• slide02

    Pavillon President-Kennedy, UQAM

  • slide05

    ARTA III : Advances in representation theory of algebras (2014)

  • slide04

    Mathematics in Marseille with Mark Haiman, Cédrik and François Bergeron

  • RS, Adriano Garsia
La Jolla, CA

[#Beginning of Shooting Data Section]
Nikon CoolPix2500
2003/01/26 20:34:50
JPEG (8-bit) Basic
Image Size:  1600 x 1200
ConverterLens: None
Focal Length: 5.6mm
Exposure Mode: Programmed Auto
Metering Mode: Multi-Pattern
1/152.7 sec - f/4.5
Exposure Comp.: 0 EV
Sensitivity: Auto
White Balance: Auto
AF Mode: AF-S
Tone Comp: Auto
Flash Sync Mode: Front Curtain
Electric Zoom Ratio: 1.00
Saturation comp: 0
Sharpening: Auto
Noise Reduction: OFF
[#End of Shooting Data Section]

    Mathematics at the beach, Richard Stanley and Adriano Garsia (2003)

  • slide06

    Mathematics at a bar in Banff with Adriano Garsia and Nantel Bergeron

  • slide07

    Mountain mathematics with Francois and Nantel Bergeron, Jennifer Morse and Adriano Garsia

  • slide10

    Welcome to LaCIM!

  • slide09

    Welcome to LaCIM!

  • slide08

    Welcome to LaCIM!

  • slide11

    Welcome to LaCIM!

  • slide12

    Welcome to LaCIM!

  • slide13

    Gilbert Labelle and Christophe Reutenauer

  • slide16

    Welcome to LaCIM!

  • slide15

    Welcome to LaCIM!

  • slide14

    Welcome to LaCIM!

  • slide18

    Welcome to LaCIM!

  • slide22

    Welcome to LaCIM!

  • slide27

    Welcome to LaCIM!

  • slide26

    Welcome to LaCIM!

  • slide29

    Welcome to LaCIM!

  • slide28

    Welcome to LaCIM!

Welcome to LaCIM

The LaCIM  (Laboratoire de Combinatoire et d’Informatique Mathématique) is a research center gathering researchers, postdoctoral fellows, as well as graduate and undergraduate students interested in



On invariant ideals of representation rings of semisimple groupsFriday, 24 February 2017, 13:30

Rostislav Devyatov (Université d'Ottawa)

Abstract : The talk is based on my joint work with Sanghoon Baek and Kirill Zainoulline, see arXiv:1612.07278. To any semisimple group $G$, one can associate its weight lattice $\Lambda$, the set of simple weight $\overline{\omega}_1, \ldots, \overline{\omega}_n$, and the Well group $W$ acting on $\Lambda$. One can consider the Laurent polynomial rings $\mathbb{Q}[\Lambda]$ and $\mathbb{Z}[\Lambda]$ (the monomial corresponding to $\lambda \in \Lambda$) will be denoted by $e^\lambda$ and the $augmented$ $orbit$ $polynomials$ $p_i = -|W\overline{\omega}_i|+\sum_{\lambda \in W\overline{\omega}_i} e^\lambda.$ These polynomials generate ideals $I \subset \mathbb{Z}[\Lambda]$ and $I_\mathbb{Q} \subset \mathbb{Q}[\Lambda].$ One can also consider the character lattice of the maximal torus of $G:$ $T^*\subset \Lambda$ and the corresponding Laurent polynomial subrings $\mathbb{Z}[T^*] \subset \mathbb{Z}[\Lambda]$ and $\mathbb{Q}[T^*] \subset \mathbb{Q}[\Lambda]$. If certain (not very strong in the case of $\mathbb{Q}$, and very strong in the case of $\mathbb{Z}$) conditions on $T^*$ and $\Lambda$ are satisfies, I will explain how to find the intersections $I\cap \mathbb{Z}[T^*]$ and $I_{\mathbb{Q}} \cap \mathbb{Q}[T^*]$.

TBAFriday, 17 March 2017, 13:30

Chris Fraser (IUPUI)

Abstract : TBA