• slide02

    Pavillon Président-Kennedy, UQAM

  • slide05

    ARTA III : Avancées en théorie des représentations des algèbres (2014)

  • slide04

    Mathématiques à Marseille avec Mark Haiman, Cédrik et François Bergeron

  • RS, Adriano Garsia
La Jolla, CA

[#Beginning of Shooting Data Section]
Nikon CoolPix2500
2003/01/26 20:34:50
JPEG (8-bit) Basic
Image Size:  1600 x 1200
ConverterLens: None
Focal Length: 5.6mm
Exposure Mode: Programmed Auto
Metering Mode: Multi-Pattern
1/152.7 sec - f/4.5
Exposure Comp.: 0 EV
Sensitivity: Auto
White Balance: Auto
AF Mode: AF-S
Tone Comp: Auto
Flash Sync Mode: Front Curtain
Electric Zoom Ratio: 1.00
Saturation comp: 0
Sharpening: Auto
Noise Reduction: OFF
[#End of Shooting Data Section]

    Maths à la plage, Richard Stanley et Adriano Garsia (2003)

  • slide06

    Mathématiques au bar à Banff avec Adriano Garsia et Nantel Bergeron

  • slide07

    Mathématiques à la montagne avec Francois et Nantel Bergeron, Jennifer Morse et Adriano Garsia

  • slide10

    Bienvenue au LaCIM!

  • slide09

    Bienvenue au LaCIM!

  • slide08

    Bienvenue au LaCIM!

  • slide11

    Bienvenue au LaCIM!

  • slide12

    Bienvenue au LaCIM!

  • slide13

    Gilbert Labelle et Christophe Reutenauer

  • slide16

    Bienvenue au LaCIM!

  • slide15

    Bienvenue au LaCIM!

  • slide14

    Bienvenue au LaCIM!

  • slide18

    Bienvenue au LaCIM!

  • slide22

    Bienvenue au LaCIM!

  • slide27

    Bienvenue au LaCIM!

  • slide26

    Bienvenue au LaCIM!

  • slide29

    Bienvenue au LaCIM!

  • slide28

    Bienvenue au LaCIM!

Bienvenu au LaCIM

Le LaCIM (Laboratoire de Combinatoire et d’Informatique Mathématique)est un centre de recherche regroupant chercheurs, stagiaires et étudiants autour de thèmes relevant des mathématiques discrètes et



R-systemsFriday, 24 November 2017, 13:30

Pavel Galashin (MIT)

Abstract: Birational toggling on Gelfand-Tsetlin patterns appeared first in the study of geometric crystals and geometric Robinson-Schensted-Knuth correspondence. Based on these birational toggle relations, Einstein and Propp introduced a discrete dynamical system called birational rowmotion associated with a partially ordered set. We generalize birational rowmotion to the class of arbitrary strongly connected directed graphs, calling the resulting discrete dynamical system the R-system. We study its integrability from the points of view of singularity confinement and algebraic entropy. We show that in many cases, singularity confinement in an R-system reduces to the Laurent phenomenon either in a cluster algebra, or in a Laurent phenomenon algebra, or beyond both of those generalities, giving rise to many new sequences with the Laurent property possessing rich groups of symmetries. Some special cases of R-systems reduce to Somos and Gale-Robinson sequences. This is joint work with Pavlo Pylyavskyy.

TBAFriday, 22 December 2017, 13:30

Frédéric Patras (Université de Nice Sophia-Antipolis)

Abstract: TBA

TBAFriday, 12 January 2018, 13:30

Narad Rampersad (University of Winnipeg)

Abstract: TBA

TBAFriday, 19 January 2018, 13:30

Dun Qiu (UCSD)

Abstract: TBA