Welcome to the LaCIM

The Laboratoire de combinatoire et d'informatique mathématique (LaCIM) is an international research center based in Montreal, and gathers researchers in mathematics and computer science.

The main research interests of LaCIM's researchers are:

  • combinatorics;
  • algebraic combinatorics;
  • bioinformatics;
  • mathematical aspects of computer science.

News

Jérôme Fortier obtains a NSERC postdoctoral scholarship

NSERC offered to Jérôme Fortier, a Ph.D. student from LaCIM, a postdoctoral scholarship of 40 000$ per year, for two years, at Ottawa University. Congratulations to Jérôme!

LIRCO renewed for 4 years

The LIRCO, an international associated laboratory created in 2011 by the CNRS (France) has been renewed for another 4 years, from January 1st, 2015 to December 31st, 2018. The scientific representants are Mireille Bousquet-Mélou and Srečko Brlek.

Award for scientific cooperation with France

img Srĕcko Brlek, full professor of the Computer Sciences Department of Université du Québec à Montréal has been awarded the Acfas Prize - Adrien-Pouliot 2014, for scientific cooperation with France.

More details can be found on the Acfas website.

Upcoming seminars

2016-02-05T13:30:00-05:00

Sur les suites maximales vertes

Thomas Brüstle, Université de Sherbrooke

Résumé : Suites maximales vertes peuvent être considérés comme une généralisation des chaînes maximales dans un treillis de Tamari. Nous prévoyons d'expliquer leur définition, par exemple, pourquoi elles sont vertes, quelle est la motivation pour étudier ces séquences, et de donner quelques résultats récents.

2016-02-12T13:30:00-05:00

Un \(q\)-analogue des conjectures pléthystiques de Foulkes

François Bergeron, UQAM

Résumé : À venir.

2016-02-19T13:30:00-05:00

Keeping your distance is hard

Silvia Heubach, California State University

Résumé : À venir.

2016-02-26T13:30:00-05:00

Palindromic and anti-palindromic closures in symbolic dynamics

Laurent Vuillon, LAMA, Université de Savoie

Abstract : The palindromic and anti-palindromic closures are used in combinatorics on words in order to generate Sturmian, Thue-Morse or Rote words. Usually, these words are generated either by substitutions or by discrete dynamical systems given by rotations on the torus with a well chosen partition. Thus in the first part of the talk, we will see how to use directive words in order to generate these specic words and an interesting class of words. We will focus also on Justin's formula in order to compute the palindromic closure and we extend this tool to the anti-palindromic case. In a second part, we will investigate geometric palindromic closure to construct finite steps of the famous Rauzy fractal linked to a generalization of the Fibonacci sequence (namely the Tribonacci case). The construction leads to construct Rauzy fractals in all dimensions using geometrical transformations.

2016-03-04T13:30:00-05:00

Sweeping up Zeta

Nathan Williams, LaCIM

Abstract: à venir

2016-03-18T13:30:00-04:00

Une Seconde Preuve de la Conjecture Shareshian-Wachs

Mathieu Guay-Paquet, LaCIM

Abstract: à venir

2016-04-01T13:30:00-04:00

À venir

Jake Levinson, University of Michigan

Résumé : À venir.

2016-05-06T13:30:00-04:00

À venir

Jean-Éric Pin, LIAFA, Université Paris Diderot

Résumé : À venir.