative polynomials

Gσ(A) =
∑

w∈A∗;Std(w)=σ

w (1.1)

span a subalgebra of Z〈A〉. Moreover, if A is infinite, this subalgebra admits
a natural Hopf algebra structure. This is FQSym, the algebra of Free Quasi-
Symmetric Functions.

In the sequel, we will describe a similar construction, in which permuta-
tions are replaced by another class of special words, known as parking functions.
Before going into details, we need to review some history of the subject.

∗Institut Gaspard Monge, Université de Marne-la-Vallée, 5 Boulevard Descartes, Champs-
sur-Marne, 77454, Marne-la-Vallée cedex 2 (France), {novelli,jyt}@univ-mlv.fr
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In 1976, Solomon [14] constructed for each finite Coxeter group a remarkable
subalgebra of its group algebra, now called its descent algebra.

For the infinite series of Weyl groups, the direct sums of descent algebras can
be endowed with some interesting extra structure. This is most particularly the
case for symmetric groups (type A), where the direct sum Σ =

⊕
n≥0 Σn (Σn

being the descent algebra of Sn) builds up a Hopf algebra, isomorphic to Sym
(noncommutative symmetric functions) and dual to QSym (quasi-symmetric
functions).

It has been understood by Reutenauer [12] and Patras [10] that Σ could be
interpreted as a subalgebra of the direct sum S =

∑
n≥0 ZSn for the convo-

lution product of permutations, which arises when permutations are regarded
as graded endomorphisms of a free associative algebra. Indeed, Σ is then just
the convolution subalgebra generated by the homogeneous components of the
identity map. Further understanding of the situation has been provided by Mal-
venuto and Reutenauer [8], who gave a complete description of the Hopf algebra
structure of S, and by Poirier-Reutenauer [11], who discovered an interesting
subalgebra based on standard Young tableaux.

Finally, the introduction of FQSym clarified the picture and brought up a
great deal of simplification. Indeed, FQSym is an algebra of noncommutative
polynomials over some auxiliary set of variables ai, which is isomorphic to S,
and is mapped onto ordinary quasi-symmetric function QSym when the ai are
specialized to commuting variables xi, the natural basis Fσ of FQSym going
to Gessel’s fundamental basis FI . At the level of FQSym, the coproduct has
a transparent definition (ordered sum of alphabets), and most of its properties
become obvious.

There is at least one point, however, on which this construction does not shed
much light. It is the original product of the descent algebras Σn, which gives
rise on Sym to a noncommutative analogue of the internal product of symmetric
functions (see [7] for the classical case). The introduction of the Hopf structure
of Σ = Sym was extremely useful, thanks to the so-called splitting formula
[2, 5], a compatibility property between all operations (internal and external
product, coproduct). But the embedding of Sym in FQSym does not seem to
bring new information. In particular, the coproduct dual to the composition
of permutations has no nice definition in terms of product of alphabets, and
the splitting formula is no more valid in general. Hopf subalgebras in which
it remains valid have been studied by Schocker (Lie idempotent algebra, [13])
and by Patras-Reutenauer [11], this last one being maximal with respect to this
property.

There are many combinatorial objects which can be regarded, in one way or
another, as generalizations of permutations. Among them are parking functions,
on which a Hopf algebra structure PQSym, very similar to that of FQSym,
can be defined [9]. Actually, FQSym is a Hopf subalgebra of PQSym.

We shall briefly review the construction of PQSym, and then proceed to
show that it is possible to define on PQSym an internal product, dual to a
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natural coproduct corresponding to the Cartesian product of ordered alphabets,
exactly as in Gessel’s construction of the descent algebra [3]. This product is
very different from the composition of permutations or endofunctions, and looks
actually rather strange. It can be characterized in terms of the fundamental
notion of parkization of words defined over a totally ordered alphabet in which
each element has a successor.

In [9], various Hopf subalgebras of PQSym have been introduced. We shall
show that the Catalan subalgebra CQSym (based on the Catalan family of non-
decreasing parking functions, or equivalently, non-crossing partitions) is stable
under this new internal product, and contains the descent algebra as a left ideal.
Moreover, the splitting formula remains valid for it.
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2 Parking functions and parkization

A parking function on [n] = {1, 2, . . . , n} is a word a = a1a2 · · · an of length n
on [n] whose non-decreasing rearrangement a↑ = a′1a

′
2 · · · a′n satisfies a′i ≤ i for

all i. Let PFn be the set of such words.
One says that a has a breakpoint at b if |{ai ≤ b}| = b. Then, a ∈ PFn is

said to be prime if its only breakpoint is b = n. Let PPFn ⊂ PFn be the set of
prime parking functions on [n].

For a word w on the alphabet 1, 2, . . ., denote by w[k] the word obtained by
replacing each letter i by i + k. If u and v are two words, with u of length k,
one defines the shifted concatenation

u • v = u · (v[k]) (2.1)

and the shifted shuffle
u d v = u (v[k]) . (2.2)

The set of permutations is closed under both operations, and the subalgebra
spanned by this set is isomorphic to S [8] or to FQSym [1].

Clearly, the set of all parking functions is also closed under these operations.
The prime parking functions exactly are those which do not occur in any non-
trivial shifted shuffle of parking functions. These properties allowed us to define
a Hopf algebra of parking functions in [9].

This algebra, denoted by PQSym, for Parking Quasi-Symmetric functions,
is spanned as a vector space by elements Fa (a ∈ PF), the product being defined
by

Fa′Fa′′ :=
∑

a∈a′da′′

Fa . (2.3)
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For example,

F12F11 = F1233 + F1323 + F1332 + F3123 + F3132 + F3312 . (2.4)

The coproduct on PQSym is a natural extension of that of FQSym. Recall
(see [1, 8]) that if σ is a permutation,

∆Fσ =
∑

u·v=σ

FStd(u) ⊗ FStd(v), (2.5)

where Std denotes the usual notion of standardization of a word.
For a word w over a totally ordered alphabet in which each element has a

successor, we defined in [9] a notion of parkized word Park(w), a parking function
which reduces to Std(w) when w is a word without repetition.

For w = w1w2 · · ·wn on {1, 2, . . .}, we set

d(w) := min{i|#{wj ≤ i} < i} . (2.6)

If d(w) = n + 1, then w is a parking function and the algorithm terminates,
returning w. Otherwise, let w′ be the word obtained by decrementing all the
elements of w greater than d(w). Then Park(w) := Park(w′). Since w′ is smaller
than w in the lexicographic order, the algorithm terminates and always returns
a parking function.

For example, let w = (3, 5, 1, 1, 11, 8, 8, 2). Then d(w) = 6 and the word
w′ = (3, 5, 1, 1, 10, 7, 7, 2). Then d(w′) = 6 and w′′ = (3, 5, 1, 1, 9, 6, 6, 2). Finally,
d(w′′) = 8 and w′′′ = (3, 5, 1, 1, 8, 6, 6, 2), that is a parking function. Thus,
Park(w) = (3, 5, 1, 1, 8, 6, 6, 2).

The coproduct on PQSym is defined by

∆Fa :=
∑

u·v=a

FPark(u) ⊗ FPark(v), (2.7)

For example,

∆F3132 = 1⊗ F3132 + F1 ⊗ F132 + F21 ⊗ F21 + F212 ⊗ F1 + F3132 ⊗ 1 . (2.8)

The product and the coproduct of PQSym are compatible, so that PQSym is
a graded bialgebra, connected, hence a Hopf algebra. Let Ga = F∗

a ∈ PQSym∗

be the dual basis of (Fa). If 〈 , 〉 denotes the duality bracket, the product on
PQSym∗ is given by

Ga′Ga′′ =
∑
a

〈Ga′ ⊗Ga′′ ,∆Fa 〉Ga =
∑

a∈a′∗a′′
Ga , (2.9)

where the convolution a′∗a′′ of two parking functions is defined as

a′∗a′′ =
∑

u,v;a=u·v,Park(u)=a′,Park(v)=a′′

a . (2.10)
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For example,

G12G11 = G1211 + G1222 + G1233 + G1311 + G1322

+ G1411 + G1422 + G2311 + G2411 + G3411 .
(2.11)

When restricted to permutations, it coincides with the convolution of [8, 12].
The coproduct of a Ga is

∆Ga :=
∑

u,v;a∈udv

Gu ⊗Gv . (2.12)

For example,

∆G41252 = 1⊗G41252 + G1 ⊗G3141 + G122 ⊗G12

+ G4122 ⊗G1 + G41252 ⊗ 1 .
(2.13)

3 Polynomial realization of PQSym∗

We shall need the following definitions: given a totally ordered alphabet A, the
evaluation vector Ev(w) of a word w is the sequence of number of occurrences of
all the elements of A in w. The packed evaluation vector c(w) of w is obtained
from Ev(w) by removing all its zeros. The fully unpacked evaluation vector d(w)
of w is obtained from c(w) by inserting i−1 zeros after each entry i of c(w) except
the last one. For example, if w = 3117291781329, Ev(w) = (4, 2, 2, 0, 0, 0, 2, 1, 2),
c(w) = (4, 2, 2, 2, 1, 2), and d(w) = (4, 0, 0, 0, 2, 0, 2, 0, 2, 0, 1, 2).

The algebra PQSym∗ admits a simple realization in terms of noncommuta-
tive polynomials, which is reminescent of the construction of FQSym. If A is
a totally ordered infinite alphabet, one can define the following polynomial in
K〈A〉

Ga(A) =
∑

w∈A∗,Park(w)=a

w, (3.1)

a being a parking function. Then

Theorem 3.1 The Ga(A) span a subalgebra of K〈A〉, and the product

Ga′(A)Ga′′(A)

is given by Formula (2.9), so that φA : Ga → Ga(A) induces an isomorphism
of algebras. Moreover, if one denotes by A′ and A′′ two mutually commuting
alphabets isomorphic to A as ordered sets, and A′+̇A′′ the ordered sum, the
coproduct is given by

∆(G)(A) = G(A′+̇A′′) (3.2)

under the identification U(A)⊗ V (A) = U(A′)V (A′′).



328 Words 2005

Proof First, note that the parkization algorithm is compatible with deconcate-
nation in the following sense: if u = v ·w is a word and Park(u) = v′ ·w′ with
v and v′ of the same size, then Park(v) = Park(v′) and Park(w) = Park(w′).
Assume that a word u1 appears in Ga′(A)Ga′′(A), and let u2 be a word with
same parkized word as u1. Then u2 also appears in this product thanks to the
previous remark. Since all words appearing in the product Ga′Ga′′ appear with
multiplicity one, this proves that the Ga(A) span a subalgebra of K〈A〉.

Now, since each word appears in exactly one Ga(A), there are no non-trivial
linear relations between the Ga(A). Let φ be the linear isomorphism sending the
basis Ga to the basis Ga(A). We will now prove that φ is an algebra morphism,
that is, that the product of Ga is the same as the product of Ga(A). Thanks
to Formula (2.10), if Ga appears in the product Ga′Ga′′ , then Ga(A) appears
in Ga′(A)Ga′′(A). Conversely, any word appearing in Ga′(A)Ga′′(A) has a
parkized word in a′ ∗ a′′.

Clearly, ∆ as defined by Formula (3.2) is an algebra morphism. Let us show
that Ga(A′+̇A′′) is given by Formula (2.12). Indeed, if a parking function a
can be written as u d v, then Gu(A) ⊗Gv(A) belongs to ∆Ga(A) since u can
be in (A′)∗ and v in (A′′)∗. Conversely, if Gu(A)⊗Gv(A) appears in ∆Ga(A),
there exist two words u′ and v′ respectively in (A′)∗ and (A′′)∗ with respective
parkized u and v. So a is in u′ v′, and hence in u d v. �

Recall from [9] that the sums

Pπ :=
∑

a;a↑=π

Fa (3.3)

where a↑ means the non-decreasing reordering and π runs over non-decreasing
parking functions, span a cocommutative Hopf subalgebra CQSym of PQSym.

As with FQSym, one can take the commutative image of the Ga, that is,
replace the alphabet A by an alphabet X of commuting variables (endowed
with an isomorphic ordering). Then, Ga′(X) = Ga′′(X) iff a′ and a′′ have
the same non-decreasing reordering π, and both coincide with the generalized
quasi-monomial function Mπ = (Pπ)∗ of [9], that is, the natural basis of the
commutative Catalan algebra CQSym∗ = CQSym.

Actually, CQSym contains QSym as a subalgebra, the quasi-monomial func-
tions being obtained as MI =

∑
c(π)=IMπ.

As a first application of the polynomial realization, we can quantize CQSym.
Indeed, we can proceed as for the quantization of QSym [15], that is, we map
the ai on q-commuting variables xi, that is, xjxi = qxixj for i < j, Ga′(X) and
Ga′′(X) are equal only up to a power of q when a′ and a′′ have the same non-
decreasing reordering π, and the resulting algebra is not commutative anymore.
Deforming the coproduct so as to maintain compatibility with the product, one
may obtain a self-dual Hopf algebra isomorphic to the Loday-Ronco algebra of



329

planar binary trees [6], but the natural structure of this q-deformation is rather
that of a twisted Hopf algebra (see [4]).

However, our main application will be the definition of an internal product
on PQSym.

4 The internal product

Let us first recall some standard notations about biwords. Let xij =
„

i
j

«
be

commuting indeterminates, and aij =
»

i
j

–
be noncommuting ones. We shall

denote by
„

i1 i2 · · · ir
j1 j2 · · · jr

«
the monomial

„
i1
j1

« „
i2
j2

«
· · ·

„
ir
jr

«
and by

»
i1, i2, · · · ir
j1, j2, · · · jr

–
the

word
»

i1
j1

– »
i2
j2

–
· · ·

»
ir
jr

–
. Such expressions will be referred to respectively as bi-

monomials and biwords.

Recall that Gessel constructed the descent algebra by extending to QSym
the coproduct dual to the internal product of symmetric functions. That is, if
X and Y are two totally and isomorphically ordered alphabets of commuting
variables, we can identify a tensor product f ⊗ g of quasi-symmetric functions
with f(X)g(Y ). Denoting by XY the Cartesian product X × Y endowed with
the lexicographic order, Gessel defined for f ∈ QSymn

δ(f) = f(XY ) ∈ QSymn ⊗QSymn . (4.1)

The dual operation on Symn is the internal product ∗, for which Symn is anti-
isomorphic to the descent algebra Σn.

This construction can be extended to the commutative Catalan algebra
CQSym = CQSym∗, and in fact, even to PQSym∗.

Let A′ and A′′ be two totally and isomorphically ordered alphabets of non-
commuting variables, but such that A′ and A′′ commute with each other. We
denote by A′A′′ the Cartesian product A′ ×A′′ endowed with the lexicographic
order. This is a total order in which each element has a successor, so that
Ga(A′A′′) is a well defined polynomial. Identifying tensor products of words of
the same length with words over A′A′′, we have

Ga(A′A′′) =
∑

Park(u⊗v)=a

u⊗ v . (4.2)

For example, writing tensor products as biwords, one has

G4121(A′A′′) =
∑

a,b,c,d

[
b a a a
d c c+ 1 c

]
(4.3)

with b > a, or b = a and d ≥ c+ 3. Our main result is the following
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Theorem 4.1 The formula δ(Ga) = Ga(A′A′′) defines a coassociative coprod-
uct on each homogeneous component PQSym∗

n. Actually,

δ(Ga) =
∑

Park(a′⊗a′′)=a

Ga′ ⊗Ga′′ , (4.4)

where a′ and a′′ are parking functions. By duality, the formula

Fa′ ∗ Fa′′ = FPark(a′⊗a′′) (4.5)

defines an associative product on each PQSymn.

Proof The lexicographic product of ordered alphabets being associative,
δ(Ga) = Ga(A′A′′) is coassociative. If the parkized of u ⊗ v is a then the
parkized of Park(u)⊗ Park(v) is also a. This implies Formula (4.4). �

Since A is infinite, δ is compatible with the product of PQSym∗.

Example 4.2

δG4121 =(G2111 + G3111 + G4111)⊗ (G1232 + G1121 + G2121 + G3121 + G4121)
+ G1111 ⊗G4121.

(4.6)

Example 4.3

F211 ∗ F211 = F311; F211 ∗ F112 = F312; (4.7)

F211 ∗ F121 = F321; F112 ∗ F312 = F213; (4.8)

F31143231 ∗ F23571713 = F61385451. (4.9)

The main tool for handling internal products of non-commutative symmetric
functions is the splitting formula (see [2], Proposition 5.2). It does not hold in
PQSym, but one can find subalgebras of PQSym larger than Sym in which
it remains true.

5 Subalgebras of (PQSymn, ∗)
In [9], we provide two subalgebras of the Hopf algebra PQSym, namely the
Catalan algebra CQSym and the Schröder algebra SQSym. It turns out that
the former is stable under ∗, whereas the latter is not.

Define the parkized word of a bimonomial as the non-decreasing parking
function obtained by parkizing its lexicographically sorted biword. Recall that
bimonomials can be encoded as matrices, the entry Aij being the number of
bi-letters (ij) in the biword, so that it makes sense to speak of the parkized
word of a matrix.
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Theorem 5.1 The homogeneous components CQSymn of the Catalan algebra
are stable under the internal product ∗. More precisely, one has

Pπ′ ∗Pπ′′ =
∑
π

Pπ (5.1)

where π runs over the parkized words of all non-negative integer matrices with
row sum Ev(π′) and column sum Ev(π′′).

Proof Let u ⊗ v be a biword. Then the parkized of a permutation of u ⊗ v is
the same permutation of the parkized of u⊗ v. So one can regroup all biwords
appearing in Pπ′ ∗ Pπ′′ into rearrangement classes. By definition of the basis
P, each class contributes one term in the product. This term is labelled by the
non-decreasing parking function obtained by sorting the parkized word of any
biword in the class. Thanks to the definition of a parkized word of a bimonomial,
we then obtain the label of any term as the parkized word of the corresponding
matrix. �

Example 5.2

P1123 ∗P1111 = P1134; P1111 ∗P1123 = P1123. (5.2)

P1123∗P1112 = 2P1134+P1234; P1122∗P1224 = P1134+P1233+2P1234. (5.3)

P1123 ∗P1224 = 2P1134 + 5P1234. (5.4)

The matrices appearing in the last product are1 1 . .
. 1 . .
. . . 1

1 1 . .
. . . 1
. 1 . .

1 . . 1
. 1 . .
. 1 . .

 . 2 . .
1 . . .
. . . 1


 . 2 . .
. . . 1
1 . . .

 . 1 . 1
1 . . .
. 1 . .

 . 1 . 1
. 1 . .
1 . . .


(5.5)

the fourth and the fifth matrices having 1134 as parkized word whereas the other
ones yield 1234.

It is interesting to observe that these algebras are non-unital. Indeed, it
follows from Formula (5.1) that

Corollary 5.3 The element Jn = P(1n) is a left unit for ∗, but not a right unit.

The description of Pπ′ ∗ Pπ′′ in terms of integer matrices being essentially
identical to that of SI ∗ SJ in Sym, the same argument as in [2], proof of
Proposition 5.2, shows that the splitting formula remains valid in CQSymn:
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Proposition 5.4 Let µr denote the r-fold product map from CQSym⊗r to
CQSym, ∆r the r-fold coproduct with values in CQSym⊗r, and ∗r the in-
ternal product of the r-fold tensor product of algebras CQSym⊗r. Then, for
f1, . . . , fr, g ∈ CQSym,

(f1 · · · fr) ∗ g = µr[(f1 ⊗ · · · ⊗ fr) ∗r ∆r(g)] . (5.6)

This is indeed the same formula as with the internal product of Sym, actu-
ally, an extension of it, since we have

Corollary 5.5 The Hopf subalgebra of CQSym generated by the elements Jn,
which is isomorphic to Sym by j : Sn 7→ Jn, is stable under ∗, and thus also
∗-isomophic to Sym. Moreover, the map f 7→ f ∗ Jn is a projector onto Symn,
which is therefore a left ∗-ideal of CQSymn.

More precisely, if i < j < . . . < r are the letters occuring in π, so that as a
word π = imijmj · · · rmr , then

Pπ ∗ Jn = JmiJmj · · ·Jmr . (5.7)

In the classical case, the non-commutative complete fonctions split into a
sum of ribbon Schur functions, using a simple order on compositions. To get
an analogous construction in our case, we have defined a partial order on non-
decreasing parking functions.

Let π be a non-decreasing parking function and Ev(π) be its evaluation
vector. The successors of π are the non-decreasing parking functions whose
evaluations are given by the following algorithm: given two non-zero elements of
Ev(π) with only zeros between them, replace the left one by the sum of both and
the right one by 0. For example, the successors of 113346 are 111146, 113336,
and 113344.

By transitive closure, the successor map gives rise to a partial order on non-
decreasing parking functions. We will write π � π′ if π′ is obtained from π by
successive applications of successor maps.

The Catalan ribbon functions [9] are defined by

Pπ =:
∑
π′�π

Rπ′ . (5.8)

It follows from Theorem 5.1 that the Rπ are the pre-images of the ordinary
ribbons under the projection f 7→ f ∗ Jn:

Corollary 5.6 Let I be the composition obtained by discarding the zeros of the
evaluation of an non-decreasing parking function π. Then

Rπ ∗ Jn = j(RI). (5.9)

More precisely, if I = (i1, . . . , ip), this last element is equal to R1i1•1i2•···•1ip ,
that is, the Catalan ribbon indexed by the only non-decreasing word of evaluation
d(π).
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The internal product of CQSym is dual to the coproduct δf = f(XY ) on
the commutative algebra CQSym, quotient of PQSym∗. For example, we have

M113(XY ) = (M112(X) +M113(X))(M111(Y ) +M112(Y )
+M113(Y ) +M122(Y )) +M111(X)M113(Y ). (5.10)

M112(XY ) = +M111(X)M112(Y ). (5.11)
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Letter frequency in infinite repetition-free

words∗

Pascal Ochem†

Abstract

We estimate the extremal letter frequency in infinite words over a finite
alphabet avoiding some repetitions. For ternary square-free word, we im-
prove the bounds of Tarannikov on the minimal letter frequency, and prove
that the maximal letter frequency is 255

653 . Kolpakov et al. have studied
the function ρ such that ρ(x) is the minimal letter frequency in an infinite
binary x-free word. In particular, they have shown that ρ is discontinu-
ous at 7

3 and at every integer at least 3. We answer one their question
by providing some other points of discontinuity for ρ. Finally, we propose
stronger versions of Dejean’s conjecture on repetition threshold in which
unequal letter frequencies are required.

1 Introduction

In this paper, we study the extremal frequencies of a letter in factorial languages
defined by an alphabet size and a set of forbidden repetitions. Given such a
language, we denote by f− (resp. f+) the minimal (resp. maximal) letter
frequency in an infinite word that belong to the language L. Letter frequencies
have been mainly studied in [6, 12, 13]. Let Σi denote the i-letter alphabet
{0, 1, . . . , i−1}. We consider here the frequency of the letter 0. Let n(w) denote
the number of occurrences of 0 in the finite word w. So the letter frequency
in w is n(w)

|w| . A negative result is either a lower bound on f− or an upper
bound on f+. Notice that for binary words, we only need to consider f− since
f− + f+ = 1. We denote by ρ(x) (resp. ρ(x+)) the minimal letter frequency
in an infinite x-free (resp. (x+)-free) binary word. Our results are stated in
Section 2. The proof technique for negative results is an improved version of the
methods given in [7,13] to find lower bounds on the minimal frequency of square
occurrences in an infinite binary word. It is detailled in Section 3. Positive
results consist in uniform morphisms that can produce infinite words in L with
a given letter frequency. The method used to find such morphisms is explained in
Section 4. In Section 5, we make a conjecture related to Dejean’s conjecture [3]
involving unequal letter frequencies. The C++ sources of the programs and the

∗Research supported in part by COMBSTRU.
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morphisms used in this paper are available at: http://dept-info.labri.fr/
∼ochem/morphisms/.

2 Statement of main results

For ternary square-free words, Tarannikov [13] showed that f− ∈
[

1780
6481 ,

64
233

]
=

[0.27464897 . . . , 0.27467811 . . .]. According to [12], he also proved that f+ ≤
469
1201 = 0.39050791 . . . . We obtain the following results:

Theorem 2.1 For ternary square-free words, we have

1. f− ∈
[

1000
3641 ,

883
3215

]
= [0.27464982 . . . , 0.27465007 . . .].

2. f+ = 255
653 = 0.39050535 . . . .

A (β, n)-repetition is a repetition with prefix size n and exponent β. The notions
of (β, n)-freeness and (β+, n)-freeness are introduced in [4]. A word is said to
be (β, n)-free (resp. (β+, n)-free) if it contains no (β′, n′)-repetition such that
n′ ≥ n and β′ ≥ β (resp. β′ > β). we construct in [4] an infinite

(
8
5

+
, 3
)

-free
binary word.

Theorem 2.2 For (5
3 , 3)-free binary words, we have f− = 1

2 .

Theorem 2.2 implies that infinite (β, 3)-free binary words have equal letter fre-
quency for β ∈

[
8
5

+
, 5

3

]
. A similar result in [6] says that infinite (β, 1)-free binary

words have equal letter frequency for β ∈
[
2+, 7

3

]
, i.e. ρ(2+) = ρ

(
7
3

)
= 1

2 . It is
noticeable that these two cases of equal letter frequency have different kind of
growth function. Karhumäki and Shallit have shown that the growth function of
7
3 -free binary words is polynomial [5], whereas the growth function of (8

5

+
, 3)-free

binary words is exponential. To see this, notice that the 992-uniform morphism
h : Σ∗

4 → Σ∗
2 given in [4] produces a

(
8
5

+
, 3
)

-free binary word h(w) for every
7
5

+-free word w ∈ Σ∗
4, and that an exponential lower bound on the number of

4-ary 7
5

+-free words is shown in [10].
Kolpakov et al. [6] proved that the function ρ is discontinuous at 7

3 , more

precisely they obtained that ρ
(

7
3

)
= 1

2 and ρ
(

7
3

+
)
≤ 10

21 = 0.47619047 . . . .
The next result provides new points of discontinuity for ρ in the range[

7
3

+
, 3
]
, namely 17

7 , 5
2 , 23

9 , 16
41 , 18

7 , and 8
3 .

Theorem 2.3

1. ρ
(

7
3

+
)
≤ 47

101 = 0.46534653 . . . .

2. ρ
(

17
7

)
≥ 467

1004 = 0.46513944 . . . .
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3. ρ
(

17
7

+
)
≤ 81

175 = 0.46285714 . . . .

4. ρ
(

5
2

)
≥ 54286

117293 = 0.46282386 . . . .

5. ρ
(

5
2

+
)
≤ 23

52 = 0.44230769 . . . .

6. ρ
(

23
9

)
> 205

464 = 0.44181034 . . . .

7. ρ
(

23
9

+
)
≤ 91

206 = 0.44174757 . . . .

8. ρ
(

16
41

)
> 322

729 = 0.44170096 . . . .

9. ρ
(

16
41

+
)
≤ 143

324 = 0.44135802 . . . .

10. ρ
(

18
7

)
≥ 79

179 = 0.44134078 . . . .

11. ρ
(

18
7

+
)
≤ 41

93 = 0.44086021 . . . .

12. ρ
(

8
3

)
> 339

769 = 0.44083224 . . . .

13. ρ
(

8
3

+
)
≤ 24

59 = 0.40677966 . . . .

14. ρ (3) > 115
283 = 0.40636042 . . . .

3 Method for negative results

Let L be a factorial language. A word w is said to be k-biprolongable in L if
there exists a word lwr ∈ L such that |l| = |r| = k. A suffix cover of L is a
set S of finite words in L such that every finite k-biprolongable word in L has
a suffix that belongs to S, for some finite number k. Taking k = 20 is sufficient
for every negative result in this paper. For a word u ∈ S, let

Au(q) =
{
w ∈ L | uw ∈ L and for every prefix w[1..k] of w,

n(w[1..k])
k

< q

}
.

Lemma 3.1 Let L be a factorial language and S one of its suffix cover. Let
q ∈ Q. If Au(q) is finite for every word u ∈ S, then f− ≥ q.

Proof Assume Au(q) is finite for every word u ∈ S. Then any infinite word
w ∈ L has a decomposition into finite factors w0w1w2 . . . such that |w0| =
k + maxu∈S |u| and n(wi)

|wi| ≥ q for every i ≥ 1. �

Lemma 3.1 enables us to obtain bounds of the form f− ≥ q by choosing an
explicit suffix cover and checking by computer that every set Au(q) is finite. It
is easy to see that Lemma 3.1 and the definition of Au(q) can be modified to
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provide bounds of the form f− > q, f+ ≤ q, or f+ < q. This method is a natural
generalization of the one in [13], where the suffix cover consist in the empty word,
and of the one in [7], where the suffix cover consist in all binary words of length
three. Since we study here the frequency of the letter 0 in repetition-free words,
every letter other than 0 play the same role. Let us say that two words u and u′

in Σs are equivalent if and only if u can be obtained from u′ by a permutation of
the letters in Σs \ {0}. Notice that for two equivalent words u and u′, Au′(q) is
finite if and only if Au(q) is finite. We define the reduced suffix cover of a suffix
cover S as the quotient of S by this equivalence relation. To prove the negative
part of Theorem 2.1.1 we used the reduced suffix cover {1, 01210, 0210, 2010}, the
computation took about 20 days on a XEON 2.2Gh. For Theorem 2.1.2 we used
the reduced suffix cover {0, 01, 021, 0121}. For Theorem 2.2 we used the suffix
cover {01, 111, 000, 1110, 1010, 0001111000010, 0111101000010, 1110101000010,
0111100010}. We omit the computer proof that this is indeed a suffix cover for
(5
3 , 3)-free binary words. The negative statements of Theorem 2.3 (even items)

were obtained using the suffix cover {1, 10, 100}.

4 Method for positive results

Let L be a factorial language. To construct an infinite word w ∈ L with a
given letter frequency q ∈ Q, we basically use the method described in [10].
We note q = a

b with a coprime to b. For increasing values of k, we look for a
(k×b)-uniform morphism h : Σ∗

e → Σ∗
s producing (infinite) words in L such that

n(h(i)) = k × a for every i ∈ Σe.
Consider the 8-uniform morphism m : Σ∗

3 −→ Σ∗
4 defined by

m(0) = 01232103,
m(1) = 01230323,
m(2) = 01210321.

To get the bound f− ≤ 883
3215 in Theorem 2.1, we found a square-free morphism

h+ : Σ∗
3 −→ Σ∗

3 such that h+ = m◦m+ where m+ : Σ∗
4 −→ Σ∗

3 is a 3215-uniform
morphism. To get the bound f+ ≥ 255

653 in Theorem 2.1, we found a square-free
morphism h− : Σ∗

3 −→ Σ∗
3 such that h− = m ◦m− where m− : Σ∗

4 −→ Σ∗
3 is a

9142-uniform morphism (9142 = 14× 653). We need a result of Crochemore [2]
saying that a uniform morphism is square-free if the image of every square-free
word of length 3 is square-free. The software mreps [9] written by Kucherov
et al. can test if a word is square-free in linear time. We used it to prove that
h− and h+ are square-free by checking that h−(w) and h+(w) are square-free,
where w = 010201210120212 is square-free and contains every ternary square-
free words of length 3 as factors. Checking the image of w is faster than checking
the images of the 12 ternary square-free words of length 3 because mreps runs
in linear time. Since the morphisms h− (resp. h+) is square-free, we obtain an
exponential lower bound for ternary square-free words with letter frequency 883

3215



339

(resp. 255
653), which is interesting from the point of view of [12].

For each positive statement in Theorem 2.3 (odd items), we provide a uniform
morphism h : Σ∗

3 −→ Σ∗
2 such that for every

(
7
4

+
)

-free ternary word w, h(w)
has the corresponding properties of repetition-freeness and letter frequency.

5 Dejean’s conjecture and letter frequencies

The repetition threshold is the least exponent α = α(k) such that there exist
an infinite (α+)-free word over Σk. Dejean proved that α(3) = 7

4 . She also
conjectured that α(4) = 7

5 and α(k) = k
k−1 for k ≥ 5. In its full generality, this

conjecture is still open, although Pansiot [11] proved that α(4) = 7
5 and Moulin-

Ollagnier [8] proved that Dejean’s conjecture holds for 5 ≤ k ≤ 11. For more
information, see [1]. Based on numerical evidences, we propose the following
conjecture which implies Dejean’s conjecture.

Conjecture 5.1

1. For every k ≥ 5, there exists an infinite
(

k
k−1

+
)
-free word over Σn with

letter frequency 1
k+1 .

2. For every k ≥ 6, there exists an infinite
(

k
k−1

+
)
-free word over Σn with

letter frequency 1
k−1 .

It is easy to see that the values 1
k+1 and 1

k−1 in Conjecture 5.1 would be best

possible. For
(

5
4

+
)

-free words over Σ5, we obtain f+ < 103
440 = 0.23409090 · · · < 1

4

using the reduced suffix cover {0, 01, 012, 0123, 012341, 401234, 4301234}. That
is why Conjecture 5.1.2 is stated with k ≥ 6.
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[5] J. Karhumäki and J.O. Shallit, Polynomial versus exponential growth in repetition-
free binary words, J. Combin. Theory. Ser. A 105(2) (2004), 335–347.

[6] R. Kolpakov, G. Kucherov, and Y. Tarannikov, On repetition-free binary words of
minimal density, Theoret. Comput. Sci. 218 (1999), 161–175.

[7] G. Kucherov, P. Ochem, and M. Rao How many square occurrences must a binary
sequence contain ? Electron. J. Comb. 10(1) (2003), #R12.

[8] J. Moulin-Ollagnier, Proof of Dejean’s conjecture for alphabets with 5, 6, 7, 8, 9, 10
and 11 letters, Theoret. Comput. Sci. 95 (1992), 187–205.

[9] http://mreps.loria.fr/

[10] P. Ochem, A generator of morphisms for infinite words. In Proceedings of the
Workshop on Word Avoidability, Complexity, and Morphisms, Turku, Finland,
July 17 2004, LaRIA Technical Report 2004-07, pp. 9–14.

[11] J.-J. Pansiot, A propos d’une conjecture de F. Dejean sur les répétitions dans les
mots, Disc. Appl. Math. 7 (1984), 297–311.

[12] C. Richard and U. Grimm, On the entropy and letter frequencies of ternary square-
free words, Electron. J. Comb. 11 (2004), #R14

[13] Y. Tarannikov, The minimal density of a letter in an infinite ternary square-free
word is 0.2746..., J. Integer Sequences 5(2):Article 02.2.2 (2002).



Conjugacy of morphisms and Lyndon

decomposition of standard Sturmian words

Gwénäel Richomme∗

Abstract

Using the notions of conjugacy of morphisms, we answer a question of
G. Melançon concerning the decomposition in Lyndon words of standard
Sturmian words. We show some connections with morphisms preserving
Lyndon words

1 Introduction

Finite (or infinite) Lyndon words can be encountered in many studies (see for in-
stance [8–10]). They are the nonempty words which are smaller in lexicographic
order than all their proper suffixes. The Lyndon factorization theorem [4] states
that any finite word can be decomposed uniquely in a product of nonincreas-
ing (in lexicographic order) Lyndon words. This result was extended to infinite
words [19] (In such a case, the decomposition can end with an infinite Lyndon
word). Thus some works concern the decomposition in Lyndon words of some
infinite words (see for instance [3, 5, 11,12,18] for such results).

In [12], G. Melançon gives a decomposition in Lyndon words of standard
Sturmian words. He asks the following question: in which cases, the sequence of
nonincreasing Lyndon words appearing in the decomposition of a standard Stur-
mian word can be written (gn(l0))n≥0 with l0 a Lyndon word and g a morphism.
In Section 5, we answer this question.

For this, we use results about morphisms preserving Lyndon words [14] and
about conjugacy of morphisms [13]. In particular, we show that when a positive
answer exists to the previous question, g preserves Lyndon words and is the
conjugate of a morphism f that generates the decomposed standard Sturmian
word.

In Section 2, we recall notions on Sturmian words and morphisms. Section 3
recalls both the decomposition in Lyndon words of standard Sturmian words
obtained by G. Melançon, and his question. This section also recall notions on
morphisms preserving Lyndon words. Section 4 presents notions on conjugacy of
morphisms and introduces a new particular case, namely the strong conjugacy.
Using it in conjunction with morphisms preserving Lyndon words, we give a new

∗LaRIA, Université de Picardie Jules Verne, 33, Rue Saint Leu, F-80039 Amiens cedex 1
(France), gwenael.richomme@u-picardie.fr
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proof that for any standard Sturmian words w over {a < b}, aw is an infinite
Lyndon word [3]. Finally, in Section 5, we answer G. Melançon. Note that at
a first step, we express the decomposition of a standard Sturmian word using
only morphisms.

2 Sturmian words and morphisms

We recall here notions on words (see for instance [8, 9] for more details).

An alphabet A is a set of symbols called letters. Here we consider only finite
alphabets. A word over A is a sequence of letters from A. The empty word ε is
the empty sequence. Equipped with the concatenation operation, the set A∗ of
finite words over A is a free monoid with neutral element ε and set of generators
A. We denote by Aω the set of infinite words over A. As usually, for a finite word
u and an integer n, the nth power of u, denoted un, is the word ε if n = 0 and
the word un−1u otherwise. If u is not the empty word, uω denotes the infinite
word obtained by infinitely repeating u. A finite word w is said primitive if for
any word u, the equality w = un (with n an integer) implies n = 1. Any word
is the power of a unique primitive word called the primitive root of w.

Given a nonempty word u = u1 . . . un with ui ∈ A, the length |u| of u is
the integer n. One has |ε| = 0. If for some words u, v, p, s (possibly empty),
u = pvs, then v is a factor of u, p is a prefix of u and s is a suffix of u. When
p 6= u (resp. s 6= u), we say that p is a proper prefix (resp. s is a proper suffix )
of u. By |u|a we denote the number of occurrences of the letter a in the word u.

Sturmian words may be defined in many equivalent ways (see [1] for in-
stance). They are infinite binary words. Here we will consider them as the
infinite balanced non ultimately periodic words. We recall that a (finite or in-
finite) word w over {a, b} is balanced if for any factors u and v of same length
||u|a − |v|a| ≤ 1, and that an infinite word w is ultimately periodic if w = uvω

for some finite words u and v.
Many studies of Sturmian words use Sturmian morphisms. Let A,B be two

alphabets. A morphism (endomorphism if A = B) f from A∗ to B∗ is a mapping
from A∗ to B∗ such that for all words u, v over A, f(uv) = f(u)f(v). We also say
that f is a morphism on A or that f is defined on A (without any other precision
when B has no importance). A morphism on A is entirely known by the images
of the letters of A. A morphism extends naturally on infinite words. We denote
just by juxtaposition the composition of morphisms. Given an endomorphism
f , if limn→∞ fn(a) exists, then this limit is denoted fω(a) and is a fixed point
of f : the word fω(a) is said generated by f .

Sturmian morphisms are the morphisms in {E,La, Lb, Ra, Rb}∗ where E,
La, Lb, Ra, Rb are the endomorphisms defined on {a, b} by E(a) = b, E(b) = a,
La(a) = a, La(b) = ab, Lb(a) = ba, Lb(b) = b, Ra(a) = a, Ra(b) = ba, Rb(a) =
ab, Rb(b) = b. Many relations exists between Sturmian words and Sturmian
morphisms. For instance, it is known [2, 6] that any Sturmian word can be
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defined as an infinite product of Sturmian morphisms.
A particular case of Sturmian words is the standard (or characteristic) one.

For any standard Sturmian words, there exists a sequence (an)n≥0 of integers,
called the directive sequence verifying a1 ≥ 0 and ak ≥ 1 for all k ≥ 2, such that

w = lim
n→∞

sn

where the sequence (sn)n≥−1 of words is defined by : s−1 = b, s0 = a and
sn = san

n−1sn−2 for n ≥ 1. Let us observe that for every n ≥ 0, s2n ends with a.
Moreover [1],

s2n = La1
a L

a2
b . . . La2n−1

a La2n
b (a)

= La1
a L

a2
b . . . La2n−1

a La2n
b La2n+1

a (a)
s2n+1 = La1

a L
a2
b . . . La2n−1

a La2n
b La2n+1

a (b)
= La1

a L
a2
b . . . La2n−1

a La2n
b La2n+1

a L
a2n+2

b (b)

3 Lyndon words and morphisms

From now on we consider ordered alphabets. We denote {α1 < . . . < αn} the
n-letter alphabet {α1, . . . , αn} with order α1 < . . . < αn. Given an ordered
alphabet A, we denote by � the lexicographic order whenever used on A∗ or on
Aω. Let recall that for two different (finite or infinite) words u and v, u ≺ v if
and only if u = xay, v = xbz with a, b ∈ A, a < b, x ∈ A∗, y, z ∈ A∗ ∪ Aω, or if
(when u is finite) u is a prefix of v.

A nonempty finite word w is a Lyndon word if for all nonempty words u and
v, w = uv implies w ≺ vu. Equivalently [4, 8], a nonempty word w is a Lyndon
word if all its nonempty proper suffixes are greater than it for the lexicographic
order. For instance, on the one-letter alphabet {a}, only a is a Lyndon word.
On {a < b} the Lyndon words of length at most 5 are a, b, ab, aab, abb, aaab,
aabb, abbb, aaaab, aaabb, aabab, aabbb, abbbb. Lyndon words are primitive.

The second definition of Lyndon words extends to infinite words: An infinite
word is an infinite Lyndon word if all its proper suffixes are greater than it
for the lexicographic order. A useful result of G. Melançon [12] states that an
infinite word is a Lyndon word if and only if it has an infinity of prefixes that
are Lyndon words. See for instance [7] for a recent example of infinite Lyndon
word.

Any nonempty finite or infinite Lyndon words can be decomposed as a non-
increasing product of Lyndon words. First, R. C. Lyndon proved (see [8] for
instance):

Any word w ∈ A+ may be written uniquely as a nonincreasing prod-
uct of Lyndon words: w = l1l2 . . . ln where for each i, li is a Lyndon
word and ln � ln−1 � . . . l1.

This result was generalized to infinite words [19]:
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Any right infinite word w may be uniquely expressed as a nonin-
creasing product of Lyndon words, finite or infinite, in one of the
two following forms: either there exists an infinite nonincreasing se-
quence of finite Lyndon words (lk)k≥0 such that

w =
∏
n≥0

ln = l0l1 . . .

or there exist finite Lyndon words l0, . . . , lm−1 (m ≥ 0) and an infi-
nite word lm such that lm ≺ lm−1 � lm−2 � . . . l0 and

w = l0 . . . lm−1lm.

As already said in the introduction, many works concern the decomposition
in Lyndon words of some infinite words. In [12], G. Melançon obtains the de-
composition of standard Sturmian words. We consider these words here on the
alphabet {a < b}. For any word w ending with the letter a, let us denote w the
word such that w = wa.

Theorem 3.1 [12] Let s be a standard Sturmian word with directive sequence
(an)n≥1. Let ln = as

a2n+1−1
2n s2n−1s2n. (if a1 = 0 then l0 = b).

The words (ln)n≥0 form a strictly decreasing sequence of Lyndon words and
the unique factorization of s as a nonincreasing product of Lyndon words is

s =
∏
n≥0

la2n+1
n .

G. Melançon wrote [12, Remark 3.7] :

When is the sequence (ln)n≥0 morphic ? More precisely, is it possible
to give a morphism ϕ : {a, b}∗ → {a, b}∗ and a Lyndon word l0 such
that ln+1 = ϕ(ln)? This question has a positive answer in the case
where the directive sequence is constant. For instance, if an = 2 for
all n ≥ 0, then we may set l0 = aab and use the morphism mapping
a 7→ aaabaab and b 7→ aab.

A characteristic Sturmian word may be itself morphic. That is,
may be the limit limn ϕ

n(a) of a (nonerasing) morphism (satisfy-
ing ϕ(a) ∈ aA∗). It is known that this is essentially equivalent to the
fact that its directive sequence is periodic. Unfortunately, even when
a characteristic Sturmian word s has a periodic directive sequence,
it seems that the sequence (ln)n≥0 is not always morphic, although it
is possible to describe patterns in the factorization.

The aim of this paper is to answer this question. The main ideas of our
proof are generalizations of the following remarks: the morphism a 7→ aaabaab
and b 7→ aab is the Sturmian morphism L2

aR
2
b and preserves Lyndon words.
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Moreover L2
aL

2
b is a conjugate of L2

aR
2
b , L2

aL
2
b(a) = (l0)2a and L2

aR
2
b(a) = a(l0)2.

Let us note that, in [14], similar remarks are made about the decomposition of
the Fibonacci word (the standard Sturmian word of directive sequence (1)n≥0).
In Section 4, we recall notions on conjugacy of morphisms.

Let us now recall some results on morphisms preserving (finite) Lyndon
words. These morphisms are studied in [14]. By definition, a morphism f
preserves Lyndon word if for each Lyndon word w, f(w) is a Lyndon word.
Effective characterizations of such morphisms are given in [14]. Consequently
Sturmian words preserving Lyndon words are known:

Proposition 3.2 [14] A Sturmian morphism on {a < b} is a Lyndon morphism
if and only if it belongs to {La, Rb}∗.

To end this section, let us observe that a study of morphisms preserving
infinite Lyndon words is given in [15].

4 Strong Conjugacy

In this section, we recall the notion of conjugacy (see, e.g., [9, 13]). We also
introduce the particular case of strong conjugacy which will be useful to answer
G. Melançon.

Let A and B be two alphabets and let f and g be two morphisms from A∗

to B∗. The morphism g is a (right) conjugate of f if there exists a word u such
that for any word x over A, f(x)u = ug(x). We will also say that f and g are
u-conjugated, and we will denote f /u g. Moreover if f(a) = ua and g(a) = au
for a letter a, f and g will be called strongly (on a) u-conjugated.

Let us recall that any morphism f has at least one conjugate: itself (f/ε

f). The Fibonacci morphism ϕ = LaE defined by ϕ(a) = ab and ϕ(b) = a
has exactly two conjugates, itself and the morphism ϕ̃ = RaE (ϕ̃(a) = ba,
ϕ̃(b) = a). A lot of relations between conjugacy of morphisms and Sturmian
morphisms were given by P. Séébold [17] and generalized to a larger family of
morphisms in [13].

Since ϕ(a) does not end with the letter a, no morphism is strongly conjugate
(on a) to the Fibonacci morphism. Nevertheless we can observe that ϕ2 (a 7→
aba, b 7→ ab) is strongly ab-conjugated to ϕϕ̃ (a 7→ aab, b 7→ ab). More generally,
for all integers x and y (y 6= 0), the morphism Lx

aL
y
b is strongly conjugated to

the morphism Lx
aR

y
b . This follows immediatly the formulas: Lx

aL
y
b (a) = (axb)ya,

Lx
aL

y
b (b) = axb, Lx

aR
y
b (a) = a(axb)y, Lx

aR
y
b (b) = axb (Lx

aL
y
b /(axb)y Lx

aR
y
b ).

A basic property of conjugacy is [9,13]: for morphisms f , f ′, g, g′, and words
u, u′, if f /u g and f ′ /u′ g

′ then ff ′ /f(u′)u gg
′ (of course f(u′)u = ug(u′)). This

property extends to strong conjugacy:

Lemma 4.1 Let f, f ′, g, g′, (a a letter) and u, u′ words such that f is strongly
(on a) u-conjugated to g and f ′ is strongly (on a) u′- conjugated to g′. Then
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ff ′ is strongly (on a) [f(u′)u]-conjugated to gg′.

Proof We already know ff ′ /f(u′)u gg
′. By hypothesis, f(a) = ua, g(a) = au,

f ′(a) = u′a et g′(a) = au′. Thus ff ′(a) = f(u′a) = f(u′)ua and gg′(a) =
g(au′) = aug(u′) = af(u′)u. So ff ′ is strongly [f(u′)u]-conjugated to gg′. �

We end this section with a first use of strong conjugacy concerning Sturmian
words. One particular property of any standard Sturmian word w over {a < b}
is that both aw and bw are Sturmian words [16]. Words aw (with w standard
Sturmian) are also known as Christoffel words. In [3], it is shown, that Christoffel
words are infinite Lyndon words:

Proposition 4.2 [3] For any standard Sturmian word w over {a < b}, aw is
an infinite Lyndon word.

Proof Let w be a standard word with directive sequence (an)n≥1. We have
already said that a standard word can be viewed as w = limn→∞ sn for some
words sn defined in Section 2. In fact, we can verify that then w = limn→∞ s2n.
Let n ≥ 1. We know that s2n = La1

a L
a2
b . . . L

a2n−1
a La2n

b (a). As a consequence of
Lemma 4.1 and of the fact that for all integers x and y, the morphism Lx

aL
y
b

is strongly conjugated to the morphism Lx
aR

y
b , we can verify that La1

a L
a2
b . . .

L
a2n−1
a La2n

b is strongly conjugated to La1
a R

a2
b . . . L

a2n−1
a Ra2n

b .
In particular, aLa1

a L
a2
b . . . L

a2n−1
a La2n

b (a) = La1
a R

a2
b . . . L

a2n−1
a Ra2n

b (a)a. By
Proposition 3.2, the morphism La1

a R
a2
b . . . L

a2n−1
a Ra2n

b preserves Lyndon words.
Hence La1

a R
a2
b . . . L

a2n−1
a Ra2n

b (a) is a Lyndon word. Consequently the word w
has an infinity of Lyndon words as prefixes. It is a Lyndon word. �

Let us note that the previous proof technique can be used to state other
results. For instance, we let the reader prove:

Proposition 4.3 Let A be an alphabet and a a letter in A. Let f, g be two
nonerasing endomorphisms on A and let u be a word over A such that f is
u-strongly conjugate to g. Then fω(a) and gω(a) exist and afω(a) = gω(a).

Thus if g generates on a an infinite Lyndon word (which is the case if it pre-
serves Lyndon words or if it preserves infinite Lyndon words (see [15])), afω(a)
is an infinite Lyndon word.

The situation of Proposition 4.3 can be met for morphisms that are not
Sturmian. For instance, this is the case with the morphisms:

f :
{
a 7→ aba
b 7→ abb

g :
{
a 7→ aab
b 7→ bab

Moreover one can see that g preserves infinite Lyndon words and generates an
infinite Lyndon word.
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5 An answer to G. Melançon

In this section, we consider a standard Sturmian word w over the ordered al-
phabet {a < b} with directive sequence (an)n≥1 (Let recall that a1 ≥ 0 and
an ≥ 1 for all n ≥ 2). The sequence of words (sn)n≥0 and (ln)n≥0 are those
defined respectively at the end of Section 2 and in Theorem 3.1. In particular,
w = limn→∞

∏
n≥0 l

a2n
n is the decomposition in Lyndon words of w (for each

n ≥ 0, ln is a Lyndon word and ln+1 � ln). Our result is:

Theorem 5.1 With the hypotheses of this section, there exists a morphism g
such that for all n ≥ 0, ln+1 = g(ln) if and only if one of the two following cases
hold:

• 1 ≤ a1 ≤ a3, and for all n ≥ 1, a2n = a2 and a2n+1 = a3. In this case,
l0 = aa1b and g = La1

a R
a2
b L

a3−a1
a .

• a1 = 0, 1 ≤ a2 ≤ a4, and for all n ≥ 1, a2n+2 = a4 and a2n−1 = a3. In
this case, l0 = b and g = Ra2

b L
a3
a R

a4−a2
b .

We observe that in each case, the morphism g is a Sturmian morphism that
preserves Lyndon words (see Proposition 3.2). Moreover the word w is generated
by a Sturmian morphism (La1

a L
a2
b L

a3−a1
a or La2

b L
a3
a L

a4−a2
b ).

In order to prove the previous theorem, using the strong conjugacy, we first
express each Lyndon word ln with morphisms. For n ≥ 0, we denote:

fn = (La1
a L

a2
b ) . . . (La2n−1

a La2n
b )

gn = (La1
a R

a2
b ) . . . (La2n−1

a Ra2n
b )

The interest of the morphisms fn is immediate since we have already seen rela-
tions between them and the words sn (s2n = fn(a), s2n+1 = fn+1(b)). We also
observe that each gn is a morphism that preserves Lyndon words. As a conse-
quence of Lemma 4.1 and of the fact that for all integers x and y, the morphism
Lx

aL
y
b is strongly conjugated to the morphism Lx

aR
y
b , we have:

Lemma 5.2 For all n ≥ 1, fn is strongly (on a) conjugated to gn.

Now we give a new formula for the words (ln)n≥0:

Lemma 5.3 For all n ≥ 0, ln = gnL
a2n+1
a (b)

Proof

lna = as
a2n+1−1
2n s2n−1s2na

= as
a2n+1−1
2n s2n−1s2n

= afn(aa2n+1−1ba).
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If n = 0, lna = aa1ba = La1
a (b)a = g0L

a1
a (b)a.

When n ≥ 1, let un be the word such that f /un gn. By Lemma 5.2, fn(a) =
una, gn(a) = aun. Thus

lna = afn(aa2n+1−1b)una

= aungn(aa2n+1−1b)a
= gn(aa2n+1b)a
= gnL

a2n+1
a (b)a

Consequently for all n ≥ 0, ln = gnL
a2n+1
a (b). �

Let us observe that Lemma 5.2 allows to give a new proof of the fact that the
words (ln)n≥0 form a strictly decreasing sequence of Lyndon words. Indeed, by
Proposition 3.2, each morphism gnL

a2n+1
a is a Lyndon morphism, hence gnL

a2n+1
a

is a Lyndon word. Moreover Ra2n
b L

a2n+1
a (b) for each n ≥ 1, then Ra2n

b L
a2n+1
a (b) ≺

b which implies ln = gnL
a2n+1
a (b) ≺ gn−1L

a2n−1
a (b) = ln−1 (since any morphism

preserving Lyndon words also strictly preserves the lexicographic order on finite
words [14]).

Proof Theorem 5.1 Note that the “if” part of the theorem is immediate. As-
sume the sequence (ln)n≥0 is morphic. Let g be the morphism such that, for
all n ≥ 0, g(ln) = ln+1. Observe that the morphism g cannot be erasing since
otherwise this contradicts the fact that l2 is a primitive word (as a Lyndon
word).

We first consider the case a1 ≥ 2. Observe l0 = aa1b and

g(aa1b) = l1 = [a(aa1b)a2 ]a3aa1b.

Assume g(a) = a, and so g(b) = ab(aa1b)a2−1[a(aa1b)a2 ]a3−1aa1b. The word
l2 = g(l1) has g(aa1+1b) as prefix. Thus the words aa1+2 and baa1b are factors of
l2. This contradicts the fact that l2, as a factor of a Sturmian word, is balanced.
Hence g(a) 6= a.

Since a1 ≥ 2 and g(aa1b) starts with aa1+1b, the word aa1+1b is a pre-
fix of g(a). More precisely, a(aa1b)a2 must be a prefix of g(a). Finally, we
can verify that g(a) = (a(aa1b)a2)k for an integer k ≥ 1. It follows g(b) =
(a(aa1b)a2)a3−ka1aa1b which implies a3 ≥ ka1.

Assume k ≥ 2. The word l2 = g(l1) contains g(baa1b) and g(aa1+1b) as
factors. The word g(baa1b) ends with bub where u = (aa1b)a2 [a(aa1b)a2 ]a3aa1 .
Furthermore the word g(aa1+1b) = [a(aa1b)a2 ]a3+kaa1b starts with aua. This
contradicts the fact that l2 is balanced.

Hence k = 1, a3 ≥ a1, g(a) = a(aa1b)a2 , g(b) = [a(aa1b)a2 ]a3−a1aa1b. We
observe that g = La1

a R
a2
b L

a3−a1
a and that it is an injective morphism.

Now we can prove that, for all n ≥ 1, a2n = a2 and a2n+1 = a3. We act by
induction on n. There is nothing to do for n = 1. Let n ≥ 1. Assume that we
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have already proved a2p = a2 and a2p+1 = a3 for all integers p with 1 ≤ p ≤ n.
We have

ln+1 = gn+1L
a2n+3
a (b) = La1

a (Ra2
b L

a3
a )nR

a2n+2

b La2n+3
a (b)

= (La1
a R

a2
b L

a3−a1
a )nLa1

a R
a2n+2

b L
a2n+3

b (b)
= gn(La1

a R
a2n+2

b L
a2n+3

b (b)) .

Moreover ln+1 = gn(l1). Since g is injective, l1 = La1
a R

a2n+2

b L
a2n+3

b (b). This
implies a2n+2 = a2 and a2n+3 = a3.

Now we consider the case a1 = 1. We have l0 = ab and l1 = [a(ab)a2 ]a3ab.
As in case a1 ≥ 2, we cannot have g(a) = a. Hence g(a) starts with aa.
We observe that g(a) cannot ends with a, since otherwise the balanced word
l2 = g(l1) contains aaa and bab. We observe also that g(a) 6= [a(ab)a2 ]ia(ab)k

for any integer k, i such that 1 ≤ k < a2 and i ≥ 0. Indeed otherwise the word
l2 containing both g(aa) and g(ab) should contains the factors a(ab)kaa and
b(ab)kab (since (ab)a2+1 ends g(ab)): this contradicts the fact that l2 is balanced.
It follows that g(a) = [a(ab)a2 ]k with 1 ≤ k ≤ a3 and g(b) = [a(aa1b)a2 ]a3−kaa1b.
Exactly as in case a1 ≥ 2, we can then prove that k = 1, g = LaR

a2
b L

a3−1
a and

for all integers n ≥ 1, a2n = a2 and a2n+1 = a3.
From now on, we consider the case a1 = 0. we have l0 = b and so g(b) =

l1 = (aba2)a3b. Moreover l2 = Ra2
b L

a3
a R

a4
b L

a5
a (b), that is

l2 = [aba2 [(aba2)a3b]a4 ]a5(aba2)a3b.

Furthermore l2 = g2(b) = g((aba2)a3b). It follows that

g((aba2)a3) = [aba2g(b)a4 ]a5

Since the word aba2g(b)a4 = aba2 [(aba2)a3b]a4 is a primitive word, g(aba2) =
[aba2g(b)a4 ]x and xa3 = a5 for an integer x ≥ 1. Since aba2 is not a suffix of g(b),
a2 ≤ a4.

Let us prove that x = 1, that is, a3 = a5. Assume by contradiction
that x ≥ 2. The word l2 has (aba2)a3+1 as a prefix and [(aba2)a3b]2 as a
suffix. Let u = aba2g(b)a4 : g(aba2) = ux. The word l3 = g(l2) contains
the factor g((aba2)a3+1) = u(a3+1)x = uua5uux−2 which contains the factor
aba2g(b)a4ua5aba2(aba2)a3b which starts with aba2g(b)a4ua5(aba2)a3a. Observe
now that g((aba2)a3b) = [aba2g(b)a4 ]a5g(b) ends with ba2+1g(b)a4 . Consequently
the word l3 also contains the factor

ba2+1g(b)a4g(((ab)a2)a3b) = bba2g(b)a4ua5(aba2)a3b .

We have a contradiction with the fact that l3 is a balanced word.
From what precedes, g(aba2) = aba2g(b)a4 and so g(a) = aba2g(b)a4−a2 =

aba2((aba2)a3b)a4−a2 . Moreover g(b) = (aba2)a3b. We observe g = Ra2
b L

a3
a R

a4−a2
b .

As in case a1 ≥ 2, we can state that, for all integers n ≥ 2, a2n = a4 and
a2n−1 = a3. �
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6 Conclusion

This paper shows the interest of conjugacy of morphisms and of morphisms
preserving Lyndon words as tools to tackle problems concerning Sturmian words
and/or Lyndon words. We are now working to find other situations where these
tools can be useful. In particular, we are looking for the decomposition in
Lyndon words of any Sturmian words.
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[16] P. Séébold, Fibonacci morphisms and Sturmian words, Theoretical Computer
Science, 88:365–384, 1991.
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de la conférence est l’étude des mots
avec une emphase sur le point de vue
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rences plénières et également 28 com-
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