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1. Introduction

Matroids and Coxeter groups. The classical notion of matroid incorpo-
rates the concepts of a graph and of linear dependence of vectors, and
can be defined by the following surprisingly simple axiom over some
system B of subsets of a finite set E [Aig], [Wel].

The pair M = (E,B) is a matroid, if for all A, B ∈ B
and x ∈ A \ B there exists y ∈ B \ A, such that (A \
{x}) ∪ {y} lies in B.

People working in combinatorics know how useful is the notion of
matroid. This suggests that, in mathematics, even such a simple object
as a finite set should be endowed with some extra structure. The most
natural structure on a finite set is provided by its symmetric group
acting on it. But, as everybody knows, the symmetric group Symn

is nothing else but the simplest example of a Coxeter group. WP–
matroids in the sense of [GS2] are natural generalizations of matroids
for arbitrary finite Coxeter groups W .

A general definition of WP–matroids. Our definition (Section 9) is
formulated in terms of the Bruhat ordering on a Coxeter group and
can be stated in just a few lines:

Let P < W be a parabolic subgroup of a Coxeter group
W . A map µ : W → W/P is called a WP–matroid, if

w−1µ(u) ≤ w−1µ(w)

for all u, w ∈ W , where ≤ is the Bruhat ordering of the
left coset space W/P .

27
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If W = Symn is the symmetric group on n letters and

P = 〈(1, 2), (2, 3), . . . , (k − 1, k), (k + 1, k + 2), . . . , (n− 1, n)〉

is the subgroup generated by the transpositions (i, i+1), 1 ≤ i ≤ n−1,
i (= k, then our definition of aWP–matroid is equivalent to the classical
definition of a matroid of rank k on n letters ([GS1], see also discussion
in Section 2).

Matroids on thin chamber systems. We would like to suggest also
a further generalization of our definition of WP–matroids for Coxeter
groups (Section 9). It is formulated in terms of chamber systems.

Let C be a thin chamber system (which we identify with
its set of chambers, see Section 3). A map µ : C → C is
called a matroid on C, if for all a, b ∈ C

µ(b) )a µ(a),

where )a is the Bruhat preodering on C with the center
a.

Matroids on flag complexes of triangulations. Now we want to spe-
cialize the above definition (all the details of which can be found in
Section 9) to a very important case of triangulations of manifolds.
Let T be a triangulation of a n–dimensional manifold and F the set of

maximal flags of simplexes in T . (As usually, we can identify maximal
flags in T with the corresponding cells of the barycentric subdivision of
T ). We say that two flags f , g ∈ F are i–adjacent, if they coincide in
all dimensions d (= i. Notice that each flag f ∈ F is i–adjacent to itself
for all i, 0 ≤ i ≤ n. A gallery is a finite sequence of flags (f0, . . . , fm),
such that fk−1 and fk are adjacent for all k, 1 ≤ k ≤ m, m is called the
length of the gallery. A gallery (f0, . . . , fm), connecting flags f0 = f
and fm = g is called a geodesic gallery, if there is no gallery of strictly
smaller length with the same property, and is said to be of type i1 · · · im,
if fk−1 and fk are ik–adjacent. If f , g, h ∈ F , we say that g )h f if
there is a geodesic gallery

(f0, . . . , fm), f0 = h, fm = f,

and a gallery
(f ′

0, . . . , f
′
m), f ′

0 = h, f ′
m = g,

of the same type i1 · · · im, connecting h with the flags f and g, corre-
spondingly.
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Now we can give a definition of matroid which will fit in with this
particular situation:

A map µ : F → F is called a matroid on F , if for all f ,
g ∈ F

µ(g) )f µ(f).

Convex maps to multiordered sets. A further generalization of the
notion of a matroid relates it to combinatorial convexity. Let E be a
set with a family of partial orderings W = {≤w, w ∈ W}. We say that
a map

µ : W → E

is convex if it satisfies the inequality

µ(u) ≤w µ(w)

for all u, w ∈ W .
Sections 2 and 3 contain a discussion of convex maps and their re-

lations to combinatorial convexity and convexity of sets in Euclidean
spaces (in the ordinary geometrical meaning of this word).

WP–matroids and Schubert cells. Finally we apply our new under-
standing of matroids to the combinatorics of flag varieties.
Recall that originally WP–matroids have been introduced by I.M.

Gelfand and V. V. Serganova in the works [GS1] and [GS2] for these
particular purposes. If W is the Weyl group of a semisimple Lie group
G and GP is a parabolic subgroup in G corresponding to a parabolic
subgroup P in W , then WP–matroids describe the partition of the
flag variety G/GP into thin Schubert cells [GS2]. It is well known that
there is a canonical one-to-one correspondence between Schubert cells
on G/GP and left cosets of W with respect to P . Unfortunately, the
partition of G/GP into Schubert cells is not invariant under the action
of the Weyl group W and in this sense depends on the ordering of
a coordinate basis. The partition of the flag variety G/GP into thin
Schubert cells is a W–invariant refinement of partitions into Schubert
cells. As shown in [GS2], Theorem 2 of Section 8.3 (see also Theo-
rem 6 of the present paper), every thin Schubert cell in G/GP can
be assigned a WP–matroid. The proof of this result in [GS2] is im-
mersed in a more general context of the theory of convex polytopes and
moment mappings for compact Kähler manifolds [At], [GMP], [GuS].
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But an approach to WP–matroids via chamber systems, first suggest-
ed in [BoG], dramatically simplifies and clarifies relations between thin
Schubert cells and WP–matroids.
In the paper [BoG] the definition of a WP–matroid has been mod-

ified and extended to the case of arbitrary Coxeter groups. This new
definition of WP–matroids enabled us to connect them with objects
of a more general nature than flag varieties G/GP , namely, with Tits
buildings (Theorems 4 and 6). This approach clarifies and simplifies
the situation. We also extend the description of thin Schubert cells
on flag varieties of semisimple Lie groups to a more wide context of
groups with Tits systems (Theorems 5 and 7). These groups include,
in particular, reductive p–adic groups [BrT] and Kac–Moody groups
[MoT].

2. Matroids

Definitions and notation are mostly standard and can be found in
[Wel] or [BjZ].

2.1. Basic Definitions of Matroid Theory.

Closure operators. A closure operator on a set E is an increasing,
monotone, idempotent function

τ : 2E → 2E

on the set 2E of all subsets in E. This means that for all A,B ⊆ E:

(1) A ⊆ τ(A);
(2) A ⊆ B implies τ(A) ⊆ τ(B);
(3) τ(τ(A)) = τ(A).

Matroids: definition in terms of closure operators. A matroid or a
finite pregeometry M = (E, τ) is a finite set E with a closure operator
τ satisfying the Exchange Principle for Closure Operators:

If x, y /∈ τ(A) and y ∈ τ(A∪ {x}), then x ∈ τ(A∪ {y}).

Bases of a matroid. A set A ⊆ E is called independent, if x /∈
τ(A \ {x}) for all x ∈ A. Maximal independent sets in E are called
bases of M . It is easy to prove that all bases of a matroid contain the
same number of elements which is called the rank of a matroid. The
set of all bases of M is called the base set of M . Matroids can be
characterized in terms of their base sets only.
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Fact 1 ([Wel], Theorem 1.2.1, p. 8 ). Let E be a finite set. A set B ⊆
2E of subsets in E is a base set of a matroid if and only if it satisfies
the Exchange Principle for Bases:

For all A, B ∈ B and x ∈ A \ B there exists y ∈ B \ A,
such that (A \ {x}) ∪ {y} lies in B.

The rank function of a matroid. If M is a matroid on a finite set E,
we can define the rank ρ(A) of a set A ⊆ E as the maximal number of
independent elements in A. This defines the rank function

ρ : 2E → Z.

Fact 2 ([Wel], Theorem 1.2.2, p. 8 ). A integer valued function

ρ : 2E → Z

is the rank function of some matroid on E if and only if it satisfies, for
all A ⊆ E, x, y ∈ E, the following conditions:

• ρ(∅) = 0;
• ρ(A) ≤ ρ(A ∪ {x}) ≤ ρ(A) + 1;
• if ρ(A ∪ {x}) = ρ(A ∪ {y}) = ρ(A), then

ρ(A ∪ {x} ∪ {y}) = ρ(A).

2.2. The Dual Matroid. The concept of matroid duality is of fun-
damental importance in the applications of matroids to combinatorial
theory.
The following theorem is due to the founding father of matroid the-

ory, H. Whitney.

Fact 3 (Whitney [Whi], [Wel], Theorem 2.1.1 ). Let B be the base set
of a matroid on a finite set E. Then the set

B∗ = {E \B , B ∈ B}

is the base set of another matroid on E.

Elements of B∗ are called cobases of the matroid B and the matroid
(E,B∗) is called the dual matroid of matroid (E,B).

Fact 4 ([Wel], Theorem 2.1.2 ). The rank functions ρ, ρ∗ of a matroid
(E,B) and the dual matroid (E,B∗) respectively are related by:

ρ∗(E \B) = |E|− ρ(E)− |B|+ ρ(B).

The function ρ∗ is called the corank function of a matroid (E,B).
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2.3. Matroids arising from Grassmann varieties.

Vector configurations. Let K be a field and V = Kk a k–dimensional
vector space over K. Any finite set E of vectors in V is called a
configuration, if E spans V .
The following fact is well-known.

Fact 5. Let E be a configuration in a k–dimensional vector space V .
Then there is a matroid on E of rank k for which the closure operator
τ : 2E → 2E, the base set B ⊆ Pk(E) and the rank function ρ : 2E → N

are given by:

• τ(A) = E ∩ span(A) for A ⊆ E;
• B ⊆ E lies in B if B is a base of V ;
• ρ(A) = dim(span(A)) for A ⊆ E.

We say that an arbitrary matroid M has a geometric representation,
if it is isomorphic to a matroid of a vector configuration.

Grassmann varieties and matroids. Let now Gn,k be the Grassmann
variety of k–dimensional vector subspaces in V = Kn with a standard
basis

E = {e1, . . . , en}.

Let V ∗ be the dual space of V with the dual basis

E∗ = {e∗1, . . . e
∗
n}.

If now U ∈ Gn,k is a k–dimensional subspace in V = Kn, we can
assign to U two vector configurations C and C∗ of dimension n − k
and k, correspondingly. The first of these two configurations, C is
the image of the basis E of V in the factor space V/U , and the other

configuration one C∗ is the image E∗
∣

∣

∣

U
of E∗ in the dual space U∗ of

U with respect to the restriction map

V ∗ → U∗

v∗ ,→ v∗|U .

We denote the corresponding matroids on the set I = {1, . . . , n} by
MU and M∗

U and call them matroid and comatroid associated with U .

Proposition 1 (Gelfand–Serganova [GS2]). M∗ is the dual matroid
of M . The rank functions ρ and ρ∗ of M and M∗, correspondingly, are
given by the following two equations (where for a subset

J = {i1, . . . , ip} ⊆ I, I = {1, . . . , n}
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we define KJ as the subspace in V spanned by ei1, . . . , eip).

ρ(J) = dim(KJ/KJ ∩ U)

ρ∗(J) = dim(U/U ∩KI\J)

Proposition 2. Assume that the matroid M of rank k on a finite set
of n elements has a geometric representation over a field K. Then there
exists a k–dimensional subspace U ∈ Gn,k(K) such that the associated
comatroid M∗

U is isomorphic to M .

Proof. Let C = {w1, . . .wn} be a configuration of n vectors in k–
dimensional vector space W = Kk which provides a geometric real-
ization for M . Let {w∗

1, . . .w
∗
k} be any basis in the dual space W ∗. Let

now {e1, . . . , en} be the canonical basis of Kn. The span of vectors

ui =
n
∑

j=1

w∗
i (wj)ej

obviously gives the desired k–dimensional subspace U .

2.4. The Maximality and Minimality Principles.

The Maximality Principle for matroids. Let now In = {1, 2, . . . , n}
and Pk = Pk(In) be the set of all k–element subsets in a finite set E.
We introduce a partial ordering ≤ on Pk as follows. Let A, B ∈ Pk,
where

A = (i1, . . . , ik), i1 < i2 < · · · < ik

and

B = (j1, . . . , jk), j1 < j2 < · · · < jk,

then we set

A ≤ B ⇐⇒ i1 ≤ j1, . . . , ik ≤ jk.

Let W = Symn be the group of all permutations of the elements of In.
Then we can associate an ordering of Pk with each w ∈ W by putting

A ≤w B ⇐⇒ w−1A ≤ w−1B.

Clearly ≤1 is just ≤.

Fact 6 (Gale [Gal], Gelfand–Serganova [GS1]). Let B ⊆ Pk. The set B
is the base set of some matroid if and only if B satisfies the Maximality
Principle:
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For every w ∈ Symn the set B contains an element A ∈ B
maximal in B with respect to ≤w:

B ≤w A for all B ∈ B.

(We call A the w–maximal element in B).

The Minimality principle for matroids. Notice, that in an analogous
way one can define the Minimality Principle for matroids:

A set B ⊆ Pk satisfies the Minimality Principle, if for
every w ∈ W there is a unique element A ∈ B minimal
with respect to the ordering ≤w,

A ≤w B for all B ∈ B.

(We call A the w–minimal element of B).

Fact 7 (Gelfand–Serganova [GS1]). A set B ⊆ Pk is the base set of
some matroid if and only if it satisfies the Minimality Principle.
Actually the work [GS1] contains a definition of matroids in terms

of the Minimality Principle, but not the Maximality Principle. But
obviously the Minimality and the Maximality Principles are equivalent
in the sense of the following obvious observation.

Proposition 3. Let B and B∗ be the base sets of a matroid and its
dual on a finite set E. Then a base A ∈ B is w–maximal in B for
w ∈ SymE if and only if the cobase E \ A ∈ B∗ is w–minimal in B∗.

Matroids on Grassmannians —- an approach via the Maximality Prin-
ciple. Let now U ∈ Gn,k be a k–dimensional vector subspace in
V = Kn and E = {e1, . . . , en} the canonical basis in Kn. Let

φ : V → V = V/U

be the canonical homomorphism of V onto V . If now w ∈ Symn, then
we can construct a w–maximal base in the matroid MU associated with
U in the following way. First we chose i1 ∈ I = {1, . . . , n} such that
φ(ei1) (= 0 and w−1(i1) has the maximal possible value. Then if i1, . . . ,
il are chosen, we take il+1 in I\{i1, . . . , il} such that φ(ei1), . . . , φ(eil+i

)
are linearly independent and w−1(il+1) has the maximal possible value.
Since every linearly independent set of vectors can be completed to a
base, it produces the w–maximal base of the vector configuration φ[E]
in V .
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Construction of a w–minimal base in the comatroid M∗
U can be de-

scribed in a much more elementary way. Let

E∗ = {e∗1, . . . , e
∗
n}

be the cobasis of the basis E, then for v ∈ V e∗i (v) is the i–th coordinate
of V in the basis E. Let us take any k linearly independent vectors u1,
. . . , uk in U and form a n× k matrix

A = (u1, . . . , uk)

of the coordinate column vectors for u1, . . . , uk. A permutation
w ∈ Symn permutes the rows of this matrix. The first k linearly
independent rows of the permuted matrix give the w–minimal basis in
the configuration C∗ = E∗

∣

∣

∣

U
and in the comatroid M∗.

Matroids as maps. Now if B is the base set of a matroid M on In of
rank k, we can define a map

µ : Symn → Pk,

assigning to each w ∈ it Symn an element A ∈ B maximal in B with
respect to ≤w, then this map satisfies the inequality

µ(u) ≤w µ(w)(1)

for all u, w ∈ Symn. Since any k–set B ∈ P can be made maximal in
Pk after some reordering of symbols 1, 2, . . . , n, µ[Symn] = B. Vice
versa, the image of every map µ from Symn to Pk, satisfying the above
inequality, is the base set of some matroid.
In the next section we will study Inequality 1 on its own. We will

show that it has a very nice combinatorial interpretation.

3. Combinatorial convexity

Convexity. A convex hull operator on a set E is a closure operator τ
satisfying the Anti-Exchange Principle:

if x, y /∈ τ(A) and y ∈ τ(A ∪ x), then x /∈ τ(A ∪ {y}).

(see Figure 1 for an illustration)

Fact 8 ([BjZ], p. 321 ). Let ≤ be an ordering on a set E. Define for
A ⊆ E

τ(A) = {x ∈ E, x ≤ y for some y ∈ A}.

Then τ is a convex hull operator on E.
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Figure 1. Anti-Exchange Principle

Now let W be a family of orderings ≤w, w ∈ W , on a set E, and τw
the convex hull operator on E constructed from the ordering ≤w. For
A ⊆ E set

τW (A) =
⋂

w∈W

τw(A).

Lemma 1. τW is a convex hull operator on E.

Lemma 1 is an immediate consequence of the following, a slightly
more general result.

Lemma 2. If {τi, i ∈ I} is a family of convex hull operators on a set
E, then

τ(A) =
⋂

i∈I

τi(A)

is also a convex hull operator.

Proof. Firstly we have to check properties (1)–(3) in the definition of
a closure operator.

(1) Since A ⊆ τi(A) for all i ∈ I,

A ⊆
⋂

i∈I

τi(A) = τ(A).

(2) A ⊆ B implies τi(A) ⊆ τi(B) for all i ∈ I, whence

τ(A) =
⋂

i∈I

τi(A) ⊆
⋂

i∈I

τi(B) = τ(B).

(3) Since τ(A) ⊆ τi(A) for all i ∈ I,

τi(τ(A)) ⊆ τi(τi(A)) = τi(A)

and
τ(τ(A)) =

⋂

i∈I

τi(τ(A)) ⊆
⋂

i∈I

τi(A) = τ(A).

On the other hand, τ(A) ⊆ τ(τ(A)) by (1). So τ(A) = τ(τ(A))
and τ is a closure operator.
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Now we have to check the Anti-Exchange Principle. Assume the
contrary, let it fail for A ⊆ E and x, y ∈ E. It means that

x, y /∈ τ(A), y ∈ τ(A ∪ {x}), x ∈ τ(A ∪ {y}).

Since x /∈ τ(A), x /∈ τk(A) for some k ∈ I. Notice

y ∈ τ(A ∪ {x}) ⊆ τk(A ∪ {x})

and
x ∈ τ(A ∪ {y}) ⊆ τk(A ∪ {y}).

The Anti-Exchange Principle for τk yields

y ∈ τk(A).

But then
A ⊆ A ∪ {y} ⊆ τk(A),

τk(A) ⊆ τk(A ∪ {y}) ⊆ τk(τk(A)) = τk(A)

and
x ∈ τk(A ∪ {y}) = τk(A),

a contradiction.

A classical example. The following lemma gives a natural geometric
interpretation of our approach to convexity through orderings.
Let E be a finite dimensional euclidean vector space over the real

number field R and E∗ its dual space. For any nonzero linear functional
λ ∈ E∗, λ : E → R and vectors x, y ∈ E we define

x ≤λ y ⇐⇒ λ(x) < λ(y) or x = y.

Lemma 3. Let τ be the convex hull operator associated with the family
of orderings

{≤λ| λ ∈ E∗,λ (= 0}.

on E. Then for any set A ⊆ E we have

τ(A) = A ∪ (conv(A))◦,

where conv(A) is the usual convex hull of A,

conv(A) = {α1x1 + . . .αkxk | x1, . . . , xk ∈ A,

α1 ≥ 0, . . . ,αk ≥ 0, α1 + · · ·+ αk = 1},

and X◦ denotes the interior of a set X ⊆ E.
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Figure 2. Convex hull operator τ on the Euclidean plane

Proof. is obvious (see also the proof of Theorem 3).

Figure 2 illustrates the action of τ .

Extreme points. For a general closure operator τ : 2E → 2E , a point
x ∈ A is called an extreme point of A ⊆ E if

x /∈ τ(A \ {x}).

We shall denote by exτ (A) (or by ex(A) when this brief notation is not
misleading) the set of extreme points of A.

Convex maps. Let W be a family of orderings on a set E. A mapping

µ : W → M

is called convex, if

µ(u) ≤w µ(w)(2)

for all u, w ∈ W .

Theorem 1. Let τW be the convex hull operator associated with a fam-
ily W of orderings on a set E, and

µ : W → E

a convex map. Then

µ[W ] = ex(τW (µ[W ])).

Proof. Obvious.
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4. Bruhat convexity on chamber systems

Chamber systems. Our exposition of chamber systems follows [Ron]. A
set C is a chamber system over a set I if each element i of I determines a
partition of C, two elements in the same parts being called i–adjacent.
Thus i–adjacency is an equivalence relation on C. The classes of i–
adjacency are called panels of type i and the elements of C are called
chambers. If π is a panel and x is a chamber in π, we shall say, abusing
the language, that π is a panel of x. For i–adjacent chambers x and
y we shall write x ∼i y. A gallery is a finite sequence of chambers
(c0, . . . , ck) such that cj−1 is adjacent to cj for each 1 ≤ j ≤ k, k is
called the length of the gallery. The gallery stammers, if for some j,
cj−1 = cj. The gallery is said to be of type i1i2 · · · ik (a word in the
free monoid on I), if cj−1 is ij–adjacent to cj. A gallery (c0, . . . , ck),
connecting x = c0 and y = ck is called a geodesic gallery, if there is no
gallery of strictly smaller length with the same property. The length
of a geodesic gallery from x to y is called the distance between x and
y and denoted d(x, y).
A morphism φ : C → D between two chamber systems over the same

indexing set I is a map preserving the i–adjacency for each i ∈ I (thus
if x and y are i–adjacent, then φ(x) and φ(y) are too). The terms
isomorphism and automorphism have the obvious meaning.

Bruhat ordering on thin chamber systems. Let C be a thin chamber
system over I (i.e. each panel in A is adjacent to at most two chambers
in A) and a, b, c chambers in C. We say that a )c b, if there is a
geodesic gallery Γ stretched from c to b and a gallery Γ′ of the same
type i1 · · · ik connecting c and a. We call )c the Bruhat preodering of C
with the center c. Its transitive closure ≤c is called the strong Bruhat
ordering or, for brevity, the Bruhat ordering on C with the center c.
It is easy to see (Lemma 4) that for the Coxeter complex W the

strong Bruhat ordering with the center w coincides with a translation
of the Bruhat ordering in the classical meaning of these words:

u ≤w v ⇐⇒ w−1u ≤ w−1v.

Weak Bruhat orderings on chamber systems. Let C be a chamber
system (not necessarily thin) and c a chamber in C. We say that
a ≤c b, if a chamber a belongs to some geodesic gallery stretched from
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c to b. Obviously this defines a partial ordering on C which is called
the weak Bruhat ordering on C with the center c.

The Bruhat convexity on thin chamber systems. The convex closure
operator τ on a thin chamber complex C associated with a family

{≤c| c ∈ C}

of all strong Bruhat orderings on C, is called the Bruhat convex hull op-
erator on c, or, for brevity, the Bruhat convexity or the strong convexity
on C.
In the notation of the previous paragraph, we say that the map

µ : C → C is convex, if

µ(b) ≤a µ(a)(3)

for all a, b ∈ C.

Chamber matroids. If we replace in Inequality 3 the ordering ≤a by
the preordering )a, we come to the definition of a chamber matroid, as
given in [BoG]. If C is the Coxeter complex for a Coxeter groupW then
the Bruhat preordering coincides with the Bruhat ordering [Coh] and,
clearly, W–matroids in the sense of [BoG] are convex maps W → W .

Weak convexity. Finally, an analogous definition for the family {≤c|
c ∈ C} of the weak Bruhat orderings on an arbitrary (not necessary
thin) chamber system C produces a notion of the weak Bruhat convex
hull operator or simply weak convexity on C.
The following simple characterization of weak convexity ia almost

obvious.

Theorem 2. Let C be a chamber system. A subset A ⊆ C is weakly
convex in C if and only if A contains, with every of its chambers a, b,
any geodesic gallery strectched from a to b in C.

Convex hull operators and convex maps on flag complexes of triangu-
lations. Now we want to specialize the above definition to a very
important case of triangulations of manifolds.
Let T be a triangulation of a n–dimensional manifold and F the set of

maximal flags of simplexes in T . (As usually, we can identify maximal
flags in T with the corresponding cells of the barycentric subdivision
of T ). We say that two flags f, g ∈ F are i–adjacent, if they coincide in
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all dimensions d (= i. Notice that each flag f ∈ F is i–adjacent to itself
for all i, 0 ≤ i ≤ n. A gallery is a finite sequence of flags (f0, . . . , fm),
such that fk−1 and fk are adjacent for all k, 1 ≤ k ≤ m, m is called the
length of the gallery. A gallery (f0, . . . , fm), connecting flags f0 = f
and fm = g is called a geodesic gallery, if there is no gallery of strictly
smaller length with the same property, and is said to be of type i1 · · · im,
if fk−1 and fk are ik–adjacent. If f , g, h ∈ F , we say that g )h f , if
there is a geodesic gallery

(f0, . . . , fm), f0 = h, fm = f,

and a gallery
(f ′

0, . . . , f
′
m), f ′

0 = h, f ′
m = g,

of the same type i1 · · · im, connecting h with the flags f and g, corre-
spondingly.
We define an ordering ≤h as the transitive closure of a preordering

)h and a convexity hull operator τ as the operator associated with a
family of orderings {≤f | f ∈ F}.
We can give a definition of a convex map which will fit in with this

particular situation:

A map µ : F → F is convex, if for all f , g ∈ F µ(g) ≤f

µ(f).

Certainly, i–adjacency turns F to a chamber system and our ordering
≤f and the convex hull operator τ are nothing else but specializations of
the Bruhat ordering and the Bruhat convexity of this chamber system.

5. Convex maps from groups to ordered sets

An action of a group G on an ordered set (E,≤) generates a family
{≤g| g ∈ G} of orderings on E by setting

x ≤g y ⇐⇒ g−1x ≤ g−1y

for x, y ∈ E and gives rise to the convex hull operator τG associated
with this family of orderings and the notion of a convex map

µ : G → E.

Notice, that WP–matroids on a Coxeter group W in the sense of
[BoG] are precisely convex maps from W to the factorset W/P modulo
a parabolic subgroup P < W and the Bruhat ordering ≤ on W/P .
The following observation shows close relations between convex maps

on orthogonal groups and strongly convex closed surfaces in Euclidean
spaces:
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Theorem 3. Let G = SOn be the group of rotations of the n–dimen-
sional Euclidean vector space E = En. Let λ be a nonzero linear func-
tional λ : E → R. Consider the following ordering on E: if x, y ∈ E,
we set

x ≤ y ⇐⇒ λ(x) < λ(y) or x = y.

Then the image µ[G] of a convex map µ : G → E either consists of a
single point or lies on a convex closed surface

Sµ = δ(conv(µ[G])).

If, in addition, the map µ is continuous, then µ[G] = Sµ and Sµ is a
strongly convex closed surface. Moreover, every closed strongly convex
surface in E corresponds in this way to some continuous convex map
from G to E.

Here a convex surface is the boundary S = δ(Q) of a convex set
Q with a non-empty interior Q◦ (cf. [Bus]); S is called closed if Q is
bounded. A supporting hyperplane of S (or Q) is a hyperplane (i.e. a
linear variety of codimension 1 in E) which contains points of δ(Q) but
not points of Q◦. A convex surface is called strongly convex, if it has
exactly one common point with each of its supporting hyperplane. A
supporting half space of the convex set Q is a closed half space bounded
by a supporting hyperplane of Q and containing Q. It is well known
that for a convex set Q (= E, its topological closure Q equals the
intersection of all supporting closed half spaces of Q [Bus, (1.9), p. 5].
We denote by conv(X) the convex hull of a set X ⊂ E. If conv(X) is
its topological closure, then it is equal to the intersection of all closed
subspaces containing X .
The nature of the correspondence between convex mappings and

closed strongly convex surfaces is obvious from the following very sim-
ple proof of Theorem 3.
Set

H = {x | λ(x) ≤ 0};

this is clearly a closed half space whose boundary δ(H) is the hyper-
plane λ(x) = 0 and the interior H◦ of H is given by

H◦ = {x | λ(x) < 0}.

Our definition of the order ≤ can be stated now in the following form:

x ≤ y ⇐⇒ x ∈ (y +H◦) ∪ {y}.
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It follows from this definition, that if x ≤ a for all x ∈ X ⊂ E, then
X ⊆ a +H◦ ∪ {a} and, since the latter is convex,

conv(X) ⊆ (a+H◦) ∪ {a}.

In particular, if all x ≤ a for all x ∈ X , then the same is true for all
elements x′ ∈ conv(X): x′ ≤ a.
We say that two closed half spaces in E have the same orientation,

if one of them contains the another one, or, equivalently, one of them
is a parallel translation of another one. The set of all orientations of
half spaces in E can be identified in the usual way with the unit sphere

U = {x ∈ E | ‖x‖ = 1}

and, in particular, is compact. The group G = On acts continuously
and transitively on the set of all orientations of closed half spaces in E.
We shall also use the following obvious property of convex sets: if two

supporting closed half spaces of a convex set have the same orientation,
then they coincide.
After these preliminary remarks we can start the proof. The defini-

tion of a convex map can be rewritten under the assumptions of the
theorem as follows:

g−1µ(h) ≤ g−1µ(g)

is equivalent to

g−1µ(h) ∈ (g−1µ(g) +H◦) ∪ {g−1µ(g)},

which, in turn, yields

µ(h) ∈ (µ(g) + gH◦) ∪ {µ(g)} ⊂ µ(g) + gH.

Since these inclusions are valid for all g, h ∈ G, we can take the inter-
section of their right parts over all g ∈ G and get

µ[G] ⊆
⋂

g∈G

(µ(g) + gH).

Denote the right part of the last inclusion by Q. Clearly Q is con-
vex as it is an intersection of closed half spaces and conv(µ[G]) ⊆ Q.
Moreover, the set of closed half spaces {µ(g) + gH | g ∈ G} contains
closed half spaces of all possible orientations, so Q is obviously equal to
the intersection of all closed half spaces containing µ[G], whence equal
conv(µ[G]). If Q◦ is empty, then Q lies on some hyperplane P . We
can choose g ∈ G such that gδ(H) has the same orientation as P , then
obviously

µ[G] ⊆ Q ⊆ µ(g) + gδ(H),
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and since

µ[G] ⊆ (µ(g) + gH◦) ∪ {µ(g)}

by the definition of a convex map, we have µ[G] = {µ(g)}, whence µ is
a constant map.
So we can assume that Q◦ is not empty. Obviously Q is bounded and

S = δ(Q) is a closed convex surface. Each point µ(g) of µ[G] lies on the
boundary µ(g) + gδ(H) of the supporting closed half space µ(g) + gH
of Q, so µ[G] ⊆ δ(Q). Thus the first part of the theorem is proved.
Assume now that µ is a continuous mapping. Let µ(g) (= µ(g′) be

two different points of µ[G], then the half spaces gH and g′H can not
have the same orientation, because in this case the supporting half
spaces µ(g) + gH and µ(g′) + g′H for Q coincide and by definition
of the ordering ≤ we have µ(g) ≤ µ(g′) and µ(g′) ≤ µ(g), whence
µ(g) = µ(g′). This means that the map µ : G → µ[G] ⊆ S can be
passed through the unit sphere U (which is identified with the set of
all orientations of half spaces in M):

U

G Sµ

µ&

%

#
#
#'

Since S is homeomorphic to U by [Bus, (1.4), page 3] and µ is contin-
uous, it follows from the Borsuk-Ulam Theorem [Mas, Corollary 9.3,
p. 170], that either µ[U ] = S or two antipode points u, u′ of U are
mapped to the same point of S. Assume the latter; if now g, g′ are
elements of G covering u, u′, correspondingly, then the supporting half
spaces µ(g)+gH and µ(g′)+g′H for Q have opposite orientations, thus
Q lies in their common bounding hyperplane. But then Q◦ is empty,
contrary to a previously made assumption. So we have proved that
µ[G] = S. Moreover, now it is clear that S is strongly convex.
If now S is any closed strongly convex surface in E, then clearly the

mapping which sends an element g ∈ G to a (unique) point of intersec-
tion with S of the bounding hyperplane of a (unique) supporting half
space to S with the same orientation as gH , is a continuous convex
map from G to E.
Notice that easy examples show that one can not skip the continu-

ity assumption from the statement of Theorem 3: there exist (non-
continuous) convex mappings µ : G → E such that µ[G] (= Sµ and Sµ

is not strongly convex.
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6. W–matroids as convex maps on Coxeter groups

Definitions and notations in this section are mostly standard and
may be found in [Bou], [Coh] and [Ron].
In this section we introduce W–matroids, a special case of WP–

matroids (it corresponds to P = 1).

6.1. Coxeter groups.

Definition of Coxeter groups. We recall that a Coxeter group is a
group W with a finite set of generators R, subject to the relations:
r2 = 1 for all r ∈ R, (rirj)mij = 1 for all ri, rj ∈ R, where mij ∈ N∪∞.
The set R is called the set of distinguished generators for W .
Let w ∈ W . The minimal number of factors in a factorization w =

r1 · · · · · rl, where ri ∈ R, is called the length of w and is denoted by
l(w). A factorization w = r1 · · · · · rl of the least length l = l(w) is
called a reduced expression for w.

Bruhat ordering. The Bruhat partial ordering on W is defined as
follows: u ≤ v, if and only if there is a reduced expression r1 · · · · · rq
(rj ∈ R) for v such that u = ri1 · · · · · rim (where 1 ≤ i1 < i2 <
· · · < im ≤ q). We emphasize that this defines not just a preordering,
but an ordering on W (see [Coh] or [Bj1] for discussion and proof.)
We also define the weak Bruhat ordering or the weak ordering on W :
v ≤ u if there exist s1 and s2 in W such that u = s1vs2 and l(u) =
l(s1) + l(v) + l(s2).

6.2. W–matroids as convex maps.

W–matroids. A convex map µ : W → W from a groupW to a partially
ordered set (W,≤) has been called in our previous work [BoG] a W–
matroid. Recall that it means that for all u, w ∈ W we have

w−1µ(u) ≤ w−1µ(w).

Flag W–matroids. For each w ∈ W we associate a new ordering on W
thus: u ≤w v if w−1u ≤ w−1v. Clearly the Bruhat ordering introduced
above coincides with ≤1.
Let L be an arbitrary subset of W . An element s ∈ L is called w–

maximal in L if u ≤w s for all u ∈ L. We shall say that L satisfies the
maximality condition, if for any w ∈ W there is a w–maximal element
in L. In an analogous way one can define the minimality condition
[GS2].
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Now assume that W is finite. Then it is well known (see [Bou], Ex-
ercise IV.1.22), that W contains the longest element w0. The element
w0 is an involution and the multiplication by w0 reverses the Bruhat
ordering (see, for example, [Bj1], (4.2)),

u ≤ v ⇐⇒ w0u ≥ w0v ⇐⇒ uw0 ≥ vw0.

So for a finite Coxeter group W the minimality condition for a subset
L ⊆ W in the sense of [GS2] is equivalent to the maximality condition.
Flag W–matroids have been introduced in [GS2] as subsets M ⊆ W
satisfying the minimality, or, what is equivalent, the maximality con-
dition.
The following proposition is obvious, but fundamental.

Proposition 4. If W is a finite Coxeter group, then the image M =
µ[W ] of a W–matroid µ : W → W is a flag W–matroid. Conversely,
if M is a flag W–matroid and µ(w) is the w–maximal element in M ,
then the function µ : W → W is a W–matroid and µ[W ] = M .

The Bruhat Convexity on Coxeter groups. The action of a Coxeter
group W on itself by left shifts

w : u ,→ w−1u

and the Bruhat ordering on W give rise to the convexity hull operator

τ : 2W → 2W

(see Section 5). We shall call τ the Bruhat convexity hull operator on
W .
In the case of finite Coxeter groups the operator τ does not bear

any additional information on combinatorics of the Bruhat ordering.
Indeed, the following Proposition shows that for finite W the operator
τ is trivial.

Proposition 5. If W is finite, τ is the identity map,

τ(A) = A

for all A ⊆ W .

Proof. Let w0 be the longest element in W , A ⊆ W and x ∈ W \
A. Since w0 is the maximal element in W with respect with Bruhat
ordering ≤ on W and w0 = w−1

0 ,

w0x
−1 · y ≤ w0 = w0x

−1 · x
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for all y ∈ W , which means

y ≤xw0 x.

So x is xw0–maximal element inW and so x /∈ τxw0
(A), hence x /∈ τ(A).

This proves that τ(A) = A.

We can also define the weak Bruhat convexity on a Coxeter group
W by analogy with the Bruhat convexity. The same arguments yield
that in the case of finite Coxeter group the corresponding convex hull
operator is also trivial.
In the same time easy examples show that the Bruhat convexity on

infinite Coxeter groups is non-trivial. We hope that the Bruhat convex-
ity may be a usefull tool for study of combinatorics of infinite Coxeter
groups. Unfortunately we are at the very beginning of a systematic ex-
ploration of convexity properties of Coxeter groups, and we do not have
a clear picture even for simplest examples, say, for the affine Coxeter
group Ã2 given by involutive generators r1, r2, r3 and relations

(r1r2)
3 = (r2r3)

3 = (r3r1)
3.

7. Buildings

We use the approach to buildings developed in [Ti2] and [Ti3]. It is
equivalent to the definition given by Tits in [Ti1], see also [Bou]. The
exposition of the theory of buildings in [Ron] is the most convenient
for our purposes.

7.1. Coxeter complexes.

The Coxeter complex of a Coxeter group. Let W be a Coxeter group
with a distinguished set of generators R = {ri, i ∈ I}. Take the
elements of W as chambers and for each i ∈ I, define i–adjacency by

w ∼i w, wri.

This gives a chamber system over I, which is called the Coxeter complex
of W . A gallery Γ = (x0, . . . , xk) of type i1 · · · ik in W is called reduced,
if ri1 · · · · · rik is a reduced expression for an element in W .

Geometric interpretation of the Bruhat ordering. The following lemma
describes the Bruhat ordering of W in terms of its Coxeter complex. It
shows that the Bruhat ordering on W coincides with the strong Bruhat
ordering on the Coxeter complex of W and gives us a proof that the
Bruhat preordering on a Coxeter complex coincides with the (strong)
Bruhat ordering.
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Lemma 4. Let u, v, w ∈ W . We say that u 5w v, if there is a geodesic
gallery

Γ = (x0, . . . , xk), w = x0, xk = u,

and a gallery

Γ′ = (y0, . . . , yk), w = y0, yk = v,

of the same type i1 · · · ik, connecting w with the elements u and v,
correspondingly. Then

u 5w v ⇐⇒ w−1u ≥ w−1v.

Proof. =⇒ . Clearly the action ofW on itself by the left multiplication
preserves i–adjacency. If we replace the galleries Γ and Γ′ by

w−1Γ = (w−1x0, . . . , w
−1xk)

and
w−1Γ′ = (w−1y0, . . . , w

−1yk),

correspondingly, we can reduce the proof to the case w = 1. By defini-
tion of a type of a gallery

xj−1 ∼ij xj ,

which means

xj =







xj−1 if Γ stammers at xj−1, xj

xj−1rij if not,

for all 1 ≤ j ≤ k. Obviously the geodesic gallery Γ does not stammer
at any its chamber. So for all 1 ≤ j ≤ k we have

xj = xj−1rij

and, since x0 = 1, we have xk = ri1 · · · · · rik . Moreover, this is clearly
a reduced expression for xk.
If we repeat now the same arguments for Γ′, we have

yj =







yj−1

yj−1rij

and
yk = riαriβ · · · · · riω

for some sequence of indexes 1 ≤ α < β < · · · < ω ≤ k. But by
definition of the Bruhat ordering it means that

yk ≤ xk.
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The implication ⇐= is obvious.

The geometric interpretation of the weak ordering. The following
simple fact on the weak ordering of a Coxeter group is well known.

Fact 9 (Bjorner [Bj1], p.176 ). Let ≤ denotes the weak ordering on a
Coxeter group W and

u ≤w v ⇐⇒ w−1u ≤ w−1v.

Then u ≤w v if and only if u lies in some geodesic gallery stretched
from w to v.

7.2. Buildings. Let W be a Coxeter group with the distinguished set
of generators R = {ri, i ∈ I}. By definition, building of type W is a
chamber system ∆ over I such that each panel belongs to at least two
chambers, and having a W–distance function

δ : ∆×∆ → W,

such that if w = ri1 · · · · · rik is a reduced expression for w ∈ W , then
δ(x, y) = w if and only if x and y can be joined by a gallery of type
i1 · · · ik.
We say that a building is thick, if every panel belongs to at least

three chambers. It is called thin, if every panel is common to exactly
two chambers. It is easy to prove that thin buildings are nothing other
than Coxeter complexes, with a W -distance δ(x, y) = x−1y.

Apartments. A map α : W → ∆ is said to be an isometry if it preserves
the W–distance δ. In other words,

δ(α(x),α(y)) = x−1y

for all x, y ∈ W . An apartment is an isometric image α[W ] of W in ∆.
Apartments exist by Theorem 3.6 in [Ron]. Moreover, by Corollary 3.7
in [Ron] any two chambers of ∆ lie in a common apartment.

Retractions. It is easy to prove (see [Ron], p. 32) that any isometry
α : W → ∆ is uniquely determined by its image A = α[W ] together
with the chamber c = α(1).
Now fix any apartment A and chamber c ∈ A. Let A = α[W ] with

c = α(1). We define a retraction

ρc,A : ∆ → A
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of ∆ onto A with center c as

ρc,A(x) = α
(

δ(c, x)
)

.

The following properties of retractions easily follow from the defini-
tion (see also [Ti1], Theorem 3.3 and Lemma 3.6).

Fact 10. The retraction ρc,A is an idempotent morphism of ∆ onto A.
Moreover,

(a) If d ∈ A and x ∈ ∆, then ρc,A maps any gallery connecting d
and x onto a gallery in A, connecting d and ρc,A(x).

(b) ρc,A maps any geodesic gallery connecting c and x onto a geodesic
gallery connecting c and ρc,A(x).

7.3. Geometric realizations of W–matroids. The following theo-
rem is the most important result of the present paper.

Theorem 4. Let ∆ be a thick building of type W and α : W → ∆ an
isometry of W into ∆. We identify the apartment α[W ] of ∆ with W
via α, so by abuse of language we assume W ⊂ ∆. Fix some chamber
x ∈ ∆. Then for any u, w ∈ W we have

w−1ρw,W (x) ≥ w−1ρu,W (x).

In particular, the map
µ(w) = ρw,W (x)

is a W–matroid.

Proof. Let Γ be a geodesic gallery connecting w and x. By Fact 10(b)
the retraction ρw,W maps Γ onto a geodesic gallery Γ′ stretched from w
to ρw,W (x). But by Fact 10(a) ρu,W maps Γ onto a gallery Γ′′ connecting
ρu,W (w) = w and ρu,W (x). The geometric interpretation of the Bruhat
ordering (Lemma 4) yields immediately that

w−1ρw,W (x) ≥ w−1ρu,W (x).

We say that a triple

(∆,α : W → ∆, x)

is a geometric realization of a W–matroid µ : W → W , if

µ(w) = ρw,W (x)

for all w ∈ W .

Question 1. Which W–matroids have a geometric realization?
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Certainly, this is a very difficult problem. In particular, it includes
the question about existence of buildings of the given type W . In the
special case when W = Symn is the symmetric group on n ≥ 4 letters,
buildings of type W are flag complexes of projective spaces [Ti1], so our
problem includes, as a partial case, the question of representability of
matroids in the classical meaning of these words ([GS2], [Aig], [Wel]).

8. Tits Systems and Thin Schubert Cells

8.1. Tits systems.

Definition of Tits systems. We say that a group G contains a Tits
system (B,N), if the following conditions hold.

(1) B and N are subgroups of G and G = BNB.
(2) H = B ∩ N is a normal subgroup of N and W = N/H is

generated by a set R = {ri, i ∈ I} of involutions.
(3) riBwB ⊆ BwB ∪ BriwB for any w ∈ W , ri ∈ R.
(4) For each ri ∈ R, we have riBri (= B.

Such expressions as riBwB have unambiguous meaning, since ri and
w are cosets of H and thus subsets of G; if r̄i and w̄ are representatives
of ri and w in N , we have riBwB = r̄iBw̄B.
The group W is called the Weyl group of the Tits system. It is

well known that W is a Coxeter group and R = {ri, i ∈ I} is the
distinguished set of generators for W . A Tits system (B,N) is said to
be of spherical type, if W is finite.
If G is the group of k–points of a reductive algebraic group defined

over a field k, B is a minimal k–parabolic subgroup in G and H < B is
a maximal k–split torus of G, then (B,NG(H)) is a Tits system in G
of spherical type ([Ti1], Theorem 5.2). Examples of Tits systems with
infinite Weyl groups are provided by reductive groups over local fields
[BrT] and by Kac-Moody groups [MoT].

Buildings associated with Tits systems. One of the main properties of
Tits systems is the Bruhat decomposition (see [Ron], Lemma 5.1):

G =
⊔

w∈W

BwB

is a disjoint union. In particular, each g ∈ G uniquely determines an
element w ∈ W such that g ∈ BwB.

Fact 11 (J.Tits [Ti1], Theorem 3.2.6, [Ron], Theorem 5.3 ). Every Tits
system (B,N) defines a building ∆ of type W , the chambers being left
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cosets of B, with i–adjacency given by

gB ∼i hB ⇐⇒ g−1h ∈ B ∪ BriB.

Moreover,
δ(gB, hB) = w ⇐⇒ g−1h ∈ BwB

is the W–distance function on this building. The subgroup B is the
stabilizer of the chamber B in the action G on ∆ = G/B by the left
multiplication and N stabilizes the apartment {wB, w ∈ W}.

8.2. Schubert cells and retractions.

Schubert cells. The image in G/B of a double coset wBw−1gB with
respect to a pair of subgroups wBw−1 and B is called a Schubert cell.

Lemma 5. Let g ∈ G. Any Schubert cell wBw−1gB/B can be written
in the form

wBw−1gB/B = wBw−1uB/B

for some u ∈ W . The element u is uniquely determined by the cell. In
particular, there is a decomposition

G/B =
⊔

u∈W

wBw−1uB/B

of G/B into a disjoint union of Schubert cells with representatives u ∈
W .

Proof. By the Bruhat decomposition an element w−1g can be presented
in the form

w−1g = b1vb2

for some b1, b2 ∈ B and v ∈ W . The element v is uniquely determined
by g. Set u = wv, then

w−1g = b1w
−1ub2

and
g = wb1w

−1ub2 ∈ wBw−1uB,

where u ∈ W is uniquely determined by g. But it means that we have
a disjoint union

G =
⊔

u∈W

wBw−1uB,

and also
G/B =

⊔

u∈W

wBw−1uB/B.
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It follows immediately from the definition of ∆ that the map w ,→
wB is an isometry of W onto the apartment {wB, w ∈ W} of ∆. We
can identify W with this apartment.

Lemma 6. Under these assumptions, if g ∈ wBw−1uB, then

u = ρw,W (gB),

where ρw,W is the retraction of ∆ onto W with the center w.

Proof. The left multiplication by w is an isometry of W onto W which
sends 1 to w, so the definition of the retraction ρw,W takes the form

ρw,W (x) = wδ(w, x) for x ∈ ∆.

Let now x = gB. By definition,

δ(wB, gB) = v ⇐⇒ w−1g ∈ BvB.

But g ∈ wBw−1uB, so w−1g ∈ Bw−1uB and we should take v = w−1u.
But then

ρw,W (gB) = wδ(wB, gB) = wv = w · w−1u = u.

Thin Shubert cells and W–matroids. Under the assumptions of the
previous paragraph, set

µg(w) = ρw,W (gB).

By the previous lemma

g ∈ wBw−1µg(w)B,

and, taking the intersection over all w ∈ W , we have

g ∈
⋂

w∈W

wBw−1µg(w)B.

The image K of this intersection in G/B is called a thin Schubert cell.
Obviously thin Schubert cells form a partition of G/B, generated by all
partitions of G/B into Schubert cells. It follows from Lemma 6, that
the function µg : W → W does not depend on the choice of an element
gB ∈ K, whence can be denoted by µK .
The following theorem is an immediate corollary of Lemma 4 and

Lemma 6.
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Theorem 5. Let G be a group with a Tits system (B,N) and W =
N/N ∩ B its Weyl group. Consider a thin Schubert cell

K =
⋂

w∈W

wBw−1µK(w)B/B

in G/B associated with a function µK : W → W . Then µK is a W–
matroid.

9. WP–matroids

In this section we generalize our results from W–matroids to WP–
matroids.

9.1. Residues and parabolic subgroups.

Residues. Let C be a chamber complex over I and J ⊆ I. The relation

x and y can be connected by a gallery of type i1 · · · im
with all ik ∈ J , 1 ≤ k ≤ m,

is clearly an equivalence relation on C. Its classes are called J–residues
([Ron]) or faces of type J ([Ti1]). Notice that faces of type {i} are just
i–panels and faces of type ∅ are chambers. Given residues χ and ψ of
types J and K respectively we say that ψ is a face of χ if ψ ⊃ χ and
K ⊃ J .
Clearly any morphism of chamber systems over I sends faces of type

J to faces of type J .
If now W is a Coxeter group, which we identify with its Coxeter

complex, then it is easy to see that faces of type J are left cosets wP
with respect to a parabolic subgroup P = 〈ri, i ∈ J〉. So the set of all
faces of type J can be identified with the factor set W P = W/P .

The Bruhat ordering on W P . The following fact makes it clear how
to define the Bruhat ordering on W P .

Fact 12 (V. Deodhar [Deo], Lemma 2.1 ). (a) Any coset α ∈ W P

contains the minimal, with respect to the Bruhat ordering, ele-
ment wα.

(b) Let α, β ∈ W P be two cosets and a ∈ α, b ∈ β any representa-
tives of α and β, correspondingly. If a ≤ b, then wα ≤ wβ.

Following [Deo], we introduce a partial ordering ≤ on W P by putting
α ≤ β if wα ≤ wβ. In view of Fact 12 this is equivalent to the condition
that a ≤ b for some representatives a ∈ α, b ∈ β.
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WP–matroids. We define a WP–matroid as a convex map

µ : W → W P .

It means that µ satisfies the inequality

w−1µ(u) ≤ w−1µ(w)

for all u, w ∈ W .
One can define for subsets in W P the maximality and minimality

conditions by analogy with these notions for subsets in W (Section 6).
If M = µ[W ] is the image in W P of a WP–matroid µ, then for any
w ∈ W , M contains a w–maximal element µ(w). Hence for finite
Coxeter groups, where the maximality condition for W P coincides with
the minimality condition, our definition of a WP–matroid is equivalent
to the definition of a WP–matroid in the sense of [GS1] (the work
[GS1] defines WP–matroids as subsets in W P satisfying the minimality
condition). Thus our notion of a WP–matroid includes as partial cases
the notion of a matroid.
Notice that W acts on the set MP (W ) of all WP–matroids on W

by the following rule: if u ∈ W , then

(u · µ) : w ,→ u−1µ(uw).

9.2. Geometric interpretation of WP–matroids.

Geometric interpretation of the Bruhat ordering on W P . Let C be
a chamber system and π, σ two faces of C. We say that a gallery
Γ = (c0, . . . , ck) connects π and σ, if π is a face of c0 and σ is a face of
ck.
The following lemma is an easy consequence of Lemma 4 and the

definition of the ordering of W P .

Lemma 7. Let w ∈ W , P = 〈ri, i ∈ J〉 a parabolic subgroup, ω = wP
the face of w of type J ,

Γ = (x0, . . . , xk), w = x0,

a geodesic gallery and

Γ′ = (y0, . . . , yk), w = y0,

a gallery of the same type i1 · · · ik, connecting ω to faces χ ∈ W P and
ψ ∈ W P , correspondingly. Then

w−1ψ ≤ w−1χ.
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WP–matroids and retractions of buildings. The following result is an
immediate generalization of Theorem 4.

Theorem 6. Let ∆ be a thick building of type W and α : W → ∆ an
isometry of W into ∆. We identify the apartment α[W ] of ∆ with W
via α. Fix some face χ ∈ ∆ of type J . Then for any u, w ∈ W we
have

w−1ρu,W (χ) ≤ w−1ρw,W (χ),

where ≥ is understood as the Bruhat ordering on the set W P , P =
〈ri, i ∈ J〉, of all faces of W of type J . In particular, the function

µ : W → W P ,

µ : w ,→ ρw,W (χ)

is a WP–matroid.

Geometric realizations of WP–matroids. In the conditions of Theo-
rem 6 a triple

(∆,α : W → ∆,χ)

is called a geometric realization of a WP–matroid µ.

Question 2. Which WP–matroids have a geometric realization?

Schubert cells on flag spaces G/GJ . Save notations of Section 8.
If J ⊂ I, let P = PJ = 〈ri, i ∈ J〉 be a parabolic subgroup in W
generated by J , W P = W/PJ and GJ = BPJB. As easily follows from
the definition of a Tits system, GJ is a subgroup of G. It is called a
parabolic subgroup of type J . We shall identify the building ∆ of a Tits
system (B,N) with the factor set G/B. Then GJ is the stabilizer in G
of the face of type J of the chamber B (see [Ron], Theorem 5.4). The
group G is transitive on the set of all faces of type J in ∆, so we can
identify the set of all faces of type J with G/GJ and call it the flag
space of type J for the group G.
One can easily prove that for any w ∈ W there is a decomposition

G =
⊔

α∈WP

wBw−1αGJ



MATROIDS ON CHAMBER SYSTEMS 57

into a disjoint union of double cosets with respect to subgroups
wBw−1αGJ . Taking the natural projection of G onto G/GJ , we con-
sider this partition as a decomposition of G/GJ :

G/GJ =
⊔

α∈WP

wBw−1αGJ/GJ .

Lemma 8. Save the notations above. If g ∈ wBw−1αGJ , then

α = ρw,W (gGJ)PJ ,

where ρw,W is the retraction of ∆ onto W with the center w.

Thin Shubert cells and WP–matroids. Under the assumptions of the
previous lemma, we denote

µg(w) = ρw,W (gGJ)PJ .

By the previous lemma

g ∈ wBw−1µg(w)GJ ,

and, taking the intersection over all w ∈ W , we have

gGJ ∈ K =
⋂

w∈W

wBw−1µg(w)GJ/GJ .

The set K is called a thin Schubert cell on the flag space G/GJ . Ob-
viously thin Schubert cells form a partition of G/GJ generated by all
partitions of G/GJ into Schubert cells. Moreover, the partition into
thin Schubert cells is invariant under the action of the Weyl group W :
if

K =
⋂

w∈W

wBw−1µg(w)GJ/GJ

is a thin Schubert cell and u ∈ W , then

uK =
⋂

w∈W

uwB(uw)−1µg(uw)GJ/GJ

is another thin Schubert cell.
It follows from Lemma 8 that the function µg : W → W P does not

depend on the choice of a coset gGJ ∈ K and thus can be denoted by
µK .
The following theorem is a corollary of Lemma 7 and Lemma 8.
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Theorem 7. Let G be a group with a Tits system (B,N), W = N/N∩
B its Weyl group and R = {ri, i ∈ I} the distinguished set of generators
for W . Let J ⊆ I, P = 〈ri, i ∈ J〉, W P = W/P and GJ = BPB.
Consider a thin Schubert cell

K =
⋂

w∈W

wBw−1µK(w)GJ/GJ

on the flag space G/GJ , associated with a function µK : W → W P .
Then µK is a WP–matroid.

This theorem generalizes Theorem 2 of Section 8.3 in [GS2].

9.3. Submatroids and Zariski closures of thin Schubert cells.

Submatroids. Let W be a Coxeter group, P a parabolic subgroup in
W and

µ,λ : W → W/P

twoWP–matroids. We say that µ is a submatroid of λ and write µ ≤ λ,
if

w−1µ(w) ≤ w−1λ(w)

for all w ∈ W .

Theorem 8. If W is a finite Coxeter group, P a parabolic subgroup in
W and µ,λ are WP–matroids, then µ ≤ λ if and only if

µ[W ] ⊆ λ[W ].

Proof. implies. Recall that the multiplication by the longest element
w0 ∈ W reverses the Bruhat ordering. It means that wP is the maximal
element of W with respect to the ordering ≤w0w. So if wP ∈ µ[W ],
then

wP = µ(w0w) ≤
w0w λ(w0w)

and, wP = λ(w0w) ∈ λ[W ].
The implication ⇐= is obvious.

Zariski closure of thin Schubert cells. In this section we assume that
G is a simple algebraic group over an algebraically closed field, B a
Borel subgroup in G, H a maximal torus in B and N = NG(H). It is
well known that (B,N) is a Tits system in G of spherical type and that
if GJ a parabolic subgroup in G, then G/GJ is a complete algebraic
variety [Hu1].
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Fact 13 (Borel - Tits [BoT]). If, under these assumptions, BwGJ is a
Schubert cell in G/GJ , then its Zariski closure has a form

BwGJ =
⋃

u∈WP ,u≤w

BuGJ .

Theorem 9. Let Kµ be a thin Schubert cell on G/GJ corresponding to
a WP–matroid µ. Then

Kµ ⊆
⋃

λ≤µ

Kλ.

Proof. It is almost an immediate consequence of Fact 13. We need only
to notice that

wBw−1uGJ =
⋃

v∈WP ,w−1v≤w−1u

wBw−1vGJ

=
⋃

v∈WP ,v≤wu

wBw−1vGJ .

So if
Kµ =

⋂

w∈W

wBw−1µ(w)GJ ,

then

Kµ ⊆
⋂

w∈W

wBw−1µ(w)GJ

=
⋂

w∈W

(

⋃

v∈WP ,v≤wµ(w)

wBw−1vGJ

)

=
⋃

λ≤µ

(

⋂

w∈W

wBw−1λ(w)GJ

)

=
⋃

λ≤µ

Kλ,

where λ is a WP–matroid, possibly corresponding to an empty thin
Schubert cell. The theorem follows at once.

Notice that there are examples showing that in general

Kµ (=
⋃

λ≤µ

Kλ

(see [GS2]).

Closures of orbits of a maximal torus. Obviously, since thin Schubert
cells areH–invariant, their Zariski closures are also H–invariant. Every
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H–orbit HgGJ/GJ can be assigned, in view of Theorem 7, a WP–
matroid µ.
The following theorem is an immediate corollary of Theorem 9.

Theorem 10. Let µ be a WP–matroid of a H–orbit HgGJ/GJ on a
flag variety G/GJ . If λ is a WP–matroid corresponding to an orbit
Hg1GJ/GJ in the Zariski closure HgGJ/GJ , then λ ≤ µ.

If K = C is the field of complex numbers and G is a simple algebraic
group over C, then the results of Sections 4–8 in the work by I. M.
Gelfand and V. V. Serganova [GS2] can be summed up as follows:

Theorem 11. Let HgGJ/GJ be an H–orbit on the flag space G/GJ

corresponding to a WP–matroid µ. Then there is one-to-one corre-
spondence between H–orbits in the Zariski closure HgGJ/GJ and sub-
matroids of µ.

This theorems gives, in a partial case of realizations ofWP–matroids
in buildings of simple algebraic groups over the field of complex num-
bers, the positive answer to the following question on geometric real-
izations of matroids.

Question 3. Assume that WP–matroid µ has a geometric realization
in a thick building ∆ of type W . If λ ≤ µ is another WP–matroid, is
it true that λ also has a realization in ∆?

9.4. Realizations of chamber matroids. Let ∆ be a connected
chamber system over I (it means that any two chambers can be con-
nected by a gallery) and A ⊆ ∆ a subsystem in ∆. An idempotent
morphism ρ : ∆ → A is called a retraction of ∆ onto A with the center
c ∈ A, if for any chamber x ∈ ∆, ρ maps any geodesic gallery stretched
in ∆ from the chamber c to x onto a geodesic gallery in A stretched
from c = ρ(c) to ρ(x). If A is a thin chamber system, then clearly
a geodesic gallery stretched between two chambers in A is uniquely
determined by its type, therefore the retraction ρ : ∆ → A is uniquely
determined by its center c. We say that A is a flat in ∆, if A is a thin
chamber complex and for any c ∈ A there exists a (unique) retraction
of ∆ on A with the center c. We denote it by ρc,A.
The following theorem is almost obvious.

Theorem 12. If A is a flat in a connected chamber system ∆ and
x ∈ ∆, then the map

µ(c) = ρc,A(x)

is a matroid on A.
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We say in this situation that a triple

(∆, A ↪→ ∆, x)

is a realization of a matroid µ.

Question 4. Which chamber matroids have a realization?
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